
Tiling Desigri Patterns

-A Case Study Using the Interpreter Pattern

i DAVID H. LORENZ

The Faculty of Computer Sci&e,
Technion-Israel Institute of Technology,

‘, :
Technion City, Haifa 32000, ISRAEL;

.I Email: davidQCS.Technion.AC.IL

Abstract

This paper explains how patterns can be used to de-
scribe the implementation of other patterns. It is
demonstrated how certain design patterns can de-
scribe their own design. This is a fundamental reflex-
ive relationship in pattern relationships. The process
of assembling patterns by other patterns is named
pattern tiling. Tiling enables us to interweave simple
understood concepts of patterns into their complex
real-life implementation. Several pattern tilings for
the Interpreter design pattern are illustrated.

1 Introduction

Tilings are sets of physical objects (“tiles”), typically
made of stone or ceramic, which fit together in a re-
curring motif (“pattern”) to cover surfaces without
gaps or overlaps. The art of tiling and the relevance of
its technology extends from early days uses to appli-
cations in modern engineering (e.g., VLSI design [36])
and in modern science (a study of their mathemat-
ical properties can be found in [18].) This paper
presents tilings of non-physical objects: design pat-
terns [14, 153 as declarative entities that fit together.

One of the nice features that Prolog [33] begin-
ners struggle with at first is its declarative semantics.
Declaring, for example, that conc(lr, Ls,Ls) if LB
is the concatenation of L1 and Lz, allows the func-
tor con& to be used in more than one way. The
obvious use is to’concatenate two lists, L1 and Lz,

Perinission to make digital/hard copv of part or all this work for
personal Or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and. its date
appear, and notice is given that copying is by permission of ACM,
inc. TO COPY otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSlA ‘97 IO/97 GA, USA
0 1997 ACM 0-89791-9084/97/0010...$3.50

into Ls. But it may also be used to split a given
list L3. Likewise, the intent of a pattern and the
manipulation of its participants can be taken declar-
atively.

The pattern name is perhaps its most profound
declarative form. The names associated with de-
sign patterns enrich our vocabulary for reasoning
about design at higher levels of abstraction. Their
rapid growth threatens to become a language for
design. One indication of a language’s expressive
power is its ability to describe itself. BNF (Backus-
Naur-Form [29])- a ormal notation to describing the f
context-free syntax of a given language, for example,
can describe its own grammar. This begs a question:
can design patterns describe their own design?

Design patterns improve considerably the manner
in which object-oriented experience is communicated.
But, no matter how well a design pattern is written,
there will always remain a gap between comprehend-
ing a pattern and applying it. This gap is revealed in
the complexity and cost of putting certain design pat-
terns into practice. Implementing the Interpreter [15]
pattern, for instance, is limited to simple grammars,
since ‘“for complex grammars, the class hierarchy for
the grammar becomes large and unmanageable” [15,
page 2451; changing the structure traversed by a Vis-
itor [15] “requires redefining the interface to all visi-
tors, which is potentially costly” [15, page 3331.

This paper shows how patterns can be used to de-
scribe the implementation of other patterns. It is
demonstrated how certain design patterns can de-
scribe their own design. This is a fundamental re-
flexive relationship in pattern relationships. The
process of assembling patterns by other patterns is
named pattern tiling. Tiling patterns reduces the
comprehension-application gap. For example, we
shall see how one Interpreter helps with implement-
ing another Interpreter pattern, and that a Visitor to
the first interpreter can generate a family of visitors
to the second.

296

Yet another gap is stretched between applying each
pattern individually and integrating several patterns.
Knowing the catalogue of patterns by heart is prudent
perhaps but unfortunately not a sure recipe for suc-
cessfully applying them. For example, one may fully
understand both the Interpreter [15] and the Rejlec-
tion [35, Sect. 171 patterns and yet not see how an
implementation of an interpreter implicitly possesses
a reflective architecture, as shall be shortly demon-
strated.

The issue of pattern relationship is one of the dif-
ficult aspects of patterns. In [15] this is addressed
by classifying patterns into groups according to their
purpose and scope, specifying related patterns, and
providing a spaghetti-diagram that shows graphically
the relationships between patterns. For example, the
Interpreter is a behavioral pattern. It applies primar-
ily to classes, and can use the Composite [15] pattern
in defining the grammar, the Visitor for adding op-
erations, and the Flyweight [15] pattern for sharing
terminal symbols. As informative as it is, this is far
from satisfactory, albeit hard to improve, as indicated
by attempts for improved classifications ([8, Sect. 181
is a good example) that followed. Noticeably, the
spaghetti-diagram for showing related patterns con-
tains no loops. The possible refletiue relationships
between patterns seem to be missing.

An implementation of a pattern can simultaneously
be (or share large portions with) an implementation
of several other patterns. A special case of this is
integrating several implementations of the same pat-
tern. Integrating a pattern with itself is conceptually
simpler than integrating two different patterns but
just as powerful, (though somewhat more confusing).
To this extent, tiling design patterns is one of many
reflexive relationships between patterns.

Tiling is neither genericity nor inheritance. Inher-
itance is a form of abstraction that promotes reuse.
Tiling is a form of reuse that promotes abstraction.
Delegating requests along adjacent tiles brings inher-
itance andtiling to the same conceptual level. Tiling
is different from templates in the same’way gram-
mars are different from regular expressions. A tem-
plate can instantiate simple tiles. The tiles we shall
be concerned with, however, are design patterns for
which a template that generates them is something
to be desired. Tilings compare to other techniques
for pattern application, like automatic code genera-
tion [6]. Patterns can be classified by whether or not
they can be tiled by other patterns.

The symmetry art works of Maurits Cornelis Es-
cher [12], a Dutch graphic artist, (also the cover art
on the design patterns book [15]), should serve as the
motivation for this work. The main observation is

that the Interpreter pattern and the Visitor pattern
have a common interesting characteristic-they are
building blocks capable of constructing, themselves.
Repeating Interpreter tilings result in a reflective In-
terpreter. A tessellation of Visitors molds a Visitor
mosaic. In design patterns, as in Escher’s work, what
you see the first time is most certainly not all there
is to see.

The outline of the paper ‘is the following. The
next section describes a systematic approach to im-
plementing the Interpreter pattern. Section 3 demon-
strates several tilings of the Interpreter pattern (re-
flective, mirror, in-out, and execution.) Section 4
presents tessellations of primitive visitors (null, ex-
ception, inheritance, and composition) that form
more complex ones (e.g., known variants of the Vis-
itor pattern.) Section 5 describes related work and
offers conclusions.

2 Interpreter Pattern Making

“If a particular kind of problem occurs often enough,
then it might be worthwhile to express instances of
the problem as sentences in a simple language. Then
you can build an interpreter that solves the problem
by interpreting these sentences” [15, page 2431. ’

At the heart of the Interpreter pattern is the class-
based observation, shown in Figure 1, in which pro-
grams relate to grammars as objects relate to classes. .
An analogy is drawn between writing a program in
a context-free language and instantiating an object ’
from a class. A program is perceived as an instantia-
tion of its grammar, just as an object is an instanti-
ation of its class.

More precisely, let InstanceTypeOf (c) (following
the conventions in [1]) indicate the type of objects
of class’ c and, analogically, ProgramTypeOf (g) the

Figure 1: Class based approach to the Interpreter
pattern

207

. programs in the language generated by the context-
free grammar g. We indicate by .C the language in
which the program is written, and by GL a context-
free grammar for L. The Interpreter pattern takes the
approach of viewing a program in L as an instance
of Gc, just as an object is an instance of a class, as
follows. First, GL is transformed into a class defini-
tion CL. Then, both G,c and CL are used (with the
help of a parser generator) to produce a parser capa-
ble of compiling any program P : ProgramTypeOf (Qc)
into an object Up : InstanceTypeOf (CL).

A Systematic Approach to Implement-
ing an Interpreter

Figure 1 is, of course, an over simplification. The
Interpreter pattern actually takes an object-oriented
approach, in which the class definition Cc is a hi-
erarchy of classes, just like the grammar Br. is a
group of related rules. It’s left to the pattern imple-
menter to make the leap from the simple understood
metaphor to its detailed implementation. Orderly
done, though, the hierarchy Cc can be systematically
obtained in a rdatively straightforward manner.

If ,C is a nonempty context-free language then it
can be generated by a context-free grammar GL with
the following properties. Every production of GL is of
one of the forms: (1) A choice of having a number of
given variants, B + A1 1. . . I&, where Ai and B are
variables; or (2) an aggregate made of a fixed num-
ber of parts, A -+ (Y, where (Y is a nonempty string of
variables and terminals. Furthermore, any variable A
appears at, most, once as the left-hand-side construct
of a rule, and at most, once at the right-hand-side of
a choice rule. This restricts the format of produc-
tions without reducing the generative power of the
grammar [38].

Once 6.~ conforms to the above canonical form, it
prescribes the hierarchy CL: Each choice construct
is made an abstract class, each aggregate-a con-
crete class. Choice and aggregation rules determine
the inheritance and aggregation relationships among
classes, respectively. With little additional effort this
can be generalized to also handling higher level con-
structs like optional, datatypes, and repetition. J?or
example, the two rules:

s ::= IfStatement I e-e;

and

IfStatement : := if b then s1 [else & 1;

would determine that, If Statement is a concrete sub-
class of the abstract class s, and that it has three com-
ponents: a condition, and two statements of which

the second may be void. (See [16] for a complete ex-
ample.)

3 Tiling a Reflective Inter-

preter ’

Whether systematic or not, interpreting Bc and pro-
ducing the class hierarchy CL, especially for a long
grammar like that of a programming language, is a
chore. The description in [15] acknowledges this im-
plicit complexity. The book even warns, as quoted
above, that the Interpreter’s application is therefore
limited to simple grammars. In doing so the pattern
has missed the point of its own design. Such an inter-
pretation is the bread and butter of the Interpreter
pattern itself.

Let &X be the context-free description of BNF
itself. Then, the grammar Bc is no more than
a program in B. By re-applying the Interpreter
pattern to transform the BNF grammar Ba into
a class hierarchy Ca, we can compile our origi-
nal grammar 6~: ProgramTypeOf(&) into an in-
stance Or. : InstanceTypeOf (Co) in the precise same
way we compiled P. The procedure can be repeated
for compiling $3’ into 00 : InstanceE~peOf (Cd),
Since $7~: ProgramQpeOf(&) is a “fixed point” of
this process, it does not result, in an infinite sequence.
Rather, it stops at 08, as illustrated in Figure 2.

3.1 A Universal Interpreter Genera-
tor

To better understand the dynamics of this process,
suppose there were a universal machine for generat-
ing Interpreter patterns. We could configure this ma-
chine with Eiffel’s grammar so that it would accept an
Eiffel [28] program and generate an object encapsu-
lating the program. This object would then serve az~
an agent for performing miscellaneous analyses on the
program (e.g., pretty printing, type checking, testingl 1
and computing software metrics).

Suppose further that the machine model we’ve got
requires, for the process of configuration, an expert
on Eiffel’s grammar rather than a textual description.
We could first, configure our universal machine with
BNF’s grammar and use it, to translate Eiffel’s gram-
mar into a knowledgeable object, an agent of Eiffel,
which in turn we’ll use for our original configuration
purposes. But before we do that we use the machine
once more to translate the textual description of BNF
to a BNF agent, and we can do that, putting the issue
of bootstrapping aside for a moment,, because BNF
uses BNF to describe itself.

208

objects
Interpret(Context):

Figure 2: Tiling a Reflective Interpreter

We end up substituting our ‘textual description P
with three objects, tiled as depicted in Figure 2: an
object 0~ which is an instance of the class C.C, its cor-
responding metaclass object 0~ which is an instanct
of Ca, and a meta-metaclass object On. In Figure 2,
a class object which represents a class z is named an
x agent, to distinguish it from an x object which is
simply some object of type InstanceQpeOf(x). Our
Eiffel agent is hence a BNF-instance, and an Eiffel-
program agent would be an Eiffel-instance.

Along the dashed diagonal lines sketched in
Figure 2, we can observe an information trinity
(text, instance, type) for each kind of knowledge: The
BNF language described by Gn is also represented by
both the agent On and the Interpreter pattern class
hierarchy Cn. Similarly, B,c, OL, and CL, each in its
own way, represent the programming language. The
letters: B, 0, and C, were chosen to emphasize the
shape of the description. If you need a reminder of
the contents, just look at the subscripts. %:

The objects Op, Or, and 0s form together a reflec-
tive architecture. For example, generating CL could
be a once routine, in Eiffel’s terminology, for 08.
This reflective structure lends itself to various degree
of reuse.

3.2 Tiling as Means of Reuse

In order for the program agent 0~ to compute’some-
thing, we need to place appropriate interpret routines
in Cc to do the job. If several interpretations per-
form a common computation, or if similar ones are
parameterized by only a syntactical property, even if
these interpretations belong to entirely different in-
terpreters, then this commonality can be placed as a
computation in the meta-interpreter, as depicted in
Figure 2. A resemblance between tiling and inheri-

209

tance is apparent in the figure.

Computing Syntax-Based Metrics

A simple example showing how to compute basic soft-
ware metrics ([7, 4, 23, 191) will make this clearer.
Syntax-based metrics are the most common software
metrics. They measure how the source,code is writ-
ten, differing in what they messure as size. Lines-of-
Code (LOCI), for example, is an elementary syntax-
based metric. Nonetheless, computing it properly re-
quires a non-trivial analysis. It is a misnomer since
it really refers to executable statements. In C, for in-
stance, counting semicolons (“F) would not provide
the accurate measure, since it would count lines in-
stead of statements. A for statement contains two
semicolons but should count as one, whereas an if
should count as two but contains only one semicolon.

By placing a counter in the interpret routine as-
sociated with the.class Statement of an Interpreter
pattern for the C language, we can accurately com-
pute the LOC measurement. More generally, a meta-
routine in the meta-Interpreter can count all con-
structs of a particular type. We can use such a general
routine to count statements as well as other kinds of
repeated constructs (the number of class declarations,
the number of functions, etc.) Moreover, this general
routine would be just as applicable in an entirely dif-
ferent .Interpreter.. Having an Interpreter pattern for
Eiffel, for example, we’ll be able to count the LOC of
Eiffel programs.

Complex metrics can be handled in much the same
way. Computing the deepest static nesting-level of
class declarations, for instance, can be abstracted to’s
general metric routine in Cn that computes the deep-
est level of a given kind of syntactical construct. As a
consequence, getting, for example, the deepest static

GL

Ff

rammar
escriptio

Figure 3: Tiling an In-Out Interpreter

level of conditional statements is obtained for free.
More sophisticated analysis can be carried out by del-
egating requests back and forth between the base and
meta-levels, resembling perhaps method invocations
up and down the class hierarchy due to inheritance.

3.3 Th’e Inte&reter’s Mirror

A tile can also be flipped over. A design pattern
tells you how, given a right problem, to arrange your
classes and objects in order to solve it. Conversely,
an arrangement of classes and objects can remind you
of a pattern you know, putting them in altotally new
light.

The concept of a grammar, that ordinarily desig-
nates (formal) languages, is used by the Interpreter
patterns to designate a class hierarchy. But the gram-
mar metaphor works both ways. The Interpreter
views a grammar 6 in terms of a class CG. The Inter-
preter’s mirror would view any given class hierarchy C
in terms of a grammar &. Concepts taken from the
theory of languages would then bring new meanings
into the system’s class structure.

For example, a grammar definition is associated
with a special variable S called the start symbol.
This symbol would correspond to the set of classes
that can instantiate composition roots (i.e., stand-
alone [17] objects.) In grammars, a symbol X is
useful if there is a derivation in which it appears.
Otherwise it is useless [20]. If X is useful then some
terminal string must be derived from X and X must
occur in some string derivable from S. We can com-
pare usefulness of classes to other class traits provided
by the programmer and supported by the program-
ming language, such as abstract, concrete, interface,
implementation, and so on. ,_

Environmental acquisition [17] refers to the ability
of objects to acquire properties in a type safe man-

ner from the classes of objects in their environment.
As such, it may be viewed as a generalization over
class traits. Had environmental acquisition been an
established design pattern, it would have been the
Interpreter’s mirror.
, In the next section, -we will make use of a flipped
Interpreter tile in refining the tiling of the Reflective
Interpreter.

3.4 Tiling an In-Out Iderpreter

Given a language, the Interpreter usually 1 interprets
sentences in the language: It can also generate sen-
tences instead of interpreting them. The role of the
grammar changes then from determining how the pro+
gram is parsed to being a s@the&ing grammar [16],

Returning to our Eiffel example, if the analyzed
program is to be processed by a Java application on
the Web, then we would like the class representation
of the Eiffel grammar to be in Java. By implementing
an Interpreter pattern for Java, we can decouple the
process of translating Eiffel from the act of generating
classes in Java. The Eiffel program will be compiled
into an Eiffel object. The Eiffel object will create
a Java object, and the Java object will generate the
desired class description in Java.

Generally, two Interpreters can be tiled back-to-
back such that one implementation of the pattern in-
terprets the input, shares the interpretation with the
other, which in turn outputs the desired translation.
Figure 3 gives an example. Let & be a context-free
grammar such that C.c :ProgramTypeOf(&). (& is
the mirror of Cc.) Then, an Interpreter for Bn and
an Interpreter for !& can cooperate in translating GL
into Cc.

‘A notable exception is a Reversible Interpreter [26] which
is an interpreter capable of running programs backwards.

210

objects et3
Jq--q I

Interpret(Context):

.

7 \Language

-gent /)Tmce)
\ I

/ /

Figure 4: Tiling an Execution Interpreter

We see that two Interpreters can help bring to
life a third one. Being themselves Interpreter pat-
terns, they may be subjected to the same treatment.
Of course, eventually some “fixed-point” Interpreter
would need to be handled manually. Hopefully, its
corresponding grammar, i.e., its mirror, would fit in
the category of “simple grammars”.

It is possible to merge Figures 2 and 3, applying the
construction applied to Cc in Figure 3 to Cn and Cc
also, but presenting it requires a true graphic artist.

3.5 Tiling an Execution Interpreter

Recall that the Reflective Interpreter in Figure 2 es-
tablished a duality between objects and types. On is
an agent representing the BNF Interpreter pattern.
0~ is an agent representing the language.Interpreter
pattern. A natural question that comes about is:
does the program agent Up have a dual Interpreter
pattern too (which we would denote C?, as shown
in Figure 5)? Tiling the Reflective Interpreter from

Figure 5: Program representations

the base up to the meta-level has reached its limit
in On being its own type. The concern raised here
is whether we may add tiles at the other end of the
Reflective Interpreter. Answering this question in the
affirmative raises another one regarding the nature of
a program’s instantiations. Viewing a program as a
type makes a program’s execution (which we shall de-
note 0~) one of its values. Figure 4 illustrates how
the Reflective Interpreter of Figure 2 can be extended
to deal with program executions.

Generating Cp is harder than it seems. For gener-
ating the language Interpreter pattern CL we needed
knowledge about the language syntax. A separation
of abstract and concrete syntax was required. For ex-
ample, a syntax rule for a conditional IfStatement
of the form

If Statement ::=if bthensl [elsesz];

is regarded a triple (b, sr, ss) (the keywords ignored
but the order preserved), and implemented as a class
with three data members.

struct If Statement :
public Statement (

Expression condition-;
Statement then-;
Statement* else-;
//..

);

Generating now the Interpreter pattern of a cer-
tain program requires knowledge of the semantics
of the programming language. For example, a par-
ticular IfStatement instance in P, Ifr, would be
mapped to a type IfExecution that designates the
regular expression b[sr 1~23. Each time If 1 is exe-
cuted, an IfExecution object will be instantiated

211

Figure 6: Class based approach to program execution

in 0~. The class IfExecution would comprise
only two slots, as opposed to the three of its meta-
class Ifstatement: A slot of type expression that
contains the execution of the condition b, and an-
other of type statement, which would contain either
the execution of sr or the execution of ss.

struct IfExecution:
public StatementExecution C

ExpressionExecution condition-;
union C

StatementExecution then-;
StatementExecution else-;

) action-;
//..

3;

A point of interest regarding the Execution In-
terpreter is that although, in principle, an If:!
in P is a different type than Ifl, it makes sense
that both instantiate the same kind of objects.
That is, IfExecution should be a type shared by
all Ifstatement executions, as shown in Figure 6.
The meta-object representing this type could be
implemented as a shared Flyweight whose meta-
information link is extrinsic.

The Interpreter design pattern reflects primarily
the static design of the program interpreted. It cap-
tures static relationships embodied in code. Applying
the Interpreter pattern seamlessly to program execu-
tion captures also dynamic behavior of the program.
Some useful implications of this are listed here.

Object-Oriented Visualization

The class definition Cp may model only selective parts
of the program execution. For example, if Cp contains
classes just for method invocation and nothing else,
then an Annotalk [9, lo] trace of method calls in run-
time will correspond to an object instantiation of this
class definition.

212

Computing Execution-Based Metrics

Syntax-based metrics measure how the source code
is written. Execution-based metrics measure run-
time characteristics. Perceiving an execution as an
instance of its program puts these two at the same
conceptual level.

Executing an Interpreter Pattern

Tracing the execution of P yields an execution
agent 0~. Tracing the execution of Op, 0.c or Oa,
yields traces with information from several source lev-
els. Parts of the trace data would reflect the interpre-
tation of P, while others would reflect the interpreta-
tion process itself and its meta processings, somewhat
like what Smalltalk [13] traces look like.

4 Visit or Pat t em Tessellations

The Interpreter and Visitor patterns play the role the
syntax and the semantics play in a programming lan-
guage, respectively. The Interpreter is concerned with
the grammatical structure of programs. The Visitor
is concerned with the meaning of grammatically cor-
rect programs. Unlike the nature of programming
languages, the Visitor makes it possible to interpret
a parsed program in new ways by simply changing
the semantics of the language.

Given an interpret method invocation the Visitor
pattern provides a lookup scheme for identifying the
appropriate interpretation to be executed. With-
out the Visitor, the Interpreter’s interpret routine
is associated with a unique object. It is a mapping
m : C + S from the set of element types C into
the set of semantic actions S. The Visitor turns this
mapping into a curried mapping m : C ‘3 V 3 S,
where V is the set of visitors. In doing so, “Visi-
tor lets you define a new operation without changing
the classes of the elements on which it operates” [15,
page 3311.

It is simpler to view the Visitor as a matrix m :
C x V + S implementing a double-dispatch scheme
in a single-dispatched language. One of the Visitor’s
variations, the Extrinsic Visitor [21] pattern, even
implements a visitor by building this matrix explic-
itly, using runtime type information to access it. In-
deed, in a language that supports multiple dispatch,
like CLOS [ll] or Dylan [3], you can do without the
Visitor pattern.

The Visitor suffers from two main problems that
can be put in terms of matrices: (1) Extending the
matrix with a new row (class) affects all the columns

.

(visitors), and consequently all the other rows (mak-
ing, for example, m-compilation necessary). (2) We
are forced to write a method for each entry m(c, v),
c E C, v E V, regardless if we need it or not. These
are especially problematic in large matrices, the ones
we shall take interest in.

The Acyclic Visitor [27] variation provides, at the
cost of multiple inheritance and dynamic casting
across the visitor hierarchy, a partial solution to the
cyclic dependency problem: The type of the visitor is
temporarily forgotten and reclaimed using dynamic
casting (see also [34]). We, on the other hand, shall
focus on decreasing the complexity of implementing
visitors whose matrix is sparse (i.e., only few classes
really need special handling.) We shall see that some
of the visitor variations (e.g., [21]) can be imitated by
a mosaic of primitive visitors.

4.1 Primitive Visitors

The description of the Visitor pattern as it appears
in [15] applies a single level of subtyping. An abstract
NodeVisitor defines an interface to the Node hier-
archy, and we can provide as many concrete visitor
implementations as necessary as long as they conform
with the NodeVisitor interface. A further degree of
reuse in the Visitor pattern can be gained by allowing
also class inheritance, that is, letting visitors refine
and extend other visitors.

We can make it the Interpreter’s responsibly to sup-
ply, on demand, a set of primitive visitors for that
purpose. The following scheme is proposed using a
Reflective Interpreter. A met&visitor to the ,meta-
interpreter systematically generates a group of sim-
pler visitors to the base-interpreter. Then, these vis-
itors serve as building blocks in constructing more
complex visitors. A visitor’s matrix is tessellated by
inherited entries.

For example, a primitive NvlZ Visitor, that does
nothing at all (taking after the Null Object pat-
tern [37]) is generated as following. The language
agent Cc is visited by a meta-visitor defined over Ca.
This meta-visitor generates, for each encountered rule
named X, an empty NullVisitor: :VisitX routine. 2

For our IfStatement example we might get a def-
inition like:

21t’s a recurring pattern that whenever Visitor is discussed
a footnote about overloading the visit routine appears. In [15,
page 3371 and [21, page 31 function overloading is regarded an
option when implementing a Visitor in C++, only an unrec-
ommended option. However, in Cl-+, overriding an overloaded
method hides all other overloaded definitions (unless explicitly
re-using [22, Sect. 7.3.31 them.) Hence, if you wish visitors
to be refined and you’re not careful, overloading might change
the semantics of not providing an implementation.

class NullVisitor (
public: c

NullVisitor <>
virtual ‘NullVisitor (> 0
class VisitException 0;

virtual void
Visit-IfStatement (const IfStatement& it) 0

//...
3;

By placing in each routine a throw statement, a
different primitive visitor is generated, which we may
call an Exception Visitor.

class ExceptionVisitor (
public :

ExceptionVisitor 0
virtual ‘ExceptionVisitor() 0
class VisitException 0;

virtual void
Visit-If Statement (const If Statement& it) (

throw VisitExceptionO;
.

;,...

3;

The usefulness of these visitors will be made appar-
ent immediately, but first let us introduce two addi-
tional building blocks, namely an Inheritance Visitor
and a Composition Visitor.

For each superclass Y of X, an InheritanceVi-
sitor: :VisitX(X& it) routine explicitly calls Vi-
sit Y (it > , implementing one possible kind of refine-
ment (element hierarchy). A second kind of refine-
ment (visitor hierarchy) is achieved, for example, by
overriding only Visit-Y(it) in’ a sub-visitor. Fig-
ure 7 illustrates this for If Statement and Statement.

:
...................... .i VisitStatement i

:. .. .

Figure 7: Inheritance Visitor

213

template <class SuperVisitor>
class InheritanceVisitor: public SuperVisitor <
public :

InheritanceVisitor() {I-,
virtual ‘InheritanceVisitor c3
class VisitException:

public SuperVisit’or: :VisitException {);

virtual void
Visit-IfStatement (const IfStatement& it) <

SuperVisitor::Visit-IfStatement(
//visit the sub-objecti
Visit-Statement(it);

3
//...

3;

A CompositionVisitor: :VisitX(Xt it) routine
explicitly calls VisitZ(it) for each component Z
of x.

template cciass SuperVisitor>
class CompositionVisitor: public SuperVisitor (
public: :

CompositionVisitor() 0
virtual ‘CompositionVisitor 0
class VisitException:

public SuperVisitor: :VisitException 0;

virtual void
Visit-IfStatement (const IfStatement& it> <

SuperVisitor::VisitJfStatement(it);
it.condition-.Accept(*this);
it.then-.Accept(*this);
if (it.else-)

it. else-- >Accept (*this) ;

3 ’ .
/ I

//...
3;

All four visitors are essentially trivial and can be
generated using meta-level information. Neverthe-
less, for the rest of this section, we’ll assume that our
set of tiles consists of these primitive visitors alone.

4.2 Composing Visitors

Using inheritance, a tile can refine and extend-an in-
herited tile, as illustrated in the preceding code frag-
ments. Genericity, as demonstrated in Figure 8, adds
a subject-oriented [30] flavor in allowing tiles to be
glued in any order we like. Suppose that 21 is made a
subclass of another visitor VI. Then, in the absence
of a handler for m(c, v) the inherited entry m(c, v’)
will be called. This rather standard mechanism of

template <class SuperTile>
class Tile: public SuperTile (
//.*.

I 1;
template <class SuperTile>
void Tile<SuperTile>: :VisitX(const X& it)

{
SuperTile: :VisitX(it) ;
/A..

1; ,,

Figure 8: Gluing tiles using genericity and inheritance

inheritance can be exploited in several ways. If v’
defines a default action for each c, then v is exempt
from providing an implementation for element types
it will never visit. Inheriting from ExceptionVisitor
would provide runtime checking that v indeed does
not visit elements it’s not supposed to. If v inher-
its from NullVisitor, v need not check beforehand
whether an element is visitable.

Another possibility is that v will rely on v’ for del-
egating the interpret request to some other matrix
entry. For example, if v wishes that an implementa-
tion for m(c’, v) is “inherited” by all entries m(c, v)
for which c is a subclass of c’, then v should inherit
from an instantiation of the InheritanceVisitor
class template. Similarly, by inheriting from an in-
stantiation of the CompositionVisitor, a call m(c, V)

recursively calls m(c”, v) for each component c” of c.
This results in a complete scanning of the contain-
ment subtree.

/
Derive your visitor from InheritanceVisi-

tor<NullVisitor> if you wish YourVisitor: :Eval-
uate9 to be called whenever you do not specify a
handler for X, and Y is a superclass of X. If you do de-
fine YourVisitor: :EvaIuateX you may still force a
call to YourVisitor: :Eval.uateS by calling Super-
Visitor: :EvaluateX(it). Note that the Visitor
InheritanceVisitor<NullVisitor> is precisely the
Default Visitor proposed in [21].

Use CompositionVisitor<InheritanceVisi-
tor<NullVisitor> > if you wish to perform a
Depth-First Scan (DFS) of the tree (Pigure 9).
YourVisitor’s Evaluate2 routine, if it exists, is
called for nodes of type X, and should have in its body
a call to the SuperVisitor routine Evaluate&
otherwise the DFS is not pursued.

The DFS Visitor mimics the operation of a class
default constructor. This also emphasizes the power
of tilings over templates. We can generate a Copy

214

Null
Visitor

DFS
Visitor

Figure 9: DFS Visitor tessellation

Visitor that will mimic the operation of the default
copy constructors generated by the C+t compiler. We
cannot, however, write a C+t template that would do
the same.

Example

The following examples illustrates the relative sim-
plicity of tiling visitors (although’the details of appli-
cation are secondary at best.) First, a visitor V that
counts program statements is implemented in C+t.

typedef CompositionVisitor<InheritanceVisitor<
NullVisitor> > DFSVisitorj

// counting statements
class V: public DFSVisitor (
public :

int counter;
VO: counter(O) C3

virtual void
Visit-Statement(const Statement& it> X

//invoked for all statements
++counter;
DFSVisitor::Visit-Statement(it);

3

3;

That’s the entire class. Sending an instance of V to
visit, a particular program p will yield thk overall num-
ber of statements in that program:

v v;
p->Accept (v) ;
tout << v. counter << I’ statements’.” << endl;

Next, the visitor named V-onlyif countS only if-
statements.

// counting if-statements
class V-only-if:

public CompositionVisitor<NullVis?tor> (
public :

int counter;
V-only-if(): counter(O) 0

virtual void
Visit-Statement(const Statement& it) C

//never invoked since Statement
//is an abstract class
assert (0) ;

3
virtual void

Visit-IfStatement(const IfStatement& it) (
t+counter;-
CompositionVisitor<NullVisitor>::

Visit-IfStatement(

3

3;

Note that VisitStatement is never called, because
InheritanceVisitor is left out.

If we refine the first visitor V and add a handler also
for If Statement, we can count all statements except
if-statemknts, as following:

// counting non-if statements
class V-sans-if: public V (I
public:

V-sans-if 0: VO 0

virtual void
Visit-IfStatement(const IfStatement& it), C

//invoked only for if -statements
--counter; //undo t+counter
V: :VisitJfStatement(it);

3

3;
.

5 Conclusions ,

The concept of tiling design patterns is a novel twist
on pattern application. Tiling enables us to’ inter-
weave simple understood concepts of patterns into
their complex real-life implementation. With the help
bf tilings we’ve seen implementations of the Inter-
preter and Visitor patterns in a more concise and
accurate manner.

Tessellations help us adapt more easily to changes
(e.g., in the cl&s hierarchy.) Similar considerations
rooted the work on propagation patterns, later in-
corporated into adaptive progmmming [25, 21. The
class dictionary graph approach in the Demeter sys-
tem, [24] which allows integrated defipition of classes
and syr$actic forms, is of particular relevance. Tiling

215

match the benefits, that the Adaptive variants, pro-

posed by Lieberherr and colleagues (e.g., [32]), have
with respect to the traditional patterns, but ‘iYithout
requiring language extensions:

Efforts of abstraction over design patterns have
taken many directions. For example, attempts to dis-
cover patterns of patterns, or looking for recurring
mini-patterns. The danger in that kind of abstrac-

tions is in becoming either obvious or too abstract.
Tilings is a form of abstraction that restricts us to de-
sign pattern as wholes. As such, the building blocks

at least are a solid foundation.
Some tiles fit nicely together (e.g., the Interpreter

and the Visitor.) Some tiles may have the same shape
but a different purpose (e.g., the Adapter [15] and the

Bridge J15J.) Some tiles may always need to work to-
gether (e.g., perhaps’the Interpreter, and the Visitor?)

In that case, they may simply be parts of the same
pattern. If a subset of the patterns can tile all the
others, then that group would be a basis that can
span the rest. If a set of pattern fractions can do the
jobs, those would be mini-patterns. We have seen two
related patterns that can tile the-mselves.

,, This work has focused on a particular design pat- -
tern, the Interpreter. Even in that limited scope,
tiling has shown insight into the Interpreter’s own
design. Whether or not this phenomena is found in
other patterns, is left for future work.

Acknowledgments I thank Harold Ossher, Yuval

Sherman, Ricardo Szmit, and the anonymous referees
for’thoughtful comments on drafts of this paper.

References

[1] M. Abadi and L. CardeIIi. A Theory of Objects.
Monographs in Computer Science. Springer Verlag,
1996.

[2] Workshop on adaptable and adaptive software. In
S. C. Bilow and P. S. BiIow, editors, Addendum to
the Proceedings of the ltih Annual Conference on

, Object-Oriented Programming Systems, Languages,
and Applications, pages 149-154, Austin, Texas,

‘USA, Oct. 15-19 1995. OOPS Messenger 6(4) Oct.
1995. Reported by K. Lieberherr.

[3] Apple Computer, Inc., Cupertino, CA. Dylan: An
object-oriented dynamic language, 1992.

[4] G. M. Barnes and B. R. Swim. Inheriting software
metrics. Journal of Object-Oriented Programming,
pages 27-34, November-December 1993.

[5] J. BBzivin, J.-M. Hullot, P. Cointe, and H. Lieber-
man, editors. Proceedings of the I’* European Con-
ference on Object-Oriented Programming, number

, * 6

276 in Lecture Notes in Computer Science, Paris,
Frame, June 15-17 1987. ECOOP’87, Springer Ver-
lag.

[S] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and
P. S. Yu. Automatic code generation from design
patterns. IBM System Journal, 35(2), 1996.

[7] S. R. Chidamber and C. F. Kemerer. Towards a
metrics suite for object-oriented design. In Pro-
ceedings of the- tih Annual Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, pages 197-211, Phoenix, Arizona, USA,
Oct.611 1991. OOPSLA’91, Acm SIGPLAN Notices
26(11) Nov. 1991.

[6] J. 0. Coplien and D. C. Schmidt, editors. Pat-
tern Languages of Program Design. Addison-Wesley,
1995.

[9] W. De Pauw, R. Helm, D. Kimelman, and J. Vlis-
sides. Visualizing the behavior of object-oriented sys-
tems. In Proceedings of the ph Annual Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 326-337, Portland, Oregon,
USA, Oct. 23-27 1994.00PSLA’94, Acm SIGPLAN
Notices 29(10) Oct. 1994.

[lo] W. De Pauw, D. Kimehnan, and J. Vlissides. Model-
ing object-oriented program execution. In M. Tokoro
and R. Pares&i, editors, Proceedings of the &h
.European Conference on Object-Oriented Program-
ming, number 821 in Lecture Notes in Computer Sci-
ence, pages 163-182, Bologna, Italy, July 4-8 1994.
ECOOP’94, Springer Verlag.

[ll] L. G. DeMichieI and R. P. Gabriel. The common
lisp object system: An overview. In Bkzivin et aI,
[5], pages 151-170.

[IS] K. U. Erven. The Graphic Work of hi. 0. Escher.
MacdonaId & Co., London, new, revised and ex-
panded edition, Oct. 1967.

[13] B. Foote and R. E. Jonson. Reflective facilities in
smaIItaIk-80. In N. K. Meyrowitz, editor, Proceedings
of the 4th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 327-335, New Orleans, Louisiana, Ott, 1-6
1989. OOPSLA’89, Acm SIGPLAN Notices 24(10)
Oct. 1989.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: Abstraction and reuse of object-
oriented design. In 0. M. Nierstrasz, editor, Pro=
ceedings of the 7(” European Conference on Object-
Oriented Programming, number 707 in Lecture Notes
in Computer Science, pages 406-431, Kaiserslautern,
Germany, July 2830 1993. ECOOP’93, Springer Ver-
lag.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing,
Addison-Wesley, 1995.

216

P61

El71

@I

P91

PO1

124

P21

[231

[241

[251

J. Gil and D. H. Lorenz. SOOP - A synthesizer of
an object-oriented parser. In Proceedings of the l$’
International Conference on Technology of Object-
Oriented Languages and Systems, pages 81-96, Ver-
sailles, France, Mar. 6-10 1995. TOOLS 16 Europe
Conference, Prentice-Hall.

J. Gil and D. H. Lorenz. Environmental
Acquisition-A new %heritauce”-Iike abstraction
mechanism. In Proceedings of the llth Annual Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications, San Jose, California,
Oct. 6-10 1996. OOPSLA’96, Acm SIGPLAN No-
tices 31(10) Oct. 1996.

B. Griinbaum and G. Shephard. Tilings and Pat-
terns. Mathematical Sciences. W. H. Freeman and
Company, New York, 1987.

B. Henderson-Sellers. Object Oriented Metrics.
Object-Oriented Series. Prentice-Ha& 1996.

J. E. Hopcroft and J. D. Ullxnan. Introduction
to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

M. E. N. III. Variations on the visitor pattern. In
PLOP ‘96 [31]. Group 5: Design Patterns.

A. Koenig. Cf+ Standard Draft Proposal XSJ16/96-
022.5. American National Standards Institute, Digi-
tal Equipment Corporation 1996.

H. F. Li and W. K. Cheung. An empirical study
of software metrics. IEEE Transactions on Software
Engineering, 13(6):697-708, June 1987.

I<. J. Lieberherr. Adaptive Object-Oriented Soft-
ware: The Demeter Method with Propagation Pat-
terns. PWS Publishing Company, Boston, 1996.

K. J. Lieberherr, I. Silva-Lepe, and C. Xiao.
Adaptive object-oriented programming using graph-
based customization. Communications of the ACM,
37(5):94-101, May 1994.

[26] H. Lieberman. Reversible object-oriented inter-
preters. In Bezivin et al. [5], pages 11-19.

[27] R. C. Martin. Acyclic visitor. In PLOP ‘96 [31].
Group 5: Design Patterns.

[28] B. Meyer. EIFFEL the Language. Object-Oriented
Series. Prentice-Hall, 1992.

[29] P. Naur. Revised report on the algorithmic language
ALGOL 60. Communications of the ACM, 3(5):229-
314, May 1960.

[30] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and
V. KrusM. Subject-oriented composition rules.
In Proceedings of the itih Annual Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 235-250, Austin, Texas,
USA, Oct. 15-19 1995. OOPSLA’95, Acm SIGPLAN
Notices 30(10) Oct. 1995.

134

[321

[331

[341

[351

[361

[371

[331

PLOP ‘96. Proceedings of the dd Annual Confer-
ence on the Pattern Languages of Programs, Robert
AIIerton Park and Conference Center, University of
Illinois at Urbana-Champaign, Monticello, Illinois,
Sept. 3-6 1996. Washington University, Technical Re-
port WUCS-97-07.

L. M. Seiter, J. Palsberg, and K. J. Lieberherr. Evo-
lution of object behavior using context relations. In
D. Garlan, editor, Proceedings ofthe 4th ACM SIG-
SOFT Symposium on the Foundations of Software
Engineering, pages 46-57, San Francisco, California,
Oct. 16-18 1996. SIGSOFT’96, Acm Software Engi-
neering Notes 21(6) Nov. 1996.

E. Y. Shapiro and L. Sterling. The Art of Prolog.
Logic Programming. MIT Press, Cambridge, Mass,
second edition, 1994.

J. VI&ides. Pattern hatchig: The trouble with’ob-
server. C++ Report, June 1996.

J. M. VIissides, J. 0. Coplien, and N. L. Kerth,
editors. Pattern Languages of Program Design 2.
Addison-Wesley, 1996.

N. H. E. Weste and K. Eshraghian. Principles of
CMOS VLSI Design - A System Perspective. VLSI
Systems. Addison-Wesley, 1988.

B. Woolf. The nuII object pattern. In PLOP ‘96 [31].
Group 5: Design Patterns.

P.-C. Wu and F.-J. Wang. An object-oriented spec-
ification for compiler. ACM SIGPLAN Notices,,
27(1):85-94, Jan. 1992.

217

