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Abstract 

This paper explains how patterns can be used to de- 
scribe the implementation of other patterns. It is 
demonstrated how certain design patterns can de- 
scribe their own design. This is a fundamental reflex- 
ive relationship in pattern relationships. The process 
of assembling patterns by other patterns is named 
pattern tiling. Tiling enables us to interweave simple 
understood concepts of patterns into their complex 
real-life implementation. Several pattern tilings for 
the Interpreter design pattern are illustrated. 

1 Introduction 

Tilings are sets of physical objects (“tiles”), typically 
made of stone or ceramic, which fit together in a re- 
curring motif (“pattern”) to cover surfaces without 
gaps or overlaps. The art of tiling and the relevance of 
its technology extends from early days uses to appli- 
cations in modern engineering (e.g., VLSI design [36]) 
and in modern science (a study of their mathemat- 
ical properties can be found in [18].) This paper 
presents tilings of non-physical objects: design pat- 
terns [14, 153 as declarative entities that fit together. 

One of the nice features that Prolog [33] begin- 
ners struggle with at first is its declarative semantics. 
Declaring, for example, that conc(lr, Ls,Ls) if LB 
is the concatenation of L1 and Lz, allows the func- 
tor con& to be used in more than one way. The 
obvious use is to’concatenate two lists, L1 and Lz, 
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into Ls. But it may also be used to split a given 
list L3. Likewise, the intent of a pattern and the 
manipulation of its participants can be taken declar- 
atively. 

The pattern name is perhaps its most profound 
declarative form. The names associated with de- 
sign patterns enrich our vocabulary for reasoning 
about design at higher levels of abstraction. Their 
rapid growth threatens to become a language for 
design. One indication of a language’s expressive 
power is its ability to describe itself. BNF (Backus- 
Naur-Form [29])- a ormal notation to describing the f 
context-free syntax of a given language, for example, 
can describe its own grammar. This begs a question: 
can design patterns describe their own design? 

Design patterns improve considerably the manner 
in which object-oriented experience is communicated. 
But, no matter how well a design pattern is written, 
there will always remain a gap between comprehend- 
ing a pattern and applying it. This gap is revealed in 
the complexity and cost of putting certain design pat- 
terns into practice. Implementing the Interpreter [15] 
pattern, for instance, is limited to simple grammars, 
since ‘“for complex grammars, the class hierarchy for 
the grammar becomes large and unmanageable” [15, 
page 2451; changing the structure traversed by a Vis- 
itor [15] “requires redefining the interface to all visi- 
tors, which is potentially costly” [15, page 3331. 

This paper shows how patterns can be used to de- 
scribe the implementation of other patterns. It is 
demonstrated how certain design patterns can de- 
scribe their own design. This is a fundamental re- 
flexive relationship in pattern relationships. The 
process of assembling patterns by other patterns is 
named pattern tiling. Tiling patterns reduces the 
comprehension-application gap. For example, we 
shall see how one Interpreter helps with implement- 
ing another Interpreter pattern, and that a Visitor to 
the first interpreter can generate a family of visitors 
to the second. 
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Yet another gap is stretched between applying each 
pattern individually and integrating several patterns. 
Knowing the catalogue of patterns by heart is prudent 
perhaps but unfortunately not a sure recipe for suc- 
cessfully applying them. For example, one may fully 
understand both the Interpreter [15] and the Rejlec- 
tion [35, Sect. 171 patterns and yet not see how an 
implementation of an interpreter implicitly possesses 
a reflective architecture, as shall be shortly demon- 
strated. 

The issue of pattern relationship is one of the dif- 
ficult aspects of patterns. In [15] this is addressed 
by classifying patterns into groups according to their 
purpose and scope, specifying related patterns, and 
providing a spaghetti-diagram that shows graphically 
the relationships between patterns. For example, the 
Interpreter is a behavioral pattern. It applies primar- 
ily to classes, and can use the Composite [15] pattern 
in defining the grammar, the Visitor for adding op- 
erations, and the Flyweight [15] pattern for sharing 
terminal symbols. As informative as it is, this is far 
from satisfactory, albeit hard to improve, as indicated 
by attempts for improved classifications ([8, Sect. 181 
is a good example) that followed. Noticeably, the 
spaghetti-diagram for showing related patterns con- 
tains no loops. The possible refletiue relationships 
between patterns seem to be missing. 

An implementation of a pattern can simultaneously 
be (or share large portions with) an implementation 
of several other patterns. A special case of this is 
integrating several implementations of the same pat- 
tern. Integrating a pattern with itself is conceptually 
simpler than integrating two different patterns but 
just as powerful, (though somewhat more confusing). 
To this extent, tiling design patterns is one of many 
reflexive relationships between patterns. 

Tiling is neither genericity nor inheritance. Inher- 
itance is a form of abstraction that promotes reuse. 
Tiling is a form of reuse that promotes abstraction. 
Delegating requests along adjacent tiles brings inher- 
itance andtiling to the same conceptual level. Tiling 
is different from templates in the same’way gram- 
mars are different from regular expressions. A tem- 
plate can instantiate simple tiles. The tiles we shall 
be concerned with, however, are design patterns for 
which a template that generates them is something 
to be desired. Tilings compare to other techniques 
for pattern application, like automatic code genera- 
tion [6]. Patterns can be classified by whether or not 
they can be tiled by other patterns. 

The symmetry art works of Maurits Cornelis Es- 
cher [12], a Dutch graphic artist, (also the cover art 
on the design patterns book [15]), should serve as the 
motivation for this work. The main observation is 

that the Interpreter pattern and the Visitor pattern 
have a common interesting characteristic-they are 
building blocks capable of constructing, themselves. 
Repeating Interpreter tilings result in a reflective In- 
terpreter. A tessellation of Visitors molds a Visitor 
mosaic. In design patterns, as in Escher’s work, what 
you see the first time is most certainly not all there 
is to see. 

The outline of the paper ‘is the following. The 
next section describes a systematic approach to im- 
plementing the Interpreter pattern. Section 3 demon- 
strates several tilings of the Interpreter pattern (re- 
flective, mirror, in-out, and execution.) Section 4 
presents tessellations of primitive visitors (null, ex- 
ception, inheritance, and composition) that form 
more complex ones (e.g., known variants of the Vis- 
itor pattern.) Section 5 describes related work and 
offers conclusions. 

2 Interpreter Pattern Making 

“If a particular kind of problem occurs often enough, 
then it might be worthwhile to express instances of 
the problem as sentences in a simple language. Then 
you can build an interpreter that solves the problem 
by interpreting these sentences” [15, page 2431. ’ 

At the heart of the Interpreter pattern is the class- 
based observation, shown in Figure 1, in which pro- 
grams relate to grammars as objects relate to classes. . 
An analogy is drawn between writing a program in 
a context-free language and instantiating an object ’ 
from a class. A program is perceived as an instantia- 
tion of its grammar, just as an object is an instanti- 
ation of its class. 

More precisely, let InstanceTypeOf (c) (following 
the conventions in [1]) indicate the type of objects 
of class’ c and, analogically, ProgramTypeOf (g) the 

Figure 1: Class based approach to the Interpreter 
pattern 
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. programs in the language generated by the context- 
free grammar g. We indicate by .C the language in 
which the program is written, and by GL a context- 
free grammar for L. The Interpreter pattern takes the 
approach of viewing a program in L as an instance 
of Gc, just as an object is an instance of a class, as 
follows. First, GL is transformed into a class defini- 
tion CL. Then, both G,c and CL are used (with the 
help of a parser generator) to produce a parser capa- 
ble of compiling any program P : ProgramTypeOf (Qc) 
into an object Up : InstanceTypeOf (CL). 

A Systematic Approach to Implement- 
ing an Interpreter 

Figure 1 is, of course, an over simplification. The 
Interpreter pattern actually takes an object-oriented 
approach, in which the class definition Cc is a hi- 
erarchy of classes, just like the grammar Br. is a 
group of related rules. It’s left to the pattern imple- 
menter to make the leap from the simple understood 
metaphor to its detailed implementation. Orderly 
done, though, the hierarchy Cc can be systematically 
obtained in a rdatively straightforward manner. 

If ,C is a nonempty context-free language then it 
can be generated by a context-free grammar GL with 
the following properties. Every production of GL is of 
one of the forms: (1) A choice of having a number of 
given variants, B + A1 1. . . I&, where Ai and B are 
variables; or (2) an aggregate made of a fixed num- 
ber of parts, A -+ (Y, where (Y is a nonempty string of 
variables and terminals. Furthermore, any variable A 
appears at, most, once as the left-hand-side construct 
of a rule, and at most, once at the right-hand-side of 
a choice rule. This restricts the format of produc- 
tions without reducing the generative power of the 
grammar [38]. 

Once 6.~ conforms to the above canonical form, it 
prescribes the hierarchy CL: Each choice construct 
is made an abstract class, each aggregate-a con- 
crete class. Choice and aggregation rules determine 
the inheritance and aggregation relationships among 
classes, respectively. With little additional effort this 
can be generalized to also handling higher level con- 
structs like optional, datatypes, and repetition. J?or 
example, the two rules: 

s ::= IfStatement I e-e; 

and 

IfStatement : := if b then s1 [ else & 1; 

would determine that, If Statement is a concrete sub- 
class of the abstract class s, and that it has three com- 
ponents: a condition, and two statements of which 

the second may be void. (See [16] for a complete ex- 
ample.) 

3 Tiling a Reflective Inter- 

preter ’ 

Whether systematic or not, interpreting Bc and pro- 
ducing the class hierarchy CL, especially for a long 
grammar like that of a programming language, is a 
chore. The description in [15] acknowledges this im- 
plicit complexity. The book even warns, as quoted 
above, that the Interpreter’s application is therefore 
limited to simple grammars. In doing so the pattern 
has missed the point of its own design. Such an inter- 
pretation is the bread and butter of the Interpreter 
pattern itself. 

Let &X be the context-free description of BNF 
itself. Then, the grammar Bc is no more than 
a program in B. By re-applying the Interpreter 
pattern to transform the BNF grammar Ba into 
a class hierarchy Ca, we can compile our origi- 
nal grammar 6~: ProgramTypeOf(&) into an in- 
stance Or. : InstanceTypeOf (Co) in the precise same 
way we compiled P. The procedure can be repeated 
for compiling $3’ into 00 : InstanceE~peOf (Cd), 
Since $7~: ProgramQpeOf(&) is a “fixed point” of 
this process, it does not result, in an infinite sequence. 
Rather, it stops at 08, as illustrated in Figure 2. 

3.1 A Universal Interpreter Genera- 
tor 

To better understand the dynamics of this process, 
suppose there were a universal machine for generat- 
ing Interpreter patterns. We could configure this ma- 
chine with Eiffel’s grammar so that it would accept an 
Eiffel [28] program and generate an object encapsu- 
lating the program. This object would then serve az~ 
an agent for performing miscellaneous analyses on the 
program (e.g., pretty printing, type checking, testingl 1 
and computing software metrics). 

Suppose further that the machine model we’ve got 
requires, for the process of configuration, an expert 
on Eiffel’s grammar rather than a textual description. 
We could first, configure our universal machine with 
BNF’s grammar and use it, to translate Eiffel’s gram- 
mar into a knowledgeable object, an agent of Eiffel, 
which in turn we’ll use for our original configuration 
purposes. But before we do that we use the machine 
once more to translate the textual description of BNF 
to a BNF agent, and we can do that, putting the issue 
of bootstrapping aside for a moment,, because BNF 
uses BNF to describe itself. 
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objects 
Interpret(Context): 

Figure 2: Tiling a Reflective Interpreter 

We end up substituting our ‘textual description P 
with three objects, tiled as depicted in Figure 2: an 
object 0~ which is an instance of the class C.C, its cor- 
responding metaclass object 0~ which is an instanct 
of Ca, and a meta-metaclass object On. In Figure 2, 
a class object which represents a class z is named an 
x agent, to distinguish it from an x object which is 
simply some object of type InstanceQpeOf(x). Our 
Eiffel agent is hence a BNF-instance, and an Eiffel- 
program agent would be an Eiffel-instance. 

Along the dashed diagonal lines sketched in 
Figure 2, we can observe an information trinity 
(text, instance, type) for each kind of knowledge: The 
BNF language described by Gn is also represented by 
both the agent On and the Interpreter pattern class 
hierarchy Cn. Similarly, B,c, OL, and CL, each in its 
own way, represent the programming language. The 
letters: B, 0, and C, were chosen to emphasize the 
shape of the description. If you need a reminder of 
the contents, just look at the subscripts. %: 

The objects Op, Or, and 0s form together a reflec- 
tive architecture. For example, generating CL could 
be a once routine, in Eiffel’s terminology, for 08. 
This reflective structure lends itself to various degree 
of reuse. 

3.2 Tiling as Means of Reuse 

In order for the program agent 0~ to compute’some- 
thing, we need to place appropriate interpret routines 
in Cc to do the job. If several interpretations per- 
form a common computation, or if similar ones are 
parameterized by only a syntactical property, even if 
these interpretations belong to entirely different in- 
terpreters, then this commonality can be placed as a 
computation in the meta-interpreter, as depicted in 
Figure 2. A resemblance between tiling and inheri- 
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tance is apparent in the figure. 

Computing Syntax-Based Metrics 

A simple example showing how to compute basic soft- 
ware metrics ([7, 4, 23, 191) will make this clearer. 
Syntax-based metrics are the most common software 
metrics. They measure how the source,code is writ- 
ten, differing in what they messure as size. Lines-of- 
Code (LOCI), for example, is an elementary syntax- 
based metric. Nonetheless, computing it properly re- 
quires a non-trivial analysis. It is a misnomer since 
it really refers to executable statements. In C, for in- 
stance, counting semicolons (“F) would not provide 
the accurate measure, since it would count lines in- 
stead of statements. A for statement contains two 
semicolons but should count as one, whereas an if 
should count as two but contains only one semicolon. 

By placing a counter in the interpret routine as- 
sociated with the.class Statement of an Interpreter 
pattern for the C language, we can accurately com- 
pute the LOC measurement. More generally, a meta- 
routine in the meta-Interpreter can count all con- 
structs of a particular type. We can use such a general 
routine to count statements as well as other kinds of 
repeated constructs (the number of class declarations, 
the number of functions, etc.) Moreover, this general 
routine would be just as applicable in an entirely dif- 
ferent .Interpreter.. Having an Interpreter pattern for 
Eiffel, for example, we’ll be able to count the LOC of 
Eiffel programs. 

Complex metrics can be handled in much the same 
way. Computing the deepest static nesting-level of 
class declarations, for instance, can be abstracted to’s 
general metric routine in Cn that computes the deep- 
est level of a given kind of syntactical construct. As a 
consequence, getting, for example, the deepest static 
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Figure 3: Tiling an In-Out Interpreter 

level of conditional statements is obtained for free. 
More sophisticated analysis can be carried out by del- 
egating requests back and forth between the base and 
meta-levels, resembling perhaps method invocations 
up and down the class hierarchy due to inheritance. 

3.3 Th’e Inte&reter’s Mirror 

A tile can also be flipped over. A design pattern 
tells you how, given a right problem, to arrange your 
classes and objects in order to solve it. Conversely, 
an arrangement of classes and objects can remind you 
of a pattern you know, putting them in altotally new 
light. 

The concept of a grammar, that ordinarily desig- 
nates (formal) languages, is used by the Interpreter 
patterns to designate a class hierarchy. But the gram- 
mar metaphor works both ways. The Interpreter 
views a grammar 6 in terms of a class CG. The Inter- 
preter’s mirror would view any given class hierarchy C 
in terms of a grammar &. Concepts taken from the 
theory of languages would then bring new meanings 
into the system’s class structure. 

For example, a grammar definition is associated 
with a special variable S called the start symbol. 
This symbol would correspond to the set of classes 
that can instantiate composition roots (i.e., stand- 
alone [17] objects.) In grammars, a symbol X is 
useful if there is a derivation in which it appears. 
Otherwise it is useless [20]. If X is useful then some 
terminal string must be derived from X and X must 
occur in some string derivable from S. We can com- 
pare usefulness of classes to other class traits provided 
by the programmer and supported by the program- 
ming language, such as abstract, concrete, interface, 
implementation, and so on. ,_ 

Environmental acquisition [17] refers to the ability 
of objects to acquire properties in a type safe man- 

ner from the classes of objects in their environment. 
As such, it may be viewed as a generalization over 
class traits. Had environmental acquisition been an 
established design pattern, it would have been the 
Interpreter’s mirror. 
, In the next section, -we will make use of a flipped 
Interpreter tile in refining the tiling of the Reflective 
Interpreter. 

3.4 Tiling an In-Out Iderpreter 

Given a language, the Interpreter usually 1 interprets 
sentences in the language: It can also generate sen- 
tences instead of interpreting them. The role of the 
grammar changes then from determining how the pro+ 
gram is parsed to being a s@the&ing grammar [16], 

Returning to our Eiffel example, if the analyzed 
program is to be processed by a Java application on 
the Web, then we would like the class representation 
of the Eiffel grammar to be in Java. By implementing 
an Interpreter pattern for Java, we can decouple the 
process of translating Eiffel from the act of generating 
classes in Java. The Eiffel program will be compiled 
into an Eiffel object. The Eiffel object will create 
a Java object, and the Java object will generate the 
desired class description in Java. 

Generally, two Interpreters can be tiled back-to- 
back such that one implementation of the pattern in- 
terprets the input, shares the interpretation with the 
other, which in turn outputs the desired translation. 
Figure 3 gives an example. Let & be a context-free 
grammar such that C.c :ProgramTypeOf(&). (& is 
the mirror of Cc.) Then, an Interpreter for Bn and 
an Interpreter for !& can cooperate in translating GL 
into Cc. 

‘A notable exception is a Reversible Interpreter [26] which 
is an interpreter capable of running programs backwards. 
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Figure 4: Tiling an Execution Interpreter 

We see that two Interpreters can help bring to 
life a third one. Being themselves Interpreter pat- 
terns, they may be subjected to the same treatment. 
Of course, eventually some “fixed-point” Interpreter 
would need to be handled manually. Hopefully, its 
corresponding grammar, i.e., its mirror, would fit in 
the category of “simple grammars”. 

It is possible to merge Figures 2 and 3, applying the 
construction applied to Cc in Figure 3 to Cn and Cc 
also, but presenting it requires a true graphic artist. 

3.5 Tiling an Execution Interpreter 

Recall that the Reflective Interpreter in Figure 2 es- 
tablished a duality between objects and types. On is 
an agent representing the BNF Interpreter pattern. 
0~ is an agent representing the language.Interpreter 
pattern. A natural question that comes about is: 
does the program agent Up have a dual Interpreter 
pattern too (which we would denote C?, as shown 
in Figure 5)? Tiling the Reflective Interpreter from 

Figure 5: Program representations 

the base up to the meta-level has reached its limit 
in On being its own type. The concern raised here 
is whether we may add tiles at the other end of the 
Reflective Interpreter. Answering this question in the 
affirmative raises another one regarding the nature of 
a program’s instantiations. Viewing a program as a 
type makes a program’s execution (which we shall de- 
note 0~) one of its values. Figure 4 illustrates how 
the Reflective Interpreter of Figure 2 can be extended 
to deal with program executions. 

Generating Cp is harder than it seems. For gener- 
ating the language Interpreter pattern CL we needed 
knowledge about the language syntax. A separation 
of abstract and concrete syntax was required. For ex- 
ample, a syntax rule for a conditional IfStatement 
of the form 

If Statement ::=if bthensl [ elsesz]; 

is regarded a triple (b, sr, ss) (the keywords ignored 
but the order preserved), and implemented as a class 
with three data members. 

struct If Statement : 
public Statement ( 

Expression condition-; 
Statement then-; 
Statement* else-; 
//.. 

); 

Generating now the Interpreter pattern of a cer- 
tain program requires knowledge of the semantics 
of the programming language. For example, a par- 
ticular IfStatement instance in P, Ifr, would be 
mapped to a type IfExecution that designates the 
regular expression b[sr 1~23. Each time If 1 is exe- 
cuted, an IfExecution object will be instantiated 
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Figure 6: Class based approach to program execution 

in 0~. The class IfExecution would comprise 
only two slots, as opposed to the three of its meta- 
class Ifstatement: A slot of type expression that 
contains the execution of the condition b, and an- 
other of type statement, which would contain either 
the execution of sr or the execution of ss. 

struct IfExecution: 
public StatementExecution C 

ExpressionExecution condition-; 
union C 

StatementExecution then-; 
StatementExecution else-; 

) action-; 
//.. 

3; 

A point of interest regarding the Execution In- 
terpreter is that although, in principle, an If:! 
in P is a different type than Ifl, it makes sense 
that both instantiate the same kind of objects. 
That is, IfExecution should be a type shared by 
all Ifstatement executions, as shown in Figure 6. 
The meta-object representing this type could be 
implemented as a shared Flyweight whose meta- 
information link is extrinsic. 

The Interpreter design pattern reflects primarily 
the static design of the program interpreted. It cap- 
tures static relationships embodied in code. Applying 
the Interpreter pattern seamlessly to program execu- 
tion captures also dynamic behavior of the program. 
Some useful implications of this are listed here. 

Object-Oriented Visualization 

The class definition Cp may model only selective parts 
of the program execution. For example, if Cp contains 
classes just for method invocation and nothing else, 
then an Annotalk [9, lo] trace of method calls in run- 
time will correspond to an object instantiation of this 
class definition. 
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Computing Execution-Based Metrics 

Syntax-based metrics measure how the source code 
is written. Execution-based metrics measure run- 
time characteristics. Perceiving an execution as an 
instance of its program puts these two at the same 
conceptual level. 

Executing an Interpreter Pattern 

Tracing the execution of P yields an execution 
agent 0~. Tracing the execution of Op, 0.c or Oa, 
yields traces with information from several source lev- 
els. Parts of the trace data would reflect the interpre- 
tation of P, while others would reflect the interpreta- 
tion process itself and its meta processings, somewhat 
like what Smalltalk [13] traces look like. 

4 Visit or Pat t em Tessellations 

The Interpreter and Visitor patterns play the role the 
syntax and the semantics play in a programming lan- 
guage, respectively. The Interpreter is concerned with 
the grammatical structure of programs. The Visitor 
is concerned with the meaning of grammatically cor- 
rect programs. Unlike the nature of programming 
languages, the Visitor makes it possible to interpret 
a parsed program in new ways by simply changing 
the semantics of the language. 

Given an interpret method invocation the Visitor 
pattern provides a lookup scheme for identifying the 
appropriate interpretation to be executed. With- 
out the Visitor, the Interpreter’s interpret routine 
is associated with a unique object. It is a mapping 
m : C + S from the set of element types C into 
the set of semantic actions S. The Visitor turns this 
mapping into a curried mapping m : C ‘3 V 3 S, 
where V is the set of visitors. In doing so, “Visi- 
tor lets you define a new operation without changing 
the classes of the elements on which it operates” [15, 
page 3311. 

It is simpler to view the Visitor as a matrix m : 
C x V + S implementing a double-dispatch scheme 
in a single-dispatched language. One of the Visitor’s 
variations, the Extrinsic Visitor [21] pattern, even 
implements a visitor by building this matrix explic- 
itly, using runtime type information to access it. In- 
deed, in a language that supports multiple dispatch, 
like CLOS [ll] or Dylan [3], you can do without the 
Visitor pattern. 

The Visitor suffers from two main problems that 
can be put in terms of matrices: (1) Extending the 
matrix with a new row (class) affects all the columns 
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(visitors), and consequently all the other rows (mak- 
ing, for example, m-compilation necessary). (2) We 
are forced to write a method for each entry m(c, v), 
c E C, v E V, regardless if we need it or not. These 
are especially problematic in large matrices, the ones 
we shall take interest in. 

The Acyclic Visitor [27] variation provides, at the 
cost of multiple inheritance and dynamic casting 
across the visitor hierarchy, a partial solution to the 
cyclic dependency problem: The type of the visitor is 
temporarily forgotten and reclaimed using dynamic 
casting (see also [34]). We, on the other hand, shall 
focus on decreasing the complexity of implementing 
visitors whose matrix is sparse (i.e., only few classes 
really need special handling.) We shall see that some 
of the visitor variations (e.g., [21]) can be imitated by 
a mosaic of primitive visitors. 

4.1 Primitive Visitors 

The description of the Visitor pattern as it appears 
in [15] applies a single level of subtyping. An abstract 
NodeVisitor defines an interface to the Node hier- 
archy, and we can provide as many concrete visitor 
implementations as necessary as long as they conform 
with the NodeVisitor interface. A further degree of 
reuse in the Visitor pattern can be gained by allowing 
also class inheritance, that is, letting visitors refine 
and extend other visitors. 

We can make it the Interpreter’s responsibly to sup- 
ply, on demand, a set of primitive visitors for that 
purpose. The following scheme is proposed using a 
Reflective Interpreter. A met&visitor to the ,meta- 
interpreter systematically generates a group of sim- 
pler visitors to the base-interpreter. Then, these vis- 
itors serve as building blocks in constructing more 
complex visitors. A visitor’s matrix is tessellated by 
inherited entries. 

For example, a primitive NvlZ Visitor, that does 
nothing at all (taking after the Null Object pat- 
tern [37]) is generated as following. The language 
agent Cc is visited by a meta-visitor defined over Ca. 
This meta-visitor generates, for each encountered rule 
named X, an empty NullVisitor: :VisitX routine. 2 

For our IfStatement example we might get a def- 
inition like: 

21t’s a recurring pattern that whenever Visitor is discussed 
a footnote about overloading the visit routine appears. In [15, 
page 3371 and [21, page 31 function overloading is regarded an 
option when implementing a Visitor in C++, only an unrec- 
ommended option. However, in Cl-+, overriding an overloaded 
method hides all other overloaded definitions (unless explicitly 
re-using [22, Sect. 7.3.31 them.) Hence, if you wish visitors 
to be refined and you’re not careful, overloading might change 
the semantics of not providing an implementation. 

class NullVisitor ( 
public: c 

NullVisitor <> 
virtual ‘NullVisitor (> 0 
class VisitException 0; 

virtual void 
Visit-IfStatement (const IfStatement& it) 0 

//... 
3; 

By placing in each routine a throw statement, a 
different primitive visitor is generated, which we may 
call an Exception Visitor. 

class ExceptionVisitor ( 
public : 

ExceptionVisitor 0 
virtual ‘ExceptionVisitor() 0 
class VisitException 0; 

virtual void 
Visit-If Statement (const If Statement& it) ( 

throw VisitExceptionO; 
. 

;,... 

3; 

The usefulness of these visitors will be made appar- 
ent immediately, but first let us introduce two addi- 
tional building blocks, namely an Inheritance Visitor 
and a Composition Visitor. 

For each superclass Y of X, an InheritanceVi- 
sitor: :VisitX(X& it) routine explicitly calls Vi- 
sit Y ( it > , implementing one possible kind of refine- 
ment (element hierarchy). A second kind of refine- 
ment (visitor hierarchy) is achieved, for example, by 
overriding only Visit-Y(it) in’ a sub-visitor. Fig- 
ure 7 illustrates this for If Statement and Statement. 

: ..................................................... . 
...................... .i VisitStatement i 

:. .................................................... . 

Figure 7: Inheritance Visitor 
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template <class SuperVisitor> 
class InheritanceVisitor: public SuperVisitor < 
public : 

InheritanceVisitor() {I-, 
virtual ‘InheritanceVisitor c3 
class VisitException: 

public SuperVisit’or: :VisitException {); 

virtual void 
Visit-IfStatement (const IfStatement& it) < 

SuperVisitor::Visit-IfStatement( 
//visit the sub-objecti 
Visit-Statement(it); 

3 
//... 

3; 

A CompositionVisitor: :VisitX(Xt it) routine 
explicitly calls VisitZ(it) for each component Z 
of x. 

template cciass SuperVisitor> 
class CompositionVisitor: public SuperVisitor ( 
public: : 

CompositionVisitor() 0 
virtual ‘CompositionVisitor 0 
class VisitException: 

public SuperVisitor: :VisitException 0; 

virtual void 
Visit-IfStatement (const IfStatement& it> < 

SuperVisitor::VisitJfStatement(it); 
it.condition-.Accept(*this); 
it.then-.Accept(*this); 
if (it.else-) 

it. else-- >Accept (*this) ; 

3 ’ . 
/ I 

//... 
3; 

All four visitors are essentially trivial and can be 
generated using meta-level information. Neverthe- 
less, for the rest of this section, we’ll assume that our 
set of tiles consists of these primitive visitors alone. 

4.2 Composing Visitors 

Using inheritance, a tile can refine and extend-an in- 
herited tile, as illustrated in the preceding code frag- 
ments. Genericity, as demonstrated in Figure 8, adds 
a subject-oriented [30] flavor in allowing tiles to be 
glued in any order we like. Suppose that 21 is made a 
subclass of another visitor VI. Then, in the absence 
of a handler for m(c, v) the inherited entry m(c, v’) 
will be called. This rather standard mechanism of 

template <class SuperTile> 
class Tile: public SuperTile ( 
//.*. 

I 1; 
template <class SuperTile> 
void Tile<SuperTile>: :VisitX(const X& it) 

{ 
SuperTile: :VisitX(it) ; 
/A.. 

1; ,, 

Figure 8: Gluing tiles using genericity and inheritance 

inheritance can be exploited in several ways. If v’ 
defines a default action for each c, then v is exempt 
from providing an implementation for element types 
it will never visit. Inheriting from ExceptionVisitor 
would provide runtime checking that v indeed does 
not visit elements it’s not supposed to. If v inher- 
its from NullVisitor, v need not check beforehand 
whether an element is visitable. 

Another possibility is that v will rely on v’ for del- 
egating the interpret request to some other matrix 
entry. For example, if v wishes that an implementa- 
tion for m(c’, v) is “inherited” by all entries m(c, v) 
for which c is a subclass of c’, then v should inherit 
from an instantiation of the InheritanceVisitor 
class template. Similarly, by inheriting from an in- 
stantiation of the CompositionVisitor, a call m(c, V) 

recursively calls m(c”, v) for each component c” of c. 
This results in a complete scanning of the contain- 
ment subtree. 

/ 
Derive your visitor from InheritanceVisi- 

tor<NullVisitor> if you wish YourVisitor: :Eval- 
uate9 to be called whenever you do not specify a 
handler for X, and Y is a superclass of X. If you do de- 
fine YourVisitor: :EvaIuateX you may still force a 
call to YourVisitor: :Eval.uateS by calling Super- 
Visitor: :EvaluateX(it). Note that the Visitor 
InheritanceVisitor<NullVisitor> is precisely the 
Default Visitor proposed in [21]. 

Use CompositionVisitor<InheritanceVisi- 
tor<NullVisitor> > if you wish to perform a 
Depth-First Scan (DFS) of the tree (Pigure 9). 
YourVisitor’s Evaluate2 routine, if it exists, is 
called for nodes of type X, and should have in its body 
a call to the SuperVisitor routine Evaluate& 
otherwise the DFS is not pursued. 

The DFS Visitor mimics the operation of a class 
default constructor. This also emphasizes the power 
of tilings over templates. We can generate a Copy 
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Null 
Visitor 

DFS 
Visitor 

Figure 9: DFS Visitor tessellation 

Visitor that will mimic the operation of the default 
copy constructors generated by the C+t compiler. We 
cannot, however, write a C+t template that would do 
the same. 

Example 

The following examples illustrates the relative sim- 
plicity of tiling visitors (although’the details of appli- 
cation are secondary at best.) First, a visitor V that 
counts program statements is implemented in C+t. 

typedef CompositionVisitor<InheritanceVisitor< 
NullVisitor> > DFSVisitorj 

// counting statements 
class V: public DFSVisitor ( 
public : 

int counter; 
VO: counter(O) C3 

virtual void 
Visit-Statement(const Statement& it> X 

//invoked for all statements 
++counter; 
DFSVisitor::Visit-Statement(it); 

3 

3; 

That’s the entire class. Sending an instance of V to 
visit, a particular program p will yield thk overall num- 
ber of statements in that program: 

v v; 
p->Accept (v) ; 
tout << v. counter << I’ statements’.” << endl; 

Next, the visitor named V-onlyif countS only if- 
statements. 

// counting if-statements 
class V-only-if: 

public CompositionVisitor<NullVis?tor> ( 
public : 

int counter; 
V-only-if(): counter(O) 0 

virtual void 
Visit-Statement(const Statement& it) C 

//never invoked since Statement 
//is an abstract class 
assert (0) ; 

3 
virtual void 

Visit-IfStatement(const IfStatement& it) ( 
t+counter;- 
CompositionVisitor<NullVisitor>:: 

Visit-IfStatement( 

3 

3; 

Note that VisitStatement is never called, because 
InheritanceVisitor is left out. 

If we refine the first visitor V and add a handler also 
for If Statement, we can count all statements except 
if-statemknts, as following: 

// counting non-if statements 
class V-sans-if: public V ( I 
public: 

V-sans-if 0: VO 0 

virtual void 
Visit-IfStatement(const IfStatement& it), C 

//invoked only for if -statements 
--counter; //undo t+counter 
V: :VisitJfStatement(it); 

3 

3; 
. 

5 Conclusions , 

The concept of tiling design patterns is a novel twist 
on pattern application. Tiling enables us to’ inter- 
weave simple understood concepts of patterns into 
their complex real-life implementation. With the help 
bf tilings we’ve seen implementations of the Inter- 
preter and Visitor patterns in a more concise and 
accurate manner. 

Tessellations help us adapt more easily to changes 
(e.g., in the cl&s hierarchy.) Similar considerations 
rooted the work on propagation patterns, later in- 
corporated into adaptive progmmming [25, 21. The 
class dictionary graph approach in the Demeter sys- 
tem, [24] which allows integrated defipition of classes 
and syr$actic forms, is of particular relevance. Tiling 
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match the benefits, that the Adaptive variants, pro- 

posed by Lieberherr and colleagues (e.g., [32]), have 
with respect to the traditional patterns, but ‘iYithout 
requiring language extensions: 

Efforts of abstraction over design patterns have 
taken many directions. For example, attempts to dis- 
cover patterns of patterns, or looking for recurring 
mini-patterns. The danger in that kind of abstrac- 

tions is in becoming either obvious or too abstract. 
Tilings is a form of abstraction that restricts us to de- 
sign pattern as wholes. As such, the building blocks 

at least are a solid foundation. 
Some tiles fit nicely together (e.g., the Interpreter 

and the Visitor.) Some tiles may have the same shape 
but a different purpose (e.g., the Adapter [15] and the 

Bridge J15J.) Some tiles may always need to work to- 
gether (e.g., perhaps’the Interpreter, and the Visitor?) 

In that case, they may simply be parts of the same 
pattern. If a subset of the patterns can tile all the 
others, then that group would be a basis that can 
span the rest. If a set of pattern fractions can do the 
jobs, those would be mini-patterns. We have seen two 
related patterns that can tile the-mselves. 

,, This work has focused on a particular design pat- - 
tern, the Interpreter. Even in that limited scope, 
tiling has shown insight into the Interpreter’s own 
design. Whether or not this phenomena is found in 
other patterns, is left for future work. 
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