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Resilient Network Coding in the Presence of
Byzantine Adversaries

Sidharth Jaggi⋆, Michael Langberg†, Sachin Katti‡, Tracey Ho•, Dina Katabi‡, Muriel Médard⋄,
Michelle Effros•

Abstract— Network coding substantially increases net-
work throughput. But since it involves mixing of informa-
tion inside the network, a single corrupted packet generated
by a malicious node can end up contaminating all the
information reaching a destination, preventing decoding.

This paper introduces distributed polynomial-time rate-
optimal network codes that work in the presence of Byzan-
tine nodes. We present algorithms that target adversaries
with different attacking capabilities. When the adversary
can eavesdrop on all links and jam zO links, our first
algorithm achieves a rate of C − 2zO , where C is the
network capacity. In contrast, when the adversary has
limited eavesdropping capabilities, we provide algorithms
that achieve the higher rate ofC − zO.

Our algorithms attain the optimal rate given the
strength of the adversary. They are information-
theoretically secure. They operate in a distributed manner,
assume no knowledge of the topology, and can be designed
and implemented in polynomial-time. Furthermore, only the
source and destination need to be modified; non-malicious
nodes inside the network are oblivious to the presence of
adversaries and implement a classical distributed network
code. Finally, our algorithms work over wired and wireless
networks.

Keywords: Byzantine adversaries, Distributed network
error-correcting codes, eavesdroppers, information theoret-
ically optimal, list decoding, polynomial-time algorithms.

I. I NTRODUCTION

Network coding allows the routers to mix the in-
formation content in packets before forwarding them.
This mixing has been theoretically proven to maximize
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network throughput [1], [23], [21], [15]. It can be done
in a distributed manner with low complexity, and is
robust to packet losses and network failures [10], [25].
Furthermore, recent implementations of network coding
for wired and wireless environments demonstrate its
practical benefits [18], [8].

But what if the network contains malicious nodes?
A malicious node may pretend to forward packets from
source to destination, while in reality it injects corrupted
packets into the information flow. Since network coding
makes the routers mix packets’ content, a single corrupted
packet can end up corruptingall the information reaching
a destination. Unless this problem is solved, network
coding may perform much worse than pure forwarding
in the presence of adversaries.

The interplay of network coding and Byzantine adver-
saries has been examined by a few recent papers. Some
detect the presence of an adversary [12], others correct
the errors he injects into the codes under specific condi-
tions [9], [14], [22], [31], and a few bound the maximum
achievable rate in such adverse environments [3], [29].
But attaining optimal rates using distributed and low-
complexity codes was an open problem.

This paper designs distributed polynomial-time rate-
optimal network codes that combat Byzantine adver-
saries1. We present three algorithms that target adver-
saries with different strengths. The adversary can inject
zO packets per unit time, but his listening power varies.
When the adversary is omniscient, i.e., he observes trans-
missions on the entire network, our codes achieve the rate
of C − 2zO, with high probability. When the adversary’s
knowledge is limited, either because he eavesdrops only
on a subset of the links or the source and destination
have a low-rate secret-channel, our algorithms deliver the
higher rate ofC − zO.

The intuition underlying all of our algorithms is that
the aggregate packets from the adversarial nodes can be
thought of as a second source. The information received
at the destination is a linear transform of the source’s
and the adversary’s information. Given enough linear

1Independently and concurrently to our work, Koetter and Kschis-
chang [19] present results of similar nature which are discussed in detail
in Section II.
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combinations (enough coded packets), the destination can
decode both sources. The question however is how does
the destination distill out the source’s information from
the received mixture. To do so, the source’s information
has to satisfy certain constraints that the attacker’s data
cannot satisfy. This can be done by judiciously adding
redundancy at the source. For example, the source may
add parity checks on the source’s original data. The
receiver can use the syndrome of the received packets to
determine the effect of the adversary’s transmissions. The
challenge addressed herein is to design the parity checks
for distributed network codes that achieve the optimal
rates.

Conceptually, our proof involves two steps. We first
analyze standard network coding in the presence of
Byzantine adversaries (without adding additional redun-
dancy at the source). In this setting, as expected, desti-
nation nodes cannot uniquely decode the source’s data,
however we show that they canlist decode this data.
Namely, receivers can identify ashort list of potential
messages that may have been transmitted. Once this is
established, we analyze the effect of redundancy at the
source in each one of our scenarios (omniscient or limited
adversaries).

This paper makes several contributions. The algo-
rithms presented herein are distributed algorithms with
polynomial-time complexity in design and implementa-
tion, yet are rate-optimal. In fact, since pure forwarding
is a special case of network coding, being rate-optimal,
our algorithms also achieve a higher rate than any ap-
proach that does not use network coding. They assume
no knowledge of the topology and work in both wired
and wireless networks. Furthermore, implementing our
algorithms involves only a slight modification of the
source and receiver while the internal nodes can continue
to use standard network coding.

II. RELATED WORK

Work on network coding started with a pioneering pa-
per by Ahlswede et al. [1], which establishes the value of
coding in the routers and provides theoretical bounds on
the capacity of such networks. The combination of [23],
[21], and [15] shows that, for multicast traffic, linear
codes achieve the maximum capacity bounds, and both
design and implementation can be done in polynomial
time. Additionally, Ho et al. show that the above is
true even when the routers perform random linear opera-
tions [10]. Researchers have extended the above results to
a variety of areas including wireless networks [25], [17],
[18], energy [28], secrecy [2], content distribution [8],
and distributed storage [16]. For a couple of nice surveys
on network coding see, e.g., [30], [7].

A Byzantine attacker is a malicious adversary hidden
in a network, capable of eavesdropping and jamming

communications. Prior research has examined such at-
tacks in the presence of network coding and without it. In
the absence of network coding, Dolev et al. [5] consider
the problem of communicating over a known graph
containing Byzantine adversaries. They show that for
k adversarial nodes, reliable communication is possible
only if the graph has more than2k+1 vertex connectivity.
Subramaniam extends this result to unknown graphs [27].
Pelc et al. address the same problem in wireless networks
by modeling malicious nodes as locally bounded Byzan-
tine faults, i.e., nodes can overhear and jam packets only
in their neighborhood [26].

The interplay of network coding and Byzantine adver-
saries was examined in [12], which detects the existence
of an adversary but does not provide an error-correction
scheme. The work of Cai and Yeung [2], [29], [3]
generalizes standard bounds on error-correcting codes to
networks, without providing any explicit algorithms for
achieving these bounds. Our work presents a constructive
design to achieve those bounds.

The problem of efficiently correcting errors in the
presence of both network coding and Byzantine adver-
saries has been considered by a few prior proposals.
Earlier work [22], [9] assumes a centralized trusted
authority that provides hashes of the original packets
to each node in the network. Charles et al. [4] obvi-
ates the need for a trusted entity under the assumption
that the majority of packets received by each node is
uncorrupted. Recently [32] demonstrate error detection
in the public key cryptographic setting. In contrast to
the above schemes which are cryptographically secure,
in a previous work [14], we consider an information-
theoretically rate-optimal solution to Byzantine attacks
for wired networks, which however requires a centralized
design. This paper builds on the above prior schemes to
combine their desirable traits; it provides a distributed
solution that is information-theoretically rate optimal and
can be designed and implemented in polynomial time.
Furthermore, our algorithms have new features; they
assume no knowledge of the topology, do not require
any new functionality at internal nodes, and work for
both wired and wireless networks.

The work closest in spirit to our work is that of
Koetter and Kschischang [19], who also studied the
presence of Byzantine adversaries in the distributed net-
work coding setting. They concentrate on communicating
against an omniscient adversary, and present a distributed
scheme of optimal rateC − 2zO. The proof techniques
of [19] differ substantially from those presented in this
work. In a nutshell, [19] reduce the model of network
coding to a certain point-to-point channel. They then
construct generalizations of Reed-Solomon codes for this
channel, which enables the authors to construct determin-
istic network error-correcting codes as mentioned above.
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Fig. 1. Alice, Bob and Calvin’s information matrices.

We would like to note that the abstraction used in
[19] (although very elegant) comes at a price. It does
not encapsulate the additional Byzantine scenarios that
arise naturally in practice and are addressed in our current
paper (i.e., adversaries of limited knowledge, discussed
in Sections VI and VIII). More specifically, our protocol
enables us to attain the higher rate ofC − zO, albeit
only under the (weaker) requirement of list decoding. List
decoding in the setting of network communication is a
central ingredient in our proofs for limited adversaries.
To the best of our current knowledge, the abstraction of
[19] (although based on Reed Solomon like codes) does
not allow efficient list decoding.

III. M ODEL & D EFINITIONS

We use a general model that encompasses both wired
and wireless networks. To simplify notation, we consider
only the problem of communicating from a single source
to a single destination. But similarly to most network
coding algorithms, our techniques generalize to multicast
traffic.

A. Threat Model

There is a source, Alice, who communicates over a
wired or wireless network to a receiver Bob. There is also
an attacker Calvin, hidden somewhere in the network.
Calvin aims to prevent the transfer of information from
Alice to Bob, or at least to minimize it. He can observe
some or all of the transmissions, and can inject his own.
When he injects his own data, he pretends they are part
of the information flow from Alice to Bob.

Calvin is quite strong. He is computationally un-
bounded. He knows the encoding and decoding schemes
of Alice and Bob, and the network code implemented
by the interior nodes. He also knows the exact network
realization.

B. Network and Code Model

Network Model: The network is modeled as a hyper-
graph [24]. Each transmission carries a packet of data
over a hyperedge directed from the transmitting node to

the set of observer nodes. The hypergraph model captures
both wired and wireless networks. For wired networks,
the hyperedge is a simple point-to-point link. For wireless
networks, each such hyperedge is determined by instan-
taneous channel realizations (packets may be lost due
to fading or collisions) and connects the transmitter to
all nodes that hear the transmission. The hypergraph is
unknown to Alice and Bob prior to transmission.

Source: Alice generates incompressible data that she
wishes to deliver to Bob over the network. To do so,
Alice encodes her data as dictated by the encoding
algorithm (described in subsequent sections). She divides
the encoded data into batches ofb packets. For clarity,
we focus on the encoding and decoding of one batch.

A packet contains a sequence ofn symbols from the
finite field Fq. All arithmetic operations henceforth are
done over symbols fromFq. (See the treatment in [20]).
Out of then symbols in Alice’s packet,δn symbols are
redundancy added by the source.

Alice organizes the data in each batch into a matrix
X as shown in Fig. 1. We denote the(i, j)th element
in the matrix byx(i, j). The ith row in the matrixX
is just the ith packet in the batch. Fig. 1 shows that
similarly to standard network codes [10], some of the
redundancy in the batch is devoted to sending the identity
matrix, I. Also, as in [10], Alice takes random linear
combinations of the rows ofX to generate her transmitted
packets. As the packets traverse the network, the internal
nodes apply a linear transform to the batch. The identity
matrix receives the same linear transform. The destination
discovers the linear relation, denoted by the matrixT ,
between the packets it receives and those transmitted.
This is done by inspecting howI was transformed.

Adversary: Let the matrixZ be the information Calvin
injects into each batch. The size of this matrix iszO ×n,
wherezO is the number of edges controlled by Calvin
(alternatively, one may definezO to be the size of
the min-cut from Calvin to the destination). In some
of our adversarial models we limit the eavesdropping
capabilities of Calvin. Namely, we limit the number of
transmitted packets Calvin can observe. In such cases,
this number will be denoted byzI .

Receiver: Analogously to how Alice generatesX , the
receiver Bob organizes the received packets into a matrix
Y . Theith received packet corresponds to theith row of
Y . Note that the number of received packets, and there-
fore the number of rows ofY , is a variable dependent on
the network topology. Bob attempts to reconstruct Alice’s
information,X , using the matrix of received packetsY .

As mentioned in the Introduction, conceptually, Bob
recovers the information of Alice in two steps. First,
Bob identifies a set of linear constraints which must
be satisfied by the transmitted informationX of Alice.
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This set of constraints characterizes a linear subspace of
low dimension in whichX must lie. We refer to this
low dimensional subspace as alinear list decoding of
X . Once list decoding is accomplished, unique decoding
follows by considering additional information Bob has
on the matrixX (such as its redundancy, or information
transmitted by Alice over a low rate secret channel).

Network Transform: The network performs a classical
distributed network code [10]. Specifically, each packet
transmitted by an internal node is a random linear com-
bination of its incoming packets. Thus, the effect of the
network at the destination can be summarized as follows.

Y = TX + T ′Z. (1)

This can be written as

Y = [T |T ′]

[

X
Z

]

, (2)

whereX is the batch of packets sent by Alice,Z refers
to the packets Calvin injects into Alice’s batch, andY
is the received batch. The matrixT refers to the linear
transform from Alice to Bob, whileT ′ refers to the linear
transform from Calvin to Bob. Notice that neitherT nor
T ′ are known to Bob. Rather, as shown in Figure 1, Bob
receives the matrix̂T , which cannot be directly used to
recoverX .

Notice that in our model the error imposed by the
Byzantine adversary Calvin is assumed to beadded to
the original information transmitted on the network. One
can also consider a model in which these errorsoverwrite
the existing information transmitted by Alice. We stress
that if Calvin is aware of transmissions on links, these two
models are equivalent. Overwriting a message withZ is
equivalent to adding−XZ +Z on the links controlled by
Calvin, whereXZ represents the original transmissions
on those links.

Definitions: We define the following concepts.

• The network capacity, denoted byC, is the time-
average of the maximum number of packets that
can be delivered from Alice to Bob, assuming no
adversarial interference, i.e., the max flow. It can
be also expressed asthe min-cut from source to
destination. (For the corresponding multicast case,
C is defined as the minimum of the min-cuts over
all destinations.)

• The error probability is the probability that Bob’s
reconstruction of Alice’s information is inaccurate.

• The rateR is the number ofinformation symbols
that can be delivered on average, per time step, from
Alice to Bob . RateR is said to be achievable if for
any ǫ1 > 0 andǫ2 > 0 there exists a coding scheme
of block lengthn with rate ≥ R − ǫ2 and error
probability≤ ǫ1.

Variable Definition
C Network capacity.
zO Number of packets Calvin can inject.
zI Number of packets Calvin can hear.
b Number of packets in a batcha.
n Length of each packet.
δ Alice’s redundancy.

aThroughout this workb is defined asC − zO.

TABLE I

Terms used in the paper.

IV. SUMMARY OF RESULTS

We have three main results. Each result corresponds
to a distributed, rate-optimal, polynomial-time algorithm
that defeats an adversary of a particular type. The opti-
mality of these rates has been proven by prior work [2],
[3], [29], [14]. Our work, however, provides a construc-
tion of distributed codes/algorithms that achieve optimal
rates. To prove our results, we first study the scenario
of high rate list decoding in the presence of Byzantine
adversaries. In what follows, let|T | denote the number
of receivers, and|E| denote the number of (hyper)-edges
in the network.

(1) Shared Secret Model: This model considers the
transmission of information via network coding in a
network where Calvin can observe all transmissions, and
can injectzO corrupt packets. However, it is assumed that
Alice can transmit to Bob a message (at asymptotically
negligible rate) which is unknown to Calvin over a
separate secret channel. In Section VI we prove the
following.

Theorem 1: The Shared Secret algorithm achieves an
optimal rate ofC − zO with code-complexityO(nC3).

(2) Omniscient Adversary Model: This model assumes
an omniscient adversary, i.e., one from whom nothing is
hidden. As in the Shared Secret model, Calvin can ob-
serve all transmissions, and can injectzO corrupt packets.
However, Alice and Bob have no shared secrets hidden
from Calvin. In Section VII we prove the following.

Theorem 2: The Omniscient Adversary algorithm
achieves an optimal rate ofC−2zO with code-complexity
O((nC)3).

(3) Limited Adversary Model: In this model, Calvin is
limited in his eavesdropping power; he can observe at
mostzI transmitted packets. Exploiting this weakness of
the adversary results in an algorithm that, like the Om-
niscient Adversary algorithm, operates without a shared
secret. In Section VIII we prove the following.

Theorem 3: If zI < C−2zO, the Limited Adversary
algorithm achieves an optimal rate ofC − zO with code-
complexityO(nC3).
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Linear List Decoding Model: A key building block in
some of our proofs is alinear list decoding algorithm.
The model assumes the Omniscient Adversary of Model
(2). We design a code that Bob can use to output a
linear list (of low dimension) that is guaranteed to contain
Alice’s messageX . The list in then refined to obtain the
results stated in Theorems 1, 2, and 3. In Section V we
prove the following.

Theorem 4: The Linear List Decoding algorithm
achieves a rate ofC − zO and outputs a listL that is
guaranteed to containX . The list L is a vector space of
dimensionb(b + zO). The code-complexity isO(nC3).

V. L INEAR L IST DECODING IN THE OMNISCIENT

ADVERSARY MODEL

Here we assume we face an omniscient adversary,
i.e., Calvin can observe everything, and there are no
shared secrets between Alice and Bob. We design a code
that Bob can use in this scenario to output a linear list
(of low dimension) that is guaranteed to contain Alice’s
messageX . Our algorithm achieves a rate ofR = C−zO.
The corrupted informationY Bob receives enables him
to deduce a system of linear equations thatX satisfies.
This system of equations ensures thatX lies in a low
dimensional vector space. We now present our algorithm
in detail. Throughout this and upcoming sections,b is
fixed asC − zO.

Alice’s Encoder: Alice’s encoder is quite straightfor-
ward. She simply arranges the source symbols into the
b × n matrix X , appended with ab-dimensional identity
matrix. She then implements the classical random net-
work encoder described in Section III-B to generate her
transmitted packets.

Bob’s Decoder:Bob selectsb+ zO linearly independent
columns of Y , and denotes the corresponding matrix
Y s. Here we assume, w.l.o.g., that the column rank
of Y is indeed b + zO. The column rank cannot be
larger thanb + zO by (2). If the column rank happens
to be r < b + zO, Bob selectsr independent rows
of Y and continues in a procedure analogous to that
described below. We also assume thatY s contains the last
b columns ofY (corresponding to Alice’sb-dimensional
identity matrix). This is justified due to (2) and the
assumption (discussed below) that the intersection of
the column-spans ofT and T ′ is trivial, i.e., [T |T ′] is
regular (with high probability over the random choices
of internal nodes in the network). The remainingzO

columns of Y s are chosen arbitrarily so thatY s is
invertible. The columns ofX and Z corresponding to
those inY s are denotedXs andZs respectively. By (2),

Y s = [T |T ′]

[

Xs

Zs

]

. Also, sinceY s acts as a basis for

the columns ofY , we can writeY = Y sF for some

matrix F . Bob can computeF as (Y s)−1 Y . Therefore
Y can also be written as

Y = [T |T ′]

[

XsF
ZsF

]

(3)

Comparing (2) and (3), and again using the assumption
that [T |T ′] is invertible (with high probability) gives us

X = XsF, (4)

Z = ZsF. (5)

In particular, (4) gives a linear relationship onX that can
be leveraged into a list-decoding scheme for Bob (the
corresponding linear relationship from (5) is not very
useful). The number of variables inXs is b(b + zO).
Therefore the entries of the matrixXs span a vector
space of dimensionb(b + zO) over Fq. Bob’s list is
the correspondingb(b + zO)-dimensional vector spaceL
spanned byXsF .

The only source of error in our argument arises if
the intersection of the column-spans ofT andT ′ is non-
trivial, i.e., if [T |T ′] is singular. But as shown in [11],
as long asb + zO ≤ C, this is at most|T ||E|q−1 for
any fixed network. Since Calvin can choose his locations
in at most

(

|E|
zO

)

ways, the total probability of error is at

most
(

|E|
zO

)

|T ||E|q−1. The computational cost of design,
encoding and decoding is dominated by the cost of
computingF and thereby a representation ofL. This
takesO(nC3) steps.

Note: In the Linear List Decoding scheme described
above, Alice appends an identity matrix to her source
symbols to obtain the matrixX , causing (an asymptot-
ically negligible) loss in rate. This is also the standard
protocol of [10]. We note that our scheme works just
as well even if Alice does not append such an iden-
tity matrix, and X consists solely of source symbols.
However, the appended identity matrix is used in the
model of Section VII. We now solve (4) under different
assumptions on Calvin’s strength.

VI. SHARED SECRET MODEL

In the Shared Secret model Alice and Bob have use
of a strong resource, namely a secret channel over which
Alice can transmit a small amount of information to
Bob that is secret from Calvin. The size of this secret
is asymptotically negligible inn. Note that since the
internal nodes mix corrupted and uncorrupted packets,
Alice cannot just sign her packets and have Bob check the
signature and throw away corrupted packets – in extreme
cases Bob may not receiveany uncorrupted packets.

Alice uses the secret channel to send a random hash of
her data to Bob. Bob first uses the list-decoding scheme
of Section V to obtain a low-dimensional vector-spaceL

containingX . He then uses Alice’s hash to identifyX
from L.
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Let α be a parameter defined below. Letr1, . . . , rα

be α elements ofFq chosen at random by Alice (and
unknown to Calvin). LetD = [dij ] be ann × α matrix
in which dij = (rj)

i. Let XD = H . Alice sends to Bob
a secretS comprising of the symbolsr1, . . . , rα and the
matrix H . The size of this secret is thusα(α+1), which
is asymptotically negligible inn.

Claim 5: For any X ′ 6= X the probability (over

r1, . . . , rα) that X ′D = H is at most
(

n
q

)α

.

Proof: We need to prove that(X−X ′)D 6= 0 with
high probability, where0 is the zero matrix. AsX 6= X ′

there is at least one row ofX which differs fromX ′.
Assume w.l.o.g. that this is the first row, denoted here as
the non-zero vector(x1, . . . , xn). The j’th entry in the
first row of (X−X ′)D is F (rj) =

∑n
i=1 xir

i
j . As F (rj)

is not the zero polynomial, the probability (overrj ) that
F (rj) = 0 is at mostnq . This holds for all entries of the
first row of (X − X ′)D. Thus the probability that the

entire row is the zero vector is at most
(

n
q

)α

.

Let α = b(b + zO) + 1. Let L be a list (containing
X) of distinct matrices. Let the size ofL be qα−1.

Corollary 6: The probability (overr1, . . . , rα) that
there existsX ′ ∈ L such thatX ′ 6= X but X ′D = XD
is at mostnα/q.

Proof: We use Claim 5, and the union bound on all
elements ofL that differ fromX .

Note: The secret channel is essential for the following
reason. If the symbolsr1, . . . , rα were not secret from
Calvin, he could carefully select his corrupted packets so
that Bob’s listL would indeed contain anX ′ 6= X such
that X ′D = XD.

Bob is able to decode the original informationX of
Alice. Namely, Corollary 6 establishes that the system
XD = XsFD = H has a single solution. This solution
can be found using standard Gaussian elimination.

The above implies a scheme that achieves rateC−zO.
The optimality of this rate is shown in prior work [14].
The probability of error is at mostnα/q + |T ||E|

(

|E|
zO

)

/q.
Here α = b(b + zO) + 1. The computational cost of
design, encoding, and decoding is dominated by the cost
of running the Linear List Decoding algorithm, which
takes timeO(nC3).

VII. U NIQUE DECODING IN THE OMNISCIENT

ADVERSARY MODEL

We now consider unique decoding. Our algorithm
achieves a rate ofR = C−2zO, which is lower than that
possible in the list decoding scenario. Recent bounds [2],
[3] on network error-correcting codes show that in fact
C − 2zO is the maximum achievable rate for networks
with an omniscient adversary.

To move from list decoding to unique decoding in
the omniscient model, we add redundancy to Alice’s

information as follows. Alice writes her informationX
in the form of a length-bn column vectorX̃. The vector
X̃ is chosen to satisfyDX̃ = 0. Here,D is a δn × bn
matrix defined as theredundancy matrix. The matrixD
is obtained by choosing each element as an independent
and uniformly random symbol from the finite fieldFq,
andδn > n(zO + ε) for arbitrarily smallε. This choice
of parameters implies that the number ofparity checks
DX̃ = 0 is greater than the number of symbols in the
zO packets that Calvin injects into the network. We show
that this allows Bob to uniquely decode, implying a rate
of C − 2zO. The redundancy matrixD is known to all
parties – Alice, Bob, and Calvin – and hence does not
constitute a shared secret.

Alice encodes as in Section V. Bob’s decoding is as
follows.

Bob first runs the Linear List Decoding algorithm
to obtain Equations (4) and (5). We denote the matrix
comprising of the firstzO rows of F by F1, and the
matrix comprising of the lastb rows ofF by F2. By the
constraints specified in Section V, the lastb columns of
Xs form an identity matrix. Thus (4) transforms into

X = Xs
1F1 + F2, (6)

whereXs
1 comprises of the firstzO columns ofXs.

Recall thatX̃ is a vector corresponding to the matrix
X . Upon receivingY , Bob computesF and solves the
system:

X = Xs
1F1 + F2, (7)

DX̃ = 0 (8)

Here, onlyD andF are known to Bob. Our goal is now
to show that with high probability over the entries of the
matrix D, no matter which matrixF was obtained by
Bob, there is a unique solution to Equations (7) and (8).
The matrix F depends on the errorsZ Calvin injects.
Calvin can choose these to depend onD. We take this
into consideration below.

The system of linear equations (7)-(8) can be written
in matrix form as

AX̃ =

[

A(F1)
D

]

X̃ = B,

where A comprises of the submatricesA(F1) and D,
A(F1) is a bn× bn matrix whose entries depend onF1,
andB is a length-n(b+δ) vector. It holds that the system
(7)-(8) has a unique solution if and only ifA has full
column rank. However, Calvin has partial control over
F , and his goal is to design his errorZ so this will not
be the case.

In what follows, we show that Calvin cannot succeed.
Namely we show, with high probability over the entries
of D, that no matter what the value ofF is, the system
(7)-(8) has a unique solution. Our proof has the following
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structure. We first show that for a fixedF1, the matrixA
has full column rank with high probability overD. We
then note that the number of possible different matrices
F1 is at mostqzOn (this follows from the size ofF1).
Finally, applying the union bound we obtain our result.

We start with some notation. Assume that̃X is
arranged by stacking the columns ofX one on top of
the other, where the columns ofXs

2 appear on the top of
X̃. Also, we fix the(i, j)’th entry of F1 to befij . Then,

the matrixA =

[

A(F1)
D

]

has the following form:

2

6

6

6

6

6

6

6

6

6

6

6

4

(1 − f1,1)I −f2,1I . . . −fzO,1I
...

...
...

... 0

−f1,zO
I −f2,zO

I . . . (1 − fzO,zO
)I

−f1,zO+1I −f2,zO+1I . . . −fzO,zO+1I
...

...
...

... I

−f1,n −f2,nI . . . −fzO,nI

D

3

7

7

7

7

7

7

7

7

7

7

7

5

The matrix A is described by smaller dimensional
matrices as entries. Namely, the identity matricesI
appearing above have dimensionb, the identity matrix
I has dimensionb(n − zO). and the zero matrix0 has
dimensionzOb× b(n−zO). We now analyze the column
rank of A.

Clearly the lastb(n − zO) columns ofA are inde-
pendent. Thus any set of dependent columns ofA must
include at least one of the firstbzO columns. LetV =
{u1, . . . , ubzO

; v1, . . . , vb(n−zO)} be the set of columns
of A (here the{ui} vectors correspond to the leftmost
bzO columns ofA). We break the{ui} and{vj} vectors
into two parts. The components of the{ui} and {vj}
vectors in the topbn rows ofA are denoted, respectively,
as {ut

i} and {vt
j}. The components of the{ui} and

{vj} vectors in the bottomδn rows of A are denoted,
respectively, as{ub

i} and {vb
j}. The matrixA is rank-

deficient if and only if there exist{αi} and{βj}, not all
zero, such that

∑

i αiui +
∑

j βjvj = 0. Note that there
is a one-to-one correspondence between the values{αi}
and the values{βj} in the above equality. Namely, for
each setting of{αi}, there is a unique setting of{βj}
for which

∑

i αiu
t
i +

∑

j βjv
t
j = 0. Further, for every

setting of the values{αi} (and a corresponding setting for
{βj}) the probability overD that

∑

i αiu
b
i +

∑

j βjv
b
j =

0 is at most q−δn. This implies that the probability
∑

i αiui +
∑

j βjvj = 0 is asymptotically negligible.
Then, an additional use of the union bound on allqbzO

possible values of{αi} suffices to obtain our proof.
All in all, Bob fails to uniquely decode with prob-

ability qzOnqbzOq−δn (the first term corresponds to the
union bound over the values ofF1 = [fij ], the second
term corresponds to the union bound over the values
of {αi}, and the third term corresponds to the failure

probability). Settingδ = zO + ε suffices for our proof.
The computational cost of design, encoding and decoding
is dominated by solving the system of Equations (7)-(8),
and thus equalsO((nC)3).

VIII. L IMITED ADVERSARY MODEL

In this Section we combine the strengths of the
Shared Secret and the Omniscient Adversary algorithms
of Sections VI and VII respectively. We then achieve
the higher rate ofC − zO without the need of a secret
channel. The caveat is that Calvin is more limited – he
can only eavesdrop on part of the edges in the network.
Specifically, the number of packets he can transmit,zO,
and the number he can eavesdrop on,zI , satisfy the
technical constraint

2zO + zI < C. (9)

We call such an adversary aLimited Adversary.
The main idea underlying our Limited Adversary

algorithm is simple. Alice uses the Omniscient Adversary
algorithm to transmit a “short, scrambled” message to
Bob at rateC −2zO. By (9), the ratezI at which Calvin
eavesdrops is strictly less than Alice’s rate of trans-
missionC − 2zO. Hence Calvin cannot decode Alice’s
message, but Bob can. This means Alice’s scrambled
message to Bob contains a secretS that is unknown to
Calvin. OnceS has been shared from Alice to Bob, they
can use the Shared Secret algorithm to transmit the bulk
of Alice’s message to Bob at the higher rateC − zO.

Alice’s Encoder: Alice’s encoder follows essentially
the schema described in the previous paragraph. The
information S she transmits to Bob via the Omniscient
Adversary algorithm is padded with some random sym-
bols. This is for two reasons. First, the randomness in
the padded symbols ensures strong information-theoretic
secrecy ofS. That is, we show in Claim 7 that Calvin’s
best estimate ofany function of S is no better than if he
randomly guessed the value of the function. Second, since
the Omniscient Adversary algorithm has a probability of
error that decays exponentially with the size of the input,
it isn’t guaranteed to perform well when only a small
message is transmitted.

Alice divides her informationX into two parts
[X1 X2]. She uses the information she wishes to transmit
to Bob (at rateR = (C − zO)(1 − ∆)) as the input to
the encoder of the Shared Secret algorithm. The output
of this step is theb × n(1 − ∆) sub-matrixX1. Here∆
is a parameter that enables Alice to trade between the
probability of error and rate-loss.

The second sub-matrixX2, which we call thesecrecy
matrix, is analogous to the secretS used in the Secret
Sharing algorithm described in Section VI. The size of
X2 is b × n∆. In fact, X2 is an encoding of the secret
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S Alice generates in the Shared Secret algorithm. The
γ = (b(b+ zO)+1)(b+1) symbols corresponding to the
parity symbols{rj} and the hash matrixH are written
in the form of a length-γ column vector. This vector
is appended with symbols chosen uniformly at random
from Fq to result in the length-(C − zO − δ)n∆ vector
Ũ

′. Alice multiplies Ũ
′ by a random square matrix to

generate the input̃U. This vectorŨ functions as the input
to the Omniscient Adversary algorithm operated over a
packet-sizen∆ with a probability of decoding error that
is exponentially small inn∆. The output of this step is
X2.

The following claim ensures thatS is indeed secret
from Calvin.

Claim 7: Let γ = (b(b + zO) + 1)(b + 1). The
probability that Calvin guessesS correctly is at mostq−γ ,
i.e., S is information-theoretically secret from Calvin.

The proof of Claim 7 follows from a direct exten-
sion of the secure communication scheme of [6] to our
scenario.

The two components ofX , i.e., X1 and X2, re-
spectively correspond to the information Alice wishes
to transmit to Bob, and an implementation of the low-
rate secret channel. The fraction of the packet-size cor-
responding toX2 is “small”, i.e., ∆. Finally, Alice
implements the classical random encoder described in
Section III-B.

Bob’s Decoder: Bob arranges his received packets into
the matrixY = [Y1 Y2]. The sub-matricesY1 andY2 are
respectively the network transforms ofX1 andX2.

Bob decodes in two steps. Bob first recoversS by
decodingY2 as follows. He begins by using the Omni-
scient Adversary decoder to obtain the vectorŨ. He then
obtainsŨ′ from Ũ, by inverting the mapping specified
in Alice’s encoder. He finally extracts from̃U′ the γ
symbols corresponding toS.

Alice has now sharedS with Bob. Bob usesS as
the side information used by the decoder of the Shared
Secret algorithm to decodeY1. This enables him to
recoverX1, which contains Alice’s information at rate
R = C − zO. The probability of error is dominated
by the sums of the probabilities of error in Theorems 1
and 2, with the parametern replaced byn∆. The Limited
Adversary algorithm is essentially a concatenation of the
Shared Secret algorithm with the Omniscient Adversary
algorithm, thus the computational cost is dominated by
the sum of the two (withn∆ replacingn). Choosing
∆ appropriately (sayn∆ = n1/3) , one may bound the
complexity byO(nC3).

IX. CONCLUSION

Random network codes are vulnerable to Byzantine
adversaries. This work makes them secure. We provide

Adversarial
Strength

Rate Complexity

Shared
Secret

zO < C,
zI = network

C − zO O(nC3)

Omniscient zO < C/2,
zI = network

C − 2zO O((nC)3)

Limited zI+2zO < C C − zO O(nC3)

TABLE II

COMPARISON OF OUR THREE ALGORITHMS

algorithms2 which are information-theoretically secure
and rate-optimal for different adversarial strengths (as
shown in Table II). When the adversary is omniscient,
we show how to achieve a rate ofC − 2zO, wherezO is
the number of packets the adversary injects andC is the
network capacity. If the adversary cannot observe every-
thing, our algorithms achieve a higher rate,C−zO. Both
rates are optimal. Further, our algorithms are practical;
they are distributed, have polynomial-time complexity
and require no changes at the internal nodes.
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