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Abstract— Network coding substantially increases net- network throughput [1], [23], [21], [15]. It can be done
work throughput. But since it involves mixing of informa- in a distributed manner with low complexity, and is
tion inside the network, a single corrupted packet generate robust to packet losses and network failures [10], [25].

by a malicious node can end up contaminating all theF th t imol tati f network codi
information reaching a destination, preventing decoding. urthermore, recent impiementations of network coding

This paper introduces distributed polynomial-time rate- for wired and wireless environments demonstrate its
optimal network codes that work in the presence of Byzan- practical benefits [18], [8].
tine nodes. We present algorithms that target adversaries  But what if the network contains malicious nodes?
with different attacking capabilities. When the adversary a malicious node may pretend to forward packets from

can eavesdrop on all links and jamzo links, our first source to destination, while in reality it injects corrugpte
algorithm achieves a rate of C — 2zp, where C is the ! Yy )

network capacity. In contrast, when the adversary has Packets into the information flow. Since network coding

limited eavesdropping capabilities, we provide algorithns makes the routers mix packets’ content, a single corrupted

that achieve the higher rate ofC' — zo. _ packet can end up corruptiraj the information reaching
Our algorithms  attain the optimal rate given the 5 gaestination. Unless this problem is solved, network

strength of the adversary. They are information- di f h th f di
theoretically secure. They operate in a distributed manner _CO Ing may perform much worse than pure torwarding

assume no knowledge of the topology, and can be designefl the presence of adversaries.

and implemented in polynomial-time. Furthermore, only the The interplay of network coding and Byzantine adver-
source and destination need to be modified; non-malicioussaries has been examined by a few recent papers. Some
nodes inside the network are oblivious to the presence Ofjatect the presence of an adversary [12], others correct

adversaries and implement a classical distributed network . . o .
code. Finally, our algorithms work over wired and wireless the errors he injects into the codes under specific condi-

networks. tions [9], [14], [22], [31], and a few bound the maximum

Keywords: Byzantine adversaries, Distributed network achievable rate in such adverse environments [3], [29].
error-correcting codes, eavesdroppers, information the@t- But attaining optimal rates using distributed and low-
ically optimal, list decoding, polynomial-time algorithms. complexity codes was an open problem.

This paper designs distributed polynomial-time rate-
|. INTRODUCTION optimal network codes that combat Byzantine adver-

_sarie$. We present three algorithms that target adver-

Network coding allows the routers to mix the MNaries with different strengths. The adversary can inject

formation content in packets before forwarding therzn. packets per unit time, but his listening power varies.

This mixing has been theoretically proven to max'm'éghen the adversary is omniscient, i.e., he observes trans-
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combinations (enough coded packets), the destination@ammunications. Prior research has examined such at-
decode both sources. The question however is how daeks in the presence of network coding and without it. In
the destination distill out the source’s information frothe absence of network coding, Dolev et al. [5] consider
the received mixture. To do so, the source’s informatithre problem of communicating over a known graph
has to satisfy certain constraints that the attacker’s daiataining Byzantine adversaries. They show that for
cannot satisfy. This can be done by judiciously addihgadversarial nodes, reliable communication is possible
redundancy at the source. For example, the source oy if the graph has more th&#&-+1 vertex connectivity.
add parity checks on the source’s original data. TBebramaniam extends this result to unknown graphs [27].
receiver can use the syndrome of the received packetBdlr et al. address the same problem in wireless networks
determine the effect of the adversary’s transmissions. Bigenodeling malicious nodes as locally bounded Byzan-
challenge addressed herein is to design the parity cheitkesfaults, i.e., nodes can overhear and jam packets only
for distributed network codes that achieve the optinialtheir neighborhood [26].
rates. The interplay of network coding and Byzantine adver-
Conceptually, our proof involves two steps. We firsaries was examined in [12], which detects the existence
analyze standard network coding in the presenceobtin adversary but does not provide an error-correction
Byzantine adversaries (without adding additional redgeheme. The work of Cai and Yeung [2], [29], [3]
dancy at the source). In this setting, as expected, degiieralizes standard bounds on error-correcting codes to
nation nodes cannot uniquely decode the source’s dagworks, without providing any explicit algorithms for
however we show that they cdrst decode this data. achieving these bounds. Our work presents a constructive
Namely, receivers can identify short list of potential design to achieve those bounds.
messages that may have been transmitted. Once this ighe problem of efficiently correcting errors in the
established, we analyze the effect of redundancy at gagsence of both network coding and Byzantine adver-
source in each one of our scenarios (omniscient or limitgggies has been considered by a few prior proposals.
adversaries). Earlier work [22], [9] assumes a centralized trusted
This paper makes several contributions. The alg@rthority that provides hashes of the original packets
rithms presented herein are distributed algorithms Wigheach node in the network. Charles et al. [4] obvi-
polynomial-time complexity in design and implementates the need for a trusted entity under the assumption
tion, yet are rate-optimal. In fact, since pure forwardifigat the majority of packets received by each node is
is a special case of network coding, being rate-optim@icorrupted. Recently [32] demonstrate error detection
our algorithms also achieve a higher rate than any gpthe public key cryptographic setting. In contrast to
proach that does not use network coding. They assyfeabove schemes which are cryptographically secure,
no knowledge of the topology and work in both wirgfl a previous work [14], we consider an information-
and wireless networks. Furthermore, implementing @Héoretically rate-optimal solution to Byzantine attacks
algorithms involves only a slight modification of theyr wired networks, which however requires a centralized
source and receiver while the internal nodes can contifigsign. This paper builds on the above prior schemes to

to use standard network coding. combine their desirable traits; it provides a distributed
solution that is information-theoretically rate optimalda
Il. RELATED WORK can be designed and implemented in polynomial time.

Work on network coding started with a pioneering paurthermore, our algorithms have new features; they
per by Ahlswede et al. [1], which establishes the valueasisume no knowledge of the topology, do not require
coding in the routers and provides theoretical boundsasy new functionality at internal nodes, and work for
the capacity of such networks. The combination of [28pth wired and wireless networks.

[21], and [15] shows that, for multicast traffic, linear The work closest in spirit to our work is that of
codes achieve the maximum capacity bounds, and Httletter and Kschischang [19], who also studied the
design and implementation can be done in polynonpa¢sence of Byzantine adversaries in the distributed net-
time. Additionally, Ho et al. show that the above igork coding setting. They concentrate on communicating
true even when the routers perform random linear opexrgainst an omniscient adversary, and present a distributed
tions [10]. Researchers have extended the above resulésbheme of optimal rat€’ — 2zo. The proof techniques

a variety of areas including wireless networks [25], [1df [19] differ substantially from those presented in this
[18], energy [28], secrecy [2], content distribution [8fyork. In a nutshell, [19] reduce the model of network
and distributed storage [16]. For a couple of nice survepsling to a certain point-to-point channel. They then
on network coding see, e.g., [30], [7]. construct generalizations of Reed-Solomon codes for this

A Byzantine attacker is a malicious adversary hiddefmannel, which enables the authors to construct determin-
in a network, capable of eavesdropping and jammistic network error-correcting codes as mentioned above.



n — packet size

the set of observer nodes. The hypergraph model captures

IB—Batch Size both wired and wireless networks. For wired networks,
5n - redungant symbols the hyperedge is a simple point-to-point link. For wireless
n — packet size networks, each such hyperedge is determined by instan-
Z=—> | [T 12, No of packets taneous channel realizations (packets may be lost due
°  Calvin injects . .. .
_ to fading or collisions) and connects the transmitter to
« M-packetsze all nodes that hear the transmission. The hypergraph is

V. 3 IC_ Network Capacity unknown to Alice and Bob prior to transmission.

Source: Alice generates incompressible data that she
Fig. 1. Alice, Bob and Calvin’s information matrices. wishes to deliver to Bob over the network. To do so,
Alice encodes her data as dictated by the encoding

) Ayorithm (described in subsequent sections). She divides
[19] (although very elegant) comes at a price. It dot % encoded data into batchestopackets. For clarity,

not encapsulate the additional Byzantine scenarios : i
. ) . . Wwe focus on the encoding and decoding of one batch.
arise naturally in practice and are addressed in our curren :
packet contains a sequencerokymbols from the

paper (i.e., adversaries of limited knowledge, discus§e

: . . jnite field F,. All arithmetic operations henceforth are
in Sections VI and VIII). More specifically, our protocodone over symbols frorff, . (See the treatment in [20])
enables us to attain the higher rate @f— 2o, albeit Y a ’

) : . Qut of then symbols in Alice’s packetyn symbols are
only under the (weaker) requirement of list decoding. L}%%undancy added by the source.

decoding in the setting of network communication is & Al . the data i h batch int tri
central ingredient in our proofs for limited adversarie |cehorgan|zcle:§ (13 \;G\I/a(;n eatc ¢ ‘f,’”,:th'n CI) a m? X
To the best of our current knowledge, the abstraction'bf2> S"OWN 1N Fg. &. e _ino © .hie’]) elemen

he matrix byz(i, 7). The i*" row in the matrix X

Lloi];ﬁéuogf%g:;sﬁsdt ZZCI?)Z?:gSoIomon like codes) d%%ust the i’ packet in the batch. Fig. 1 shows that

similarly to standard network codes [10], some of the
redundancy in the batch is devoted to sending the identity
matrix, I. Also, as in [10], Alice takes random linear

We use a general model that encompasses both wi@aibinations of the rows o to generate her transmitted
and wireless networks. To simplify notation, we considegickets. As the packets traverse the network, the internal
only the problem of communicating from a single sournedes apply a linear transform to the batch. The identity
to a single destination. But similarly to most networkatrix receives the same linear transform. The destination
coding algorithms, our techniques generalize to multicdstcovers the linear relation, denoted by the maffix
traffic. between the packets it receives and those transmitted.
This is done by inspecting how was transformed.

We would like to note that the abstraction used

IIl. M ODEL & DEFINITIONS

A. Threat Model Adversary: Let the matrixZ be the information Calvin

There is a source, Alice, who communicates Ovej,n&ects intc_) each batch. The size of this matrixisx 1, .
wired or wireless network to a receiver Bob. There is al¥g€"€ 20 ISI the number (()jf fe_dges corlljtrollﬁd by Cal\;m
an attacker Calvin, hidden somewhere in the netwdigternatively, one may defineo to be the size o

Calvin aims to prevent the transfer of information frofje min-cut from Calvin to the_d_est|nat|0n). In some
Alice to Bob, or at least to minimize it. He can obser® ©Y' adversarial models we limit the eavesdropping

some or all of the transmissions, and can inject his O\Eﬁpab'l_'t'es of Calvin. Namely, we limit the number of
When he injects his own data, he pretends they are Prgﬂsmltted pa_ckets Calvin can observe. In such cases,
of the information flow from Alice to Bob. his number will be denoted by;.

Calvin is quite strong. He is computationally urReceiver: Analogously to how Alice generate¥, the
bounded. He knows the encoding and decoding schereesiver Bob organizes the received packets into a matrix
of Alice and Bob, and the network code implement&d Thei'" received packet corresponds to e row of
by the interior nodes. He also knows the exact netwdfk Note that the number of received packets, and there-
realization. fore the number of rows df’, is a variable dependent on
the network topology. Bob attempts to reconstruct Alice’s
information, X, using the matrix of received packets

As mentioned in the Introduction, conceptually, Bob
Network Model: The network is modeled as a hyperecovers the information of Alice in two steps. First,
graph [24]. Each transmission carries a packet of dBtb identifies a set of linear constraints which must
over a hyperedge directed from the transmitting nodeb satisfied by the transmitted informatich of Alice.

B. Network and Code Model



o\@fiable | Definition |
C Network capacity.
zZo0 Number of packets Calvin can inject.

This set of constraints characterizes a linear subspad
low dimension in whichX must lie. We refer to thi
low dimensional sgbspace asliemgar list de_coding of — Number of packets Calvin can hear.
X. Once list decoding is accomplished, unique decoding Number of packets in a batth
follows by considering additional information Bob has, Length of each packet.

on the matrixX (such as its redundancy, or informatigny Alice’s redundancy.

transmitted by Alice over a low rate secret channel).

. aThroughout this world is defined asC' — z¢.
Network Transform: The network performs a classical 9 ©

distributed network code [10]. Specifically, each packet TABLE |
transmitted by an internal node is a random linear com- Terms used in the paper.
bination of its incoming packets. Thus, the effect of the

network at the destination can be summarized as follows.

Y =TX+T7Z (1)

IV. SUMMARY OF RESULTS

We have three main results. Each result corresponds
to a distributed, rate-optimal, polynomial-time algonith
Y = [T|T"] { X } @) that_ defeats an adversary of a particular type. The opti-
zZ |’ mality of these rates has been proven by prior work [2],
where X is the batch of packets sent by Alic&, refers [3l: [29], [14]. Our work, however, provides a construc-
to the packets Calvin injects into Alice’s batch, akd tion of distributed codes/algorlthm_s that achieve op'uma_ll
is the received batch. The matri refers to the linear'@t€s. To prove our results, we first study the scenario
transform from Alice to Bob, whilg” refers to the linear®f high rate list decoding in the presence of Byzantine
transform from Calvin to Bob. Notice that neith&rnor 2dversaries. In what follows, 67| denote the number
T’ are known to Bob. Rather, as shown in Figure 1, BBbreceivers, ande| denote the number of (hyper)-edges
receives the matri’, which cannot be directly used td! the network.
recoverX. (1) Shared Secret Model: This model considers the
Notice that in our model the error imposed by thensmission of information via network coding in a
Byzantine adversary Calvin is assumed todueled to network where Calvin can observe all transmissions, and
the original information transmitted on the network. Owan injectzp corrupt packets. However, it is assumed that
can also consider a model in which these eroveswrite Alice can transmit to Bob a message (at asymptotically
the existing information transmitted by Alice. We stresggligible rate) which is unknown to Calvin over a
that if Calvin is aware of transmissions on links, these teeparate secret channel. In Section VI we prove the
models are equivalent. Overwriting a message vtis following.
equivalent to adding-Xz + Z on the links controlled by  Theorem 1. The Shared Secret algorithm achieves an
Calvin, whereX 7 represents the original transmissiomgptimal rate ofC — 2o with code-complexityO(nC?).
on those links.

This can be written as

(2) Omniscient Adversary Model: This model assumes
Definitions: We define the following concepts. an omniscient adversary, i.e., one from whom nothing is
« The network capacity, denoted byC, is the time- hidden. As in the Shared Secret model, Calvin can ob-
average of the maximum number of packets tisgfve all transmissions, and can injegtcorrupt packets.
can be delivered from Alice to Bob, assuming fdowever, Alice and Bob have no shared secrets hidden
adversarial interference, i.e., the max flow. It c&®m Calvin. In Section VII we prove the following.
be also expressed ake min-cut from source to Theorem 2. The Omniscient Adversary algorithm
detination. (For the corresponding multicast casachieves an optimal rate 6f—2zo with code-complexity
C is defined as the minimum of the min-cuts ové&((nC)3).

all destinations.) 3 (3) Limited Adversary Model: In this model, Calvin is
« The error probability is the probability that Bob'S|imited in his eavesdropping power; he can observe at
reconstruction of Alice’s information is inaccuratey st transmitted packets. Exploiting this weakness of
« The rateR is the number ofinformation symbols {he adversary results in an algorithm that, like the Om-

that can be delivered on average, per time step, fiQitient Adversary algorithm, operates without a shared
Alice to Bob . RateR is said to be achievable if folggcret. In Section VI we prove the following.

anye; > 0 andey > 0 there exists a coding scheme Theorem 3:
of block lengthn with rate > R — ¢5 and error !
probability < ;.

If z; < C—2zp, the Limited Adversary
algorithm achieves an optimal rate 6f— zo with code-
complexity O(nC?).
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Linear List Decoding Model: A key building block in matrix F'. Bob can compute’ as (YS)’1 Y. Therefore
some of our proofs is dinear list decoding algorithm. Y can also be written as
The model assumes the Omniscient Adversary of Model [ X5F
(2). We design a code that Bob can use to output a Y = [TT"] [ s } 3)
linear list (of low dimension) that is guaranteed to contain ) ) ) )
Alice’s messageX. The list in then refined to obtain th&0mparing (2) and (3), and again using the assumption
results stated in Theorems 1, 2, and 3. In Section Vv gt [7|7"] is invertible (with high probability) gives us
prove the following. X = X°F, (4)
Theorem 4: The Linear List Decoding algorithm 7R ®)
achieves a rate of' — zp and outputs a listL. that is ’
guaranteed to contaiX. The list L is a vector space ofin particular, (4) gives a linear relationship aghthat can
dimensionb(b + zo). The code-complexity i€)(nC?). be leveraged into a list-decoding scheme for Bob (the
corresponding linear relationship from (5) is not very
V. LINEAR LIST DECODING IN THE omNiscient  USeful). The number of variables iX* is b(b + z0).
ADVERSARY MODEL Therefore the entries of the matriX® span a vector

space of dimensiorb(b + zo) over F,. Bob’s list is

~ Here we assume we face an omniscient adversgq¥ corresponding(b + zo )-dimensional vector spade
i.e., Calvin can observe everything, and there are dManned byx s F.

that Bob can use in this scenario to output a linear gt intersection of the column-spans®fndT” is non-

(of low dimension) th_at is gugranteed to contain Alicggyial, i.e., if [T|T"] is singular. But as shown in [11],
messageX . Our.algorlthr.n ach|evesargter: C—zo.. as long ash + zo < C, this is at mos{7T]||€|¢~" for
The corrupted informatioy” Bob receives enables himyny fixed network. Since Calvin can choose his locations

to deduce a system of linear equations tiasatisfies. j, 5t most('g‘) ways, the total probability of error is at
This system of equations ensures ttétlies in a low ost it

dimensional vector space. We now present our algoritEm:Od(
in detail. Throughout this and upcoming sectiohsis
fixed asC — zo.

EO')|T||E|q*1. The computational cost of design,
ing and decoding is dominated by the cost of
computing ' and thereby a representation 6f This
takesO(nC?) steps.

Alice’s Encoder: Alice’s encoder is quite straightfor- Note: In the Linear List Decoding scheme described
ward. She simply arranges the source symbols into &#vve, Alice appends an identity matrix to her source
b x n matrix X, appended with a-dimensional identity symbols to obtain the matriX, causing (an asymptot-
matrix. She then implements the classical random rieslly negligible) loss in rate. This is also the standard
work encoder described in Section 1lI-B to generate Ipgotocol of [10]. We note that our scheme works just
transmitted packets. as well even if Alice does not append such an iden-

Bob’s Decoder:Bob selects + zo linearly independentlity matrix, and X' consists solely of source symbols.
columns of Y, and denotes the corresponding matfowever, the appended identity matrix is used in the
Y®. Here we assume, w.l.o.g., that the column ramedel of Section VII. We now solve (4) under different
of Y is indeedb + 2. The column rank cannot b@&ssumptions on Calvin's strength.

larger thanb + zo by (2). If the column rank happens
to ber < b+ zo, Bob selectsr independent rows .
of Y and continues in a procedure analogous to that!n the Shared Secret model Alice and Bob have use
described below. We also assume tiatcontains the lastOf @ strong resource, namely a secret channel over which
b columns ofY” (corresponding to Alice’s-dimensional Alicé can transmit a small amount of information to
identity matrix). This is justified due to (2) and thEOb that is secret frorln.CaI\_/ln. The size of .thIS secret
assumption (discussed below) that the intersectioniSo@Symptotically negligible inn. Note that since the
the column-spans of’ and 7" is trivial, i.e., [T|T"] is internal nodes mix corrupted and uncorrupted packets,
regular (with high probability over the random choicédice cannot just sign her packets and have Bob check the
of internal nodes in the network). The remaining Signature and throw away corrupted packets — in extreme

columns of Y* are chosen arbitrarily so that is €ases Bob may not receiagy uncorrupted packets.
invertible. The columns ofY and Z corresponding to  Alice uses the secret channel to send a random hash of
those inY’* are denoted(® and Z* respectively. By (2), her dat_a to Bob. Bo_b first uses the _Iist—decoding scheme
y* = [T|T] X Also. sinceY™ acts as a basis forOf Se(_:t|_on V to obtain a Iow—dlr_nensmnal vect_or—spzlce

- zZs | ' containing X . He then uses Alice’s hash to identify

the columns ofY, we can writeY = Y*F for some from L.

VI. SHARED SECRETMODEL



Let « be a parameter defined below. Lt ...,r, information as follows. Alice writes her informatioX
be a elements ofF, chosen at random by Alice (anih the form of a lengthbn column vectorX. The vector
unknown to Calvin). LetD = [d;;] be ann x a matrix X is chosen to satishDX = 0. Here, D is adn x bn
in which d;; = (r;)". Let XD = H. Alice sends to Bobmatrix defined as theedundancy matrix. The matrix D
a secreS comprising of the symbols,, ..., r, and the is obtained by choosing each element as an independent
matrix H. The size of this secret is thuga + 1), which and uniformly random symbol from the finite fielf,,
is asymptotically negligible im. andén > n(zp + ¢) for arbitrarily smalle. This choice
Claim 5: For any X’ # X the probability (overof parameters implies that the number mfrity checks
1,...,1r4) that X’D = H is at most( 2 a_ DX = 0 is greater than the number of symbols in the
Proof: We need to prove thatY _qX/)D £ 0 with 20 paqkets that Calvin injgcts into the netyvork._We show
high probability, where is the zero matrix. AsY # X' that this allows Bob to uniquely de_codp, implying a rate
there is at least one row of which differs from x’. ©f € —220. The redundancy matri is known to all

Assume w.l.0.g. that this is the first row, denoted hereP@&ties — Alice, Bob, and Calvin — and hence does not
the non-zero vectofz, ..., z,). The j'th entry in the CONnstitute a shared secret. , o
first row of (X — X")D is F(r;) = Y0, wiri. As F(r;) Alice encodes as in Section V. Bob’s decoding is as
is not the zero polynomial, the probability (oves) that OlIOWS. , _ , ,
F(r;) = 0 is at most™. This holds for all entries of the B0P first runs the Linear List Decoding algorithm
first row of (X — X’}D. Thus the probability that thd® ©Ptain Equations (4) and (5). We denote the matrix
_ ) ] o comprising of the firstzp rows of F' by F;, and the
entire row is the zero vector is at m tql matrix comprising of the lasi rows of F' by F5. By the
Leta = b(b+ z0) + 1. Let L be a list (containingconstraints specified in Section V, the lastolumns of

X) of distinct matrices. Let the size df be ¢*~". X* form an identity matrix. Thus (4) transforms into
Corollary 6: The probability (overry,...,r,) that .
there existsX’ € L such thatX’ # X but X'D = XD X =Xk + I, (6)

Is at mOSt.n“/q. , , where X; comprises of the firsto columns of X*.
Proof: We use Claim 5, and the union bound on all recai thatX is a vector corresponding to the matrix

elements ofl. that differ from X. _ ® X. Upon receivingy’, Bob computest” and solves the
Note: The secret channel is essential for the follomggstem:

reason. If the symbols,,...,r, werenot secret from

Calvin, he could carefully select his corrupted packets so X = X{F + Py, (7)

that Bob’s listL would indeed contain aX’ # X such DX = 0 (8)

that X'D = XD.

Bob is able to decode the original informatign of Here, onlyD and " are known to Bob. Our goal is now
Alice. Namely, Corollary 6 establishes that the systé?nShOW that with high probability over the entries of the
XD = X*FD = H has a single solution. This solutiofatrix D, no matter which matrix’ was obtained by
can be found using standard Gaussian elimination. BOP, there is a unique solution to Equations (7) and (8).

The above implies a scheme that achievesateo. The _matrixF depends on the errorg Calvin injects_,.
The optimality of this rate is shown in prior work [14]C&lVin can choose these to depend BnWe take this

The probability of error is at most® /¢ +|T1|€] (]) /q. TNO consideration below. _ _
Here a = b(b + 20) + 1. The computational Cost of The_system of linear equations (7)-(8) can be written
design, encoding, and decoding is dominated by the dgpatrix form as

of running the Linear List Decoding algorithm, which A% — { A(Fy) } X —nB

takes timeO(nC?). N D -

where A comprises of the submatrice$(F;) and D,
VII. UNIQUE DECODING IN THE OMNISCIENT A(Fy) is abn x bn matrix whose entries depend d,
ADVERSARY MODEL andB is a lengthrn(b-+§) vector. It holds that the system
We now consider unique decoding. Our algorith{#)-(8) has a unique solution if and only # has full
achieves a rate aR = C' — 2z, which is lower than thatcolumn rank. However, Calvin has partial control over
possible in the list decoding scenario. Recent bounds J2].and his goal is to design his errdr so this will not
[3] on network error-correcting codes show that in fao¢ the case.

C — 2zp is the maximum achievable rate for networks In what follows, we show that Calvin cannot succeed.
with an omniscient adversary. Namely we show, with high probability over the entries
To move from list decoding to unique decoding iof D, thatno matter what the value off’ is, the system
the omniscient model, we add redundancy to Alic€®)-(8) has a unique solution. Our proof has the following



structure. We first show that for a fixdd , the matrixA probability). Settingd = 2o + ¢ suffices for our proof.

has full column rank with high probability oved. We The computational cost of design, encoding and decoding

then note that the number of possible different matrigeglominated by solving the system of Equations (7)-(8),

Fy is at mostg=o™ (this follows from the size off}). and thus equal®((nC)3).

Finally, applying the union bound we obtain our result.

We start with some notation. Assume thﬁt is VIIl. L IMITED ADVERSARY MODEL

arranged by stacking the columns &f one on top of

the other, where the columns &f; appear on the top of In this Section we combine the strengths of the

X. Also, we fix the(i, j)'th entry of Fy to be f;;. Then, Shared Secret and the Omniscient Adversary algorithms

the matrix A — [ A(F1) of Sections VI and VIl respectively. We then achieve

D the higher rate of” — zp without the need of a secret

channel. The caveat is that Calvin is more limited — he

] has the following form:

(1= f“)l _f?’ll _fz_o"ll can only eavesdrop on part of the edges in the network.
: : : : 0 Specifically, the number of packets he can transmijt,
—freol  —freod .. (L= fap20)] and the number he can eavesdrop ep, satisfy the
—frzottl —frzortl ... —fiozotil technical constraint
i I T I 220+ 21 < C. ©)
D We call such an adversarylamited Adversary.

- : The main idea underlying our Limited Adversary
The matrix A is described by smaller dimensionallgorithm is simple. Alice uses the Omniscient Adversary
matrices as entries. Namely, the identity matricesalgorithm to transmit a “short, scrambled” message to
appearing above have dimensionthe identity matrix Bob at rateC' — 2z. By (9), the ratez; at which Calvin
I has dimensiorb(n — zp). and the zero matriX¥ has eavesdrops is strictly less than Alice’s rate of trans-
dimensionzpb x b(n — zp). We now analyze the colummnission C' — 2z5. Hence Calvin cannot decode Alice’s
rank of A. message, but Bob can. This means Alice’s scrambled
Clearly the lasth(n — zp) columns of A are inde- message to Bob contains a sec$ethat is unknown to
pendent. Thus any set of dependent columnsgiohust Calvin. OnceS has been shared from Alice to Bob, they
include at least one of the firéto columns. Letl/ = can use the Shared Secret algorithm to transmit the bulk
{ur, .. upzp3 01, .., Vpn—z0) } De the set of columnof Alice’s message to Bob at the higher rdte- zo.

of A (here the{u;} vectors correspond to the leftmog{jice’s Encoder: Alice’s encoder follows essentially
bzo columns ofA). We break the{u;} and{v,} vectors the schema described in the previous paragraph. The
into two parts. The components of tHex} and {v;} jnformationS she transmits to Bob via the Omniscient
vectors in the topn rows of A are denoted, respectivelmdversary algorithm is padded with some random sym-
as {u;} and {vj}. The components of th¢u;} and pols. This is for two reasons. First, the randomness in
{v;} vectors in the bottondn rows of A are denotedthe padded symbols ensures strong information-theoretic
respectively, ag{u{} and {v}}. The matrix A is rank- secrecy ofS. That is, we show in Claim 7 that Calvin's
deficient if and only if there exisfa;} and{3;}, not all pest estimate ofny function of S is no better than if he
zero, such thap _; cvui + 3 ; fjv; = 0. Note that thereangomly guessed the value of the function. Second, since
is a one-to-one correspondence between the vdlugs the Omniscient Adversary algorithm has a probability of
and the valueg3;} in the above equality. Namely, fogrror that decays exponentially with the size of the input,
each setting offa;}, there is a unique setting df;} it isn't guaranteed to perform well when only a small
for which 3, auf + 37, 805 = 0. Further, for every message is transmitted.
setting of the valu_e_f@al-} (and a corresponding setting for - pjice divides her informationX into two parts
{B;}) the probability overD that 3>, a;uy + 32, 5] = [X; X,]. She uses the information she wishes to transmit
0 is at mostg—?". This implies that the probabilityg Bop (at rateR = (C — zp)(1 — A)) as the input to
> iui + ;5 Bjv; = 0 is asymptotically negligible.the encoder of the Shared Secret algorithm. The output
Then, an additional use of the union bound ong of this step is the x n(1 — A) sub-matrixX;. Here A
possible values of;} suffices to obtain our proof. is a parameter that enables Alice to trade between the
All in all, Bob fails to uniquely decode with probprobability of error and rate-loss.
ability gzomgb*0¢—°" (the first term corresponds to the The second sub-matriX,, which we call thesecrecy
union bound over the values df; = [f;;], the secondmatrix, is analogous to the secrBtused in the Secret
term corresponds to the union bound over the val@&wring algorithm described in Section VI. The size of
of {«;}, and the third term corresponds to the failue, is b x nA. In fact, X5 is an encoding of the secret



S Alice generates in the Shared Secret algorithm. Th Adversarial Rate | Complexity

1%

v = (b(b+z0) +1)(b+1) symbols corresponding to the —gp-— j;reggéh T2 | O
parity symbols{r;} and the hash matri¥/ are written Secret 21 = network

in the form of a lengthy column vector. This vector [“Omniscient zo < C/2, C —2z0 | O((nC)®)
is appended with symbols chosen uniformly at random zr = network

from I, to result in the lengthC' — 2o — §)nA vector | Limited | 214220 <C [ C—20 O(nC?)
U’. Alice multiplies U’ by a random square matrix to TABLE II

generate the inpddl. This vectorU functions as the input COMPARISON OF OUR THREE ALGORITHMS

to the Omniscient Adversary algorithm operated over a

packet-sizen A with a probability of decoding error that

is exponentially small imA. The output of this step isalgor|thm§ which are information-theoretically secure

X, and rate-optimal for different adversarial strengths (as

The following claim ensures that is indeed Secretshown in Table Il). When the adversary is omniscient,

. we show how to achieve a rate 6f— 2zp, wherezp is
from Calvin. th ber of packets the ad injects anig th
Claim7: Let v = (b(b + 20) + 1)(b + 1). The e number of packets the adversary injects e

probability that Calvin guess&scorrectly is at mos—, network capacity. If the adversary cannot observe every-

i.e., S is information-theoretically secret from Calvin. thing, our algorithms achieve a higher raté.- zo. Both

: : rates are optimal. Further, our algorithms are practical;

The proof of Claim 7 follows from a direct extent-h are distributed, have polynomial-time complexit
sion of the secure communication scheme of [6] to aurY . ’ poly piexity
and require no changes at the internal nodes.

scenario.
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