E

ContextBox: A Visual Builder for Context Beans

[Extended Abstract] ~

David H. Lorenz

Predrag Petkovic

College of Computer Science
Northeastern University
Boston, MA 02115

{lorenz,predrag}@ccs.neu.edu

ABSTRACT

We present an assembly-design environment that supports
the JavaBeans extensible runtime containment and services
protocol. The environment provides: a vehicle for demon-
strating the Java component model; a third-party client for
testing BeanContext and BeanContextChild components;
and a prototype illustrating how a visual builder might unify
visual and context nesting during component assembly.

1. INTRODUCTION

The essence of the extensible runtime containment and
services protocol [2] is that beans may be placed in, and re-
moved from, their enclosing BeanContext. The BeanContext
becomes a container of objects, which not only introduces
a new logical hierarchical structure, but also provides to its
inhabitants a service discovery and obtaining protocol.

In order to test in a builder a bean implementing the
java.beans.beancontext.BeanContext interface, the bean
must have a visual representation. Without such a repre-
sentation, it would be impossible to manipulate it visually
during the assembly and design activities. Assembly is the
act of connecting components into a working application vi-
sually. Design is the act of fine-tuning the application’s look
and feel by manipulating the components’ visual aspects.

Moreover, assembling the context hierarchy would be dif-
ficult unless a corresponding visual containment hierarchy
displays it. A BeanContext component, however, is not nec-
essarily associated with an AWT component. Meanwhile,
the bean can be a BeanContextProxy and a java.awt.-
Container. In that case, there are two hierarchies to main-
tain, a visual one and a context one, and a possibility for
inconsistency between the two.

*A full version of this paper is available as ConteztBox:
A BeanBoz environment for design-time assembly of Bean-
Context components, Technical Report NU-CCS-99-04, Col-
lege of Computer Science, Northeastern University, Boston,
MA 02115, Nov. 1999, at www.ccs.neu.edu/home/lorenz/-
center/bcdk/contextbox.

Permissionto male digital or hard copiesof all or part of this work for
personalbor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadwantageandthatcopies
bearthis noticeandthe full citationon the first page. To copy otherwise,
to republish,to poston seners or to redistrilute to lists, requiresprior
specificpermissiorand/orafee. OOPSLA2000CompaniorMinneapolis,
Minnesota© Copyright ACM 20001-58113-307-3/00/10$5.00

75

Current builders fail to manipulate BeanContext compo-
nents correctly. Some builders (e.g., BeanBox) do not even
support a visual hierarchy. Other builders (e.g., IBM Visu-
alAge) support visual nesting, but do not support the con-
tainment and services protocol. We present an enhanced
BeanBox that supports and integrates both.

2. VISUAL DIMENSIONS OF JAVABEANS

JavaBeans are “reusable software components that can be
manipulated visually in a builder tool” [4]. However, a bean
can be visual or non-visual, may or may not be associated
with a symbolic image, and at times may be visible or in-
visible. A wvisual bean has a visual representation during
execution. All AWT components are visual beans. A non-
visual beans is used for its functionality despite not having
a visual appearance. Adapters [3] are typically non-visual.

Some components are associated with a symbolic image,
an icon, others are assigned one by the system, e.g., a label.
The icon is specified by the bean author in the BeanInfo
adjunct class. For a bean without an icon, the system in-
stantiates a Label and uses it like an icon. The icon or label
is used by the builder during assembly to visually display
non-visual beans. The icon or label is also used to display
the list of available components (in the ToolBox window)
when a jar is loaded.

A visual bean is associated with a java.awt.Component
object, which is wisible during design, regardless of whe-
ther or not the bean is associated with a symbolic image.
A non-visual bean is represented visually during assembly
by its symbolic image, and it is inwvisible during execution.
But even visual beans can be at times visible and at times
invisible, e.g., by invoking setVisible(false) during either
design or execution.

In BeanBox 1.1 [1], the user can switch back and forth
between assembly, design, and execution by toggling two
environment options (see Table 1). In the next section,
we describe the policy for seamlessly integrating into the
BeanBox environment support for the runtime containment
and services protocol.

Table 1: Mode-toggling

|| Enable design | Disable design |
Assembly
Design

[Mode

Show non-visual
Hide non-visual

Read-only assembly
Execution

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Table 2: The visual and context combinations

component non-visual visual
Teaf | composite
context leaf 1. Not an AWT Component | 2. A Component 3. A Container
composite || 4. A BeanContext 5. A Component and a BeanContext 6. A Container and a BeanContext

3. VISUAL/CONTEXT COMPONENTS

Every bean can have a Component or Container, and/or a
BeanContext, associated with it. A bean can establish that
relationship either through inheritance by extending one of
BeanContext, Component or Container classes, or by being
a BeanContextProxy or a BeanContextContainerProxy or a
BeanContextChildComponentProxy for that object.

In terms of the COMPOSITE design pattern [3], a bean can
be both a visual and a context component. A wvisual compo-
nent is either a wvisual leaf or a visual composite. Similarly,
a context component is either a contert leaf or a context
composite. From a visual perspective, however, a context
leaf and a component not associated with a context are
treated the same. There are therefore 6 combinations to
consider [5] (Table 2):

1. A non-visual context leaf. The BeanBox covers the
case of a bean which is neither a Component nor a
BeanContext. During assembly, a special label rep-
resents a non-visual bean, which is hidden during de-
sign and execution. No beans can be placed inside this
bean.

2. Both a visual and a context leaf. A bean, which
is a Component but not a BeanContext, should always
be represented (during assembly, design, and execu-
tion) by the Component itself. This behavior would
be consistent with the behavior in the BeanBox. No
beans can be placed inside this bean. It is neither a
visual nor a context composite, and therefore its visual
representation should be used at all times.

3. A visual composite context leaf. A bean, which
is a Container but not a BeanContext, is a common
case, typically coded by a user who did not anticipate
runtime containment. This kind of visual bean should
always represent itself visually. However, if the user
places inside this bean other beans that expect services
from a runtime environment, then those beans must
be added to that container and also to the runtime
context of some other bean.

In the extended BeanBox version, every bean that is
a Container but not a BeanContext is automatically
associated with a new BeanContext. Then, every bean
added to that container is also added to its associated
BeanContext, which propagates the environment ser-
vices according to the protocol.

4. A non-visual context composite. This is a kind
of BeanContext bean that has no visual representa-
tion. It should be represented by a special kind of
Container (e.g., TransparentPanel). During assem-
bly, the user can place inside this bean other beans,
and during design/execution the container should be-
come “transparent”; i.e., become itself invisible but
leave the contained components visible.

76

5. A visual leaf context composite. A bean can be
both a Component and a BeanContext. However, this
is an unnatural case that probably ought to be disal-
lowed. It is unnatural because the bean seems to have
a contradictory behavior: a leaf (Component) in the
visual containment hierarchy, and a composite, i.e., a
collection (BeanContext), in the BeanContext contain-
ment hierarchy.

A possible work-around is to represent such beans dur-
ing assembly by a special kind of Container (e.g.,
OurPanel, analogous to OurLabel), which will allow
the user to visually put in it child beans, and during
design/execution by the Component associated with the
bean. Beans placed inside this bean should be added
to its associated container and also to its BeanContext.

6. Both a visual and a context composite. This is
a bean that is a Container and a BeanContext. It is
the simplest case. The bean should always represent
itself, and there are no additional problems. Beans
placed inside the component should be added to both
the Container and to the BeanContext, either by the
bean itself or by the environment.

CONCLUSION

BeanBox can only test beans against the BeanContext for
which the BeanBox object is a proxy. As a result, one can
test one’s services beans but one cannot test one’s own
BeanContext beans.

ContextBox is an enhancement of the BeanBox, supporting
both visual and context nesting. We demonstrate the work-
ing of ContextBox through an example: a ColorBeanContext
panel (extends Panel and implements BeanContextProxy),
which rejects the insertion of ColorBeans of a color same
as its own, but accepts those of a different color. When the
colors are dynamically changed, all beans violating the color
restriction are expelled from the ColorBeanContext panel,
and added to the panel’s parent, if possible.

5. REFERENCES
[1] BDK 1.1. JavaSoft, November 1997.

[2] L. Cable. Extensible runtime and services protocol for
JavaBeans. Version 1.0, JavaSoft, Dec. 3 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

JavaBeans API specification. JavaSoft. Version 1.01,
Sun Microsystems, Mountain View, CA, July 24 1997.
D. H. Lorenz and P. Petkovic. Design-time assembly of
runtime containment components. In Proceedings of the
84" International Conference on Technology of
Object-Oriented Languages and Systems, pages
195-204, Santa Barbara, CA, July 30-Aug. 4 2000.
TOOLS 34 USA Conference, IEEE Computer Society.

4.

(3]

[4]
[5]

