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Abstract— Network coding can substantially improve network
throughput and performance. However, these codes have a major
drawback if the network contains hidden malicious nodes that
can eavesdrop on transmissions and inject fake information. In
this scenario, even a small amount of information injected by a
single malicious hidden node could mix with and contaminate
much of the information inside the network, causing a decoding
error.

We improve on previous work by providing a polynomial-
time, rate-optimal distributed network code design that functions
even in the presence of a Byzantine adversary with substantial
eavesdropping capabilities. As long as the sum of the adversary’s
jamming rate ZO and his eavesdropping rateZI is less than the
network capacity C, (ZO +ZI < C), our codes attain the optimal
rate of C − ZO.

The network codes we design are information-theoretically
secure and assume no knowledge of network topology. Prior to
transmission, no honest node knows the location or strengthof
the adversary. In our code design, interior nodes are oblivious
to the presence of adversaries and implement a classical low-
complexity distributed network code design; only the source and
destination need to be changed. Finally, our codes work for both
wired and wireless networks.

I. I NTRODUCTION

Network coding, i.e., the mixing of information at internal
nodes in a network, was proposed in [1]. Since then, a
growing body of literature has demonstrated the considerable
advantages of such codes in both wired and wireless networks,
such as throughput gains in multicast networks [1], robustness
to failures [2], [3] and power efficiency [4].

However, this mixing of information can be catastrophic for
networks containingByzantine nodes, i.e., malicious internal
nodes that pretend to be routers but instead eavesdrop on
transmissions and inject fake packets with the objective ofdis-
rupting communications. In this case, even a small amount of
corrupted information may be mixed with all the information
flowing in the network, causing decoding errors.

Communication via network coding in the presence of
Byzantine errors has been addressed in the past. Prior related
work has focused primarily on the detection of Byzantine
errors [5], non-constructive bounds on the achievable rates [6],
[7], and network error-correcting codes [8]. All but the latter
address Byzantine adversaries that have unlimitedeavesdrop-
ping capabilities, and analyze the quality of communication
as a function of theirjamming capabilities. Namely, the

adversaries studied are assumed to observe all transmissions in
the network, but are limited in the amount of errors they inject
into the network. In this work we study Byzantine adversaries
which are limited in both their eavesdropping and jamming
capabilities. Such adversaries were also studied in a previous
work of ours [8] (joint with Michelle Effros, Tracey Ho, Dina
Katabi, Sachin Katti, and Muriel Médard). The current work
substantially improves on one of the main results of [8].

The main results in [8] provide polynomial-time distributed
algorithms for two cases. First, a network code is proposed
to combat anomniscientadversary (one that can observe all
transmissions in the network). This code attains the optimal
rate ofC − 2ZO, whereC is the network multicast capacity
andZO is the rate of the adversary’s information generation.
Second, a network code is proposed to combat alimited
adversary (one who can eavesdrop on only a limited amount of
information in the network). This code attains the substantially
higher rateC − ZO, which can also be shown to be optimal.
However, for technical reasons this algorithm requires the
fairly restrictive condition that the adversary’s eavesdropping
rate ZI is less thanC − 2ZO. Thus the presence of some
privacy in the network can be leveraged to obtain higher
network throughput.

Our results: We improve on this previous work by providing a
polynomial-time, rate-optimal distributed network code design
that functions even in the presence of a Byzantine adversary
with substantial eavesdropping capabilities. As long as the sum
of the adversary’s jamming rateZO and his eavesdropping rate
ZI is less than the network capacityC, (ZO + ZI < C), our
codes attain the optimal rate ofC − ZO.

Our code-design algorithm relaxes the restriction on the
limited adversary’s eavesdropping rate. Namely, our network
codes can still achieve the optimal rateR = C − ZO even
if ZI is almost as large asC − ZO. In other words, as long
asZI < R our codes’ performance is optimal. The difference
from the case considered in [8] is substantial. For example
the algorithm in [8] is able to achieve a positive rate only
for a Byzantine adversary withZO at mostC/2, whereas the
algorithm in this paper can function even ifZO is almost
C. The main result of this work can be summarized by the
following theorem. LetFq denote the field over which all
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linear operations in our network code are performed. Letn
denote the block length of the packets transmitted over the
links of the network (i.e. each packet consists ofn elements
from Fq).

Theorem 1:If ZI < C − ZO, the “Limited Adversary”
algorithm described in Section III achieves a rate ofC −

ZO −O
(

C4 log q
n

)

with code-complexityO(npoly(C, log q))

and probability of error at mostO
(

nCC+poly(C) log q

q

)

.

Setting q = 2
√

n is a reasonable trade off between rate
overhead, probability of error and code complexity. For com-
parison, in the error free scheme of [2], to obtain an expo-
nential small error probability, the field sizeq must also be
exponential.

Proof techniques: We leverage the following idea in our
algorithm. Since more information is being generated by the
source than is being intercepted by the adversary (R > ZI ),
some of the source’s information is information-theoretically
secret from the adversary. Further, it is known ([8], Theorem 1)
that even if an asymptotically negligible amount of information
can be transmitted correctly from the source to the destination
secretly from the adversary, this secret can be used topurify all
the rest of the corrupted information reaching the destination.
The key challenge arises in the transmission of even this
small message secretly and correctly over a network containing
Byzantine adversaries. To this end, the source introduces a
small amount of redundancy in its information by imposing a
few carefully chosen linear constraints on it. By examiningits
received information the destination is able to determine which
linear constraints the source’s data satisfies, and the identity
of these constraints encodes the secret message that the source
wishes to transmit to the destination. However, the adversary
is unable to determine anything about these linear constraints
sinceZI is asymptotically bounded away fromR.

The majority of this work is devoted to presenting an elegant
polynomial-time distributed secret sharing scheme that lends
itself to classical network code design. As mentioned above
once such a scheme is established, we use the results of [8]
to obtain Theorem 1.

Secret sharing in the presence of a Byzantine adversary such
as ours has been extensively studied in the standard point-
to-point communication model (for example see [9]). Our
setting does not fall under this standard framework for many
reasons. Primarily, several difficulties arise when considering
secret sharing under the distributed network coding model.In
addition, we note that the errors imposed by the Byzantine
adversary in the network coding setting are assumed to be
addedto the original information transmitted on the network
(the addition is with respect to the underlying fieldFq used in
the linear network code studied). The model in which these
errors canoverwrite the existing information transmitted is an
interesting research direction we are currently perusing.We
note that there is a difference between these two error models
only when the adversary is not aware of the information to be
jammed due to eavesdropping limitations (such as the plausible

scenario where a wireless node cannot simultaneously transmit
and receive).

The design of secret sharing schemes for network coding in
the presence of an eavesdropping adversary with no jamming
capabilities (i.e. ZO = 0) has been addressed in [10], [11]. In
some aspects our proof techniques resemble those presented
in [11] – however our setting (which includes a jamming ad-
versary) is more general and code design is more demanding.

The focus of this paper is primarily on the effect of the
adversary’s eavesdropping power. The algorithm that is our
main contribution achieves rate-optimal performance in net-
work conditions that are more adverse than previous work.
It does so in a polynomial-time, distributed manner, without
knowledge of network topology, location or strength of the
adversary. Our network codes work even if the adversary is
computationally unbounded, and enable the source to share a
message with the destination that is secret from the adversary.
They work for wired and wireless networks. Finally, internal
nodes in our network code are oblivious to the presence of an
adversary – they perform a classical network code [2] whose
implementation complexity is low.

II. N ETWORK MODEL AND DEFINITIONS

We use the general model proposed in [8] that encompasses
both wired and wireless networks. To simplify notation, we
consider only the problem of communicating from a single
source to a single destination. (Similarly to most network
coding algorithms, our techniques generalize to multicast
problems.)

A. Network Model

There is a source, Alice, and a destination, Bob, who
communicate over a wired or wireless network. There is also
an attacker (also referred to as an adversary) Calvin, hidden
somewhere in the network. Calvin aims to prevent the transfer
of information from Alice to Bob, or at least to minimize it.
He can observe some of the transmissions, and can inject his
own. When he injects his own packets, he pretends they are
part of the information flow from Alice to Bob.

Calvin is quite strong. He is computationally unbounded.
He knows the encoding and decoding schemes of Alice and
Bob, and the network code implemented by the interior nodes.
He also knows the exact network realization, and he gets to
choose which network links to eavesdrop on and which ones
to transmit fake information on.1

The network is modeled as a hypergraph [12]. Each packet
transmission corresponds to a hyperedge directed from the
transmitting node to the set of observer nodes. For wired
networks, the hyperedge is a simple point-to-point link. For
wireless networks, each such hyperedge is determined by
instantaneous channel realizations (packets may be lost due
to fading or collisions) and connects the transmitter to all

1We consider a model where network links rather than nodes areeaves-
dropped and jammed as this is more general – control of a node is equivalent
to control of links attached to it.
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nodes that hear the transmission. The hypergraph is unknown
to Alice and Bob prior to transmission.

Source: Alice generates incompressible data that she wishes
to deliver to Bob over the network. To do so, Alice encodes
her data as dictated by the encoding algorithm (described
in subsequent sections). She divides the encoded data intob
packets. In what follows,b = C − ZO. A packet contains a
sequence ofn symbols from the finite fieldFq. All arithmetic
operations henceforth are done over symbols fromFq. (See
the treatment in [13]). Out of then symbols in Alice’s packet,
δn symbols are redundancy added by the source. In our
setting δ = o(1) which will imply communication at rate
R ≃ b = C − ZO.

Alice organizes her data into a matrixX . We denote the
(i, j)th element in the matrix byx(i, j). The ith row in the
matrix X is just the ith packet of Alice’s data. Similarly
to standard network codes [2], some of the redundancy in
X is devoted to sending the identity matrix,I. The rest of
the redundancy inX is devoted to the secret sharing scheme
to be described in Section III. Also as in [2], Alice takes
random linear combinations of the rows ofX to generate
her transmitted packets. As the packets traverse the network,
the internal nodes apply a linear transform to the packets.
The identity matrix receives the same linear transform. The
destination discovers the linear relation between the packets it
receives and those transmitted by inspecting how the identity
matrix was transformed.

Adversary: A Byzantine adversary Calvin is said to have
eavesdropping capacityZI if it can view the information
transmitted onZI of the edges in the underlying graph. It is
said to have jamming capacityZO if it can inject information
into the network inZO locations. Throughout, we assume
that Calvin has unlimited computational power and that the
network topology is known to Calvin. He knows the encoding
and decoding schemes of Alice and Bob, and the network code
implemented by the interior nodes. (Weakening any of these
restrictions can be shown to not increase the achievable rate-
region, hence we consider this scenario, the most favourable
for Calvin.) However, the random coin tosses made by Alice
as part of her encoding scheme are not known to Calvin.

Destination: Analogously to how Alice generatesX , the
destination Bob organizes the received packets into a matrix
Y . The ith received packet corresponds to theith row of Y .
Bob attempts to reconstruct Alice’s information,X , using the
matrix of received packetsY .

B. Definitions

We define the following concepts. Thenetwork capacity,
denoted byC, is the time-average of the maximum number
of packets that can be delivered from Alice to Bob, assuming
no adversarial interference, i.e., the max flow. It can be also
expressed asthe min-cut from source to destination. (For the
corresponding multicast case,C is defined as the minimum of
the min-cuts over all destinations.) Theerror probability is the
probability that Bob’s reconstruction of Alice’s information is

inaccurate. The rate,R, is the number of information bits in
a batch amortized by the length of a packet in bits. The rate
R is said to beachievableif for any ǫ > 0, any δ > 0, and
sufficiently largen, there exists a block-length-n network code
with a redundancyδ and a probability of error less thanǫ.

III. O UR MAIN RESULT: PROOF OFTHEOREM 1

Proof: As the main part of our proof, we describe asecret-
sharing schemethat can be operated in parallel with the
classical distributed network code [2]. This parallel operation
requires Alice to transmit an additionalm symbols per packet,
where m is a parameter of code design. In the event that
ZI < C − ZO, we show that this secret-sharing scheme
enables Alice to transmit a bit to Bob secretly from Calvin
with probability 1 − O(mpoly(C)q−1). To transmit anℓ-bit
secret, the scheme can be repeated in parallelℓ times.

Once we have designed a secret-sharing scheme, we can
use Theorem1 of [8] to conclude our proof. In Theorem1
of [8] it is shown that if Alice and Bob have a secret channel
that can transmitC + C2 symbols fromFq (which cannot be
corrupted by Calvin and are unknown to him), then there is an
efficient Shared Secret algorithmwith the following property.

Theorem 2:[8] The Shared Secret algorithm achieves rate
C−ZO with code-complexityO(nC2) and probability of error
(nCC + |E|)/q. HereE is the set of links in the graph.

Settingℓ to (C +C2)⌈log(q)⌉ implies that Bob receives the
required number of secret bits to decode with asymptotically
negligible probability of error. Settingm to a value that is
asymptotically negligible inn ensures that the total redun-
dancy introduced by Alice in each packet (ℓm symbols) is
asymptotically negligible inn, and therefore we are done. To
obtain the rate, complexity, and probability of error appearing
in the statement of Theorem 1 we setm to be Θ(C2). We
now present the secret-sharing scheme.

A. Overview of Scheme

Let the secret bit that Alice wishes to communicate to
Bob be denotedI ∈ {0, 1}. Let D0 and D1 represent two
linear hash functions that are part of code design, and hence
known in advance to all parties (Alice, Bob, and Calvin).
The idea behind Alice’s encoding is that her transmission is
chosen to satisfyDI but notDĪ (whereĪ is the complement
of I). Since Calvin sees fewer transmissions than Alice’s
rate (ZI < R), based on his eavesdropping he is unable
to distinguish between the case when Alice’s transmission
satisfies DI and when it satisfiesDĪ , hence I is secret
from Calvin. Further it can be shown that despite Calvin’s
injecting fake packets into the network, Bob can still, with
high probability, distinguish between Alice’s use ofD0 and
D1 to generate her transmissions. Hence Alice can secretly
and securely transmit bitI to Bob.

B. Alice’s Encoder

Let α = m−b. Two parity-check matricesD0 andD1 with
αb columns andb(ZO + 1) rows each are chosen as part of
code-design, and are therefore known to each of Alice, Bob
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and Calvin. Letri,j for i ∈ {0, 1} andj ∈ {1, . . . , b(ZO +1)}
be2b(ZO+1) elements ofFq chosen independently at random
during code design. ForI ∈ {0, 1}, the matrixDI is defined
by the b(ZO + 1) elements{rI,j}. Namely, thejth row of
DI will be the vector(rI,j , r

2
I,j , . . . , r

αb
I,j). Notice that both

matricesD0, D1 have full row rank with high probability due
to well-known properties ofVandermonde matrices.

Recall thatI ∈ {0, 1} is the secret bit that Alice wishes to
communicate to Bob. Alice starts by picking a random length-
(b(α − ZO − 1)) vector u with scalars fromFq. Alice then
computes a length-b(ZO + 1) padding vectorr such that the
vector DI(u, r)T equals0. This can always be done, since
the length of the vectorr (which is b(ZO + 1)) is exactly
the number of rows of theDI matrices. Notice thatr is a
function of u. Finally the vector(u, r, iden)T (where ‘iden’
is just the column version of theb × b identity matrix) is
transformed into ab×m matrix S. The firstm− (ZO +1)−b
columns correspond tou, the nextZO +1 columns correspond
to r and the remaining columns correspond to the identity
matrix. Alice then encodesS using the encoder defined in
Section II-A. In what follows we show that (a) no information
regarding the value ofI is revealed to Calvin and (b) Bob is
able to reconstructI from the information he receives. This
will conclude our proof.

C. Secrecy

As ZI < C, Calvin does not know precisely the value
of u and r. Specifically, Calvin knows two things about
the set of possible pairs of vectors(u, r) that could have
been transmitted by Alice. First, that Alice’s transmission
satisfies one of the twoDis. Second, theZI packets that
Calvin eavesdropped on. Let the pairs of vectors(u, r) that
are consistent with Calvin’s observations ofZI packets be
denotedA. Thus A is an affine subspace of(Fq)

αb. This is
due to the linearity of the network code constructed by the
internal nodes of the network. With probability1 − q−(b−ZI)

(see Claim5, [8]) over the network code implemented by
internal nodes of the network, the subspaceA is of dimension
α(b − ZI) = α(C − ZO − ZI) = δ′α ≥ α. Here we assume
that theZI eavesdropping edges of Calvin are on a minimum
cut between Alice and Bob, otherwise in the above and in
what follows we may replaceZI by a smaller parameter (the
latter case makes the communication between Alice and Bob
easier). We wish to prove that the affine subspaceA, along
with the knowledge that Alice’s transmission satisfies one of
the two Dis, does not reveal any information regarding the
secretI; that is, Calvin has no knowledge as to whichDi was
chosen by Alice.

Claim 1: With probability at least1 − (2αb2(ZO + 1) +
1)q−1 over the randomness of the network code choices made
by internal nodes in the network and the random construction
of the matricesD0, D1, for any affine subspaceA viewed by
Calvin: Pru[I = 0|A] = Pru[I = 1|A] = 1/2.

Proof: Let δ′ = C−ZO−ZI . In what follows we assume
that the network code implemented by the internal nodes of
the network and the matricesDi satisfy: (a) The dimension of

A is δ′α, and (b) For each possible value ofI, the intersection
of A and the null space ofDI is of dimensionδ′α−b(ZO+1).

As mentioned above, (a) will happen with probability at
least1 − q−1 over the network code choices of the internal
nodes of the network. We claim that (b) will occur with
probability at least1 − 2αb2(ZO+1)

q
(over the choice ofri,j

defining theDis). To see this, we begin by noting that any
affine subspaceA is determined (up to an affine shift) by the
code choices of internal nodes of the network. We use the fact
that these choices are made independently from the random
choices made in the construction of the matricesD0, D1. Fix
i ∈ {0, 1}. Let M0 be a matrix of full row-rank whose null-
space equals (an affine shift of) the subspaceA. Let the rank
of M0 be some valueτ . Let Mj be the matrix consisting
of the rows ofM0 and the topj rows of Di. We show by
induction onj that with probability1 − αbj

q
the matrixMj

has a rankτ + j. The casej = 0 is immediate. Assume the
inductive step forj. SinceMj is full-rank, it hasτ +j linearly
independent columns. Assume these columns form a square
sub-matrixM sub

j of Mj of full rank. (Otherwise, one can
rearrange the columns ofMj .) Consider aτ +j+1 dimension
square sub-matrixM sub

j+1 of Mj+1 that containsM sub
j as a sub-

matrix. Since thej + 1th row of Mj+1 comprises entirely of
powers ofri,j+1 the determinant ofM sub

j+1 can be viewed as
a polynomialPj+1 in ri,j+1. Since the determinant ofM sub

j

is non-zero,Pj+1 has at least one non-zero coefficient and is
non-zero. Further, it is of degree at mostαb, and therefore has
at most that many distinct roots. The determinant ofMj+1

is zero only if ri,j+1 is a root ofPj+1. But sinceri,j+1 is
chosen uniformly at random fromFq, the probability of this
event is αb

q
. Taking the union bound over the probability of

our inductive step being false for eachj we have proven our
assertion regarding (b).

Now consider conditioning on a network code and matrices
D0, D1 as above. Conditioning on the network code implies
that A can be one ofq(b−δ′)α parallel affine subspaces. We
show that for any suchA: Pru[I = 0|A] = Pru[I = 1|A] =
1/2. Indeed, by our conditioning onDi, for eachi ∈ {0, 1},
the number of possible values of(u, r) that lie in A and are
in the null space ofDi are exactlyqδ′α−b(ZO+1). Therefore
there is no way for Calvin to distinguish which of theDis
was used by Alice.

D. Bob’s Decoder

We now show that with high probability Bob is able to
reconstructI. For ease of notation we denote(u, r)T by
x. Using the powerful analytical tools used in the proof of
Theorem2 in [8] we have

Claim 2: Bob can correctly determine a setL of potential
messages of size(Fq)

ZOb in which Alice’s transmitted mes-
sagex lies.
By analyzing the rank of the linear transform in (13) [8], it
can be shown that the setL Bob is able to reconstruct is an
affine subspace of(Fq)

αb of dimensionZOb with the form
(x + N). HereN is a subspace of(Fq)

αb whose content is
determined by Calvin. Clearly,x ∈ (x + N) = L. The proof

ISIT2007, Nice, France, June 24 – June 29, 2007

544



that such a setL can be obtained by Bob is highly nontrivial,
and is based on the fact that the informationY received by
Bob is of the formTX+E. HereX is the information leaving
Alice, T is some linear transform andE is a ZO rank error
matrix. A detailed proof can be found in Section 8 of [8].

To obtain an estimateI ′ to the secretI, Bob performs the
following test. For bothDi, Bob checks to see if there is a
vector inx′ ∈ (x+N) such thatDix

′ = 0 (this can be done in
poly(mC) time by solving a matrix equation). The test will
certainly pass forDI as DIx = 0 by construction. Thus it
suffices to show that with high probability the test will not
pass forDi when i 6= I.

Claim 3: With probability at least1 − (2αb2(ZO + 1) +
1)q−1, for i 6= I, and for every vectorz ∈ N it holds that
Di(x + z) 6= 0. The probability is taken over the choice of
u, I, the matricesDi and the choices of the internal nodes in
the network.

Proof: Let i 6= I. The objective of Calvin is to construct
a subspaceN such that at least one vectorz ∈ N will
satisfyDi(x+z) = 0. However, when constructingN, Calvin
only has partial information of the informationx transmitted
by Alice. Namely, as described previously, Calvin may only
identify an affine subspaceA (of dimension dim(A) = δ′α)
which includesx. Exactly the same subspace would be iden-
tified for several values ofx′ = (u′, r′)T transmitted by
Alice. Moreover, as in Claim 1, we may assume that the
intersection ofA with the null space of bothD0 andD1 is of
dimension dim(A)− 2b(ZO + 1) (this happens with the same
probability specified in the proof of Claim 1). Conditioning
on the matricesDi as above, the affine subspaceA viewed by
Calvin, and the secretI; we have for everyv ∈ F

b(ZO+1)
q that:

Pru′ [Di(u
′, r′)T = v] = q−b(ZO+1). Here the probability is

over randomx′ = (u′, r′)T which are consistent withA and
satisfy DIx

′ = 0. As Calvin can designN such that the set
{Diz : z ∈ N} is at most of sizeqZOb, with probability q−b

over x′ = (u′, r′) sent by Alice, for every vectorz ∈ N it
holds thatDi(x + z) 6= 0.

IV. FUTURE WORK AND CONCLUSIONS

In this work we present a polynomial-time, rate-optimal
distributed network code design that functions in the presence
of a Byzantine adversary with substantial eavesdropping ca-
pabilities. As long as the sum of the adversary’s jamming rate
ZO and his eavesdropping rateZI is less than the network
capacityC, (ZO + ZI < C), our codes attain the optimal
rate of C − ZO. Our construction strongly builds upon and
improves the previous results of Jaggi et al. [8] which study
the achievable rate under the more restrictive assumption
2ZO + ZI < C. The crux of our contribution is a secret
sharing scheme that enables the sender to communicate a small
message to the receiver(s) that is secret from the Byzantine
adversary.

The exact rate region as a function ofC, ZO andZI remains
an intriguing open problem. Clearly, for some cases in which
ZO + ZI ≥ C the achievable rate is zero. Take, for example,
the case in whichZO = C. However, for many cases the rate

region is positive. This occurs for example when the Byzantine
adversary has full eavesdropping capabilities (ZI = C) but
limited jamming rateZO. In this setting it is shown in [8] that
the (optimal) achievable rate isC − 2ZO.

We note that in our secret sharing scheme the matrices
Di designed randomly by Alice are assumed to be known
to both Calvin and Bob. This corresponds, for example, to the
commonly used setting in which all parties have access to a
public source of random bits, and these random bits are used
to defineDi.
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