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Abstract— Network coding can substantially improve network adversaries studied are assumed to observe all transngssio
throughput and performance. However, these codes have a m&j  the network, but are limited in the amount of errors theydhje
drawback if the network contains hidden malicious nodes th& 5 the network. In this work we study Byzantine adversarie

can eavesdrop on transmissions and inject fake informationin hich limited in both thei d . di .
this scenario, even a small amount of information injected i a which are limited in bo éir eavesdropping and jamming

single malicious hidden node could mix with and contaminate Ccapabilities. Such adversaries were also studied in aqusvi
much of the information inside the network, causing a decodig work of ours [8] (joint with Michelle Effros, Tracey Ho, Dina

error. Katabi, Sachin Katti, and Muriel Médard). The current work

We improve on previous work by providing a polynomial- ; ; ;
time, rate-optimal distributed network code design that functions substantially improves on one of the main results of [8].

even in the presence of a Byzantine adversary with substarati The main results in [8] provide polynomial-time distribdte
eavesdropping capabilities. As long as the sum of the adveny’s  algorithms for two cases. First, a network code is proposed
jamming rate Zo and his eavesdropping rateZ; is less than the 15 combat aromniscientadversary (one that can observe all

Paite"vg;kcfipz?y C, (Zo+Zr < C), our codes attain the optimal . smissions in the network). This code attains the optima

The network codes we design are information-theoretically fate ofC'—2Zo, whereC' is the network multicast capacity
secure and assume no knowledge of network topology. Prior to and Zo is the rate of the adversary’s information generation.
transmission, no honest node knows the location or strengtbf Second, a network code is proposed to combdinated
the adversary. In our code design, interior nodes are oblidus adversary (one who can eavesdrop on only a limited amount of

to the presence of adversaries and implement a classical lew . S . . .
complexity distributed network code design; only the soure and information in the network). This code attains the subsadigt

destination need to be changed. Finally, our codes work forath ~ higher rateC' — Zo, ‘_’VhiCh can also _be shown to be optimal.
wired and wireless networks. However, for technical reasons this algorithm requires the

fairly restrictive condition that the adversary’s eavesihing
rate Z; is less thanC — 2Z,. Thus the presence of some

Network COdingi.e., the miXing of information at internal privacy in the network can be |everaged to obtain h|gher
nodes in a network, was proposed in [1]. Since then, ftwork throughput.

growing body of literature has demonstrated the considerab . ] . o
advantages of such codes in both wired and wireless networf4!r results: We improve on this previous work by providing a
such as throughput gains in multicast networks [1], rokesgn Polynomial-time, rate-optimal distributed network codssign
to failures [2], [3] and power efficiency [4]. that functions even in the presence of a Byzantine adversary
However, this mixing of information can be catastrophic foith substantial eavesdropping capabilities. As long asstim
networks containingdyzantine nodes.e., malicious internal ©f the adversary’s jamming ra& and his eavesdropping rate
nodes that pretend to be routers but instead eavesdropZoniS less than the network capacity; (Zo + Z; < C), our
transmissions and inject fake packets with the objectivetiof Codes attain the optimal rate 6f — Zo.
rupting communications. In this case, even a small amount ofOur code-design algorithm relaxes the restriction on the
corrupted information may be mixed with all the informatioimited adversary’s eavesdropping rate. Namely, our nekwo
flowing in the network, causing decoding errors. codes can still achieve the optimal rae= C — Zp even
Communication via network coding in the presence df Z; is almost as large a§' — Zp. In other words, as long
Byzantine errors has been addressed in the past. Prioedelais Z; < R our codes’ performance is optimal. The difference
work has focused primarily on the detection of Byzantinffom the case considered in [8] is substantial. For example
errors [5], non-constructive bounds on the achievablesij@e the algorithm in [8] is able to achieve a positive rate only
[7], and network error-correcting codes [8]. All but thetéat for a Byzantine adversary witdo at mostC'/2, whereas the
address Byzantine adversaries that have unlingeesdrop- algorithm in this paper can function even Xy is almost
ping capabilities, and analyze the quality of communicatioff. The main result of this work can be summarized by the
as a function of theirjamming capabilities. Namely, the following theorem. LetF, denote the field over which all

I. INTRODUCTION
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linear operations in our network code are performed. et scenario where a wireless node cannot simultaneouslynians

denote the block length of the packets transmitted over thed receive).

links of the network ite. each packet consists of elements  The design of secret sharing schemes for network coding in

from [F,). the presence of an eavesdropping adversary with no jamming
Theorem 1:If Z; < C — Zo, the “Limited Adversary” capabilities {(e. Zo = 0) has been addressed in [10], [11]. In

algorithm described in Section Il achieves a rate @f— Some aspects our proof techniques resemble those presented

Zo -0 (c“ :fgq> with code-complexity® (npoly(C,logq)) 1N [11] — however our setting (which includes a jamming ad-

versary) is more general and code design is more demanding.
and probability of error at mosp (w)
The focus of this paper is primarily on the effect of the

Setting ¢ = 2V" is a reasonable trade off between ralf4versary’s eavesdropping power. The algorithm that is our
ove_rhead_, probability of error and code compIeX|t_y. For €omy 5in contribution achieves rate-optimal performance it ne
parison, in the error free _s_cheme O_f [2]'_t° obtain an EXPRiork conditions that are more adverse than previous work.
nential small error probability, the field size must also be It does so in a polynomial-time, distributed manner, withou
exponential. knowledge of network topology, location or strength of the
Proof techniques: We leverage the following idea in ouradversary. Our network codes work even if the adversary is
algorithm. Since more information is being generated by tlg@mputationally unbounded, and enable the source to share a
source than is being intercepted by the adversary-(Z;), message with the destination that is secret from the adyersa
some of the source’s information is information-theortic They work for wired and wireless networks. Finally, interna
secret from the adversary. Further, it is known ([8], Theot¢ nodes in our network code are oblivious to the presence of an
that even if an asymptotically negligible amount of infotina  adversary — they perform a classical network code [2] whose
can be transmitted correctly from the source to the destimat implementation complexity is low.
secretly from the adversary, this secret can be usediidy all
the rest of the corrupted information reaching the destnat
The key challenge arises in the transmission of even thisWe use the general model proposed in [8] that encompasses
small message secretly and correctly over a network cantainboth wired and wireless networks. To simplify notation, we
Byzantine adversaries. To this end, the source introducesansider only the problem of communicating from a single
small amount of redundancy in its information by imposing source to a single destination. (Similarly to most network
few carefully chosen linear constraints on it. By examinitsg coding algorithms, our techniques generalize to multicast
received information the destination is able to determih&tv problems.)
linear constraints the source’s data satisfies, and thdifgen
of these constraints encodes the secret message that tige sdly Network Model
wishes to transmit to the destination. However, the advgrsa There is a source, Alice, and a destination, Bob, who
is unable to determine anything about these linear comgtraicommunicate over a wired or wireless network. There is also
since Z; is asymptotically bounded away frof. an attacker (also referred to as an adversary) Calvin, hidde

The majority of this work is devoted to presenting an elegag@mewhere in the network. Calvin aims to prevent the transfe
polynomial-time distributed secret sharing scheme thatise of information from Alice to Bob, or at least to minimize it.
itself to classical network code design. As mentioned abobte can observe some of the transmissions, and can inject his
once such a scheme is established, we use the results ofd@. When he injects his own packets, he pretends they are
to obtain Theorem 1. part of the information flow from Alice to Bob.

Secret sharing in the presence of a Byzantine adversary sucfralVin is quite strong. He is computationally unbounded.
as ours has been extensively studied in the standard polfie knows the encoding and decoding schemes of Alice and
to-point communication model (for example see [9]). OUpOP, and the network code implemented by the interior nodes.
setting does not fall under this standard framework for mar\f also knows the exact network realization, and he gets to
reasons. Primarily, several difficulties arise when comsiy CN00se which network links to eavesdrop on and which ones
secret sharing under the distributed network coding mddel. 0 fransmit fake information ort.
addition, we note that the errors imposed by the Byzantine The network is modeled as a hypergraph [12]. Each packet
adversary in the network coding setting are assumed to f@NSmission corresponds to a hyperedge directed from the
addedto the original information transmitted on the networkfansmitting node to the set of observer nodes. For wired
(the addition is with respect to the underlying fidlg used in Networks, the hyperedge is a simple point-to-point linkr Fo
the linear network code studied). The model in which the¥dreless networks, each such hyperedge is determined by
errors caroverwritethe existing information transmitted is aninstantaneous channel realizations (packets may be last du
interesting research direction we are currently perusitlg. 0 fading or collisions) and connects the transmitter to all
note that there is a difference between these two error raodel, _ .

. . - We consider a model where network links rather than nodesaves-
Only when the adversary is not aware of the information to leﬁopped and jammed as this is more general — control of a rsoeeuivalent
jammed due to eavesdropping limitations (such as the gibausito control of links attached to it.

II. NETWORK MODEL AND DEFINITIONS
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nodes that hear the transmission. The hypergraph is unknawaccurate. The rateR, is the number of information bits in
to Alice and Bob prior to transmission. a batch amortized by the length of a packet in bits. The rate

Source: Alice generates incompressible data that she wish8s/S S@id to beachievableif for any ¢ > 0, anyé > 0, and
to deliver to Bob over the network. To do so, Alice encode¥/fficiently largen, there exists a block-lengthnetwork code
her data as dictated by the encoding algorithm (describ&§h & redundancy and a probability of error less than

in subsequent sections). She divides the encoded data into
packets. In what followsh = C' — Zp. A packet contains a ) .
sequence of symbols from the finite fieldr,. All arithmetic ~ PT0Of: As the main part of our proof, we describesecret-
operations henceforth are done over symbols fim (See sharing schemehat can be operated in parallel with the
the treatment in [13]). Out of the symbols in Alice’s packet, classical distributed network code [2]. This parallel aiem
sn symbols are redundancy added by the source. In d&auires Allce to transmit an additionad _symbols per packet,
settingd = o(1) which will imply communication at rate where m is a parameter of code .deS|gn. In th(_a event that
Reb=C—Zp. Z; < C — Zop, we show that this secret-sharing scheme
Alice organizes her data into a matriX. We denote the enables Alice to transmit a bit to Bob secretly from Calvin
(i,7)"" element in the matrix by:(i, j). Theit* row in the with probability 1 — O(mpoly(C)g™1). To tran_smit an¢-bit
matrix X is just thei packet of Alice’s data. Similarly S€Creét, the scheme can be repeated in paralighes.
to standard network codes [2], some of the redundancy inOnNce we have designed a secret-sharing scheme, we can
X is devoted to sending the identity matrik, The rest of US€ Theoremi of [8] to conclude our proof. In Theorem

the redundancy irX is devoted to the secret sharing schem@ [8] it is shown that if2AIice and Bob have a secret channel
to be described in Section IIl. Also as in [2], Alice takedhat can transmi€’ +C= symbols fromF, (which cannot be

random linear combinations of the rows &f to generate COrrupted by Calvin and are unknown to him), then there is an
her transmitted packets. As the packets traverse the rietwdiiTicientShared Secret algorithwith the following property.
the internal nodes apply a linear transform to the packets.Theorem 2:[8] The Shared Sec;ret algorithm achieves rate
The identity matrix receives the same linear transform. TI%EZO with code-complexity)(nC*) and probability of error
destination discovers the linear relation between thegiadk (7 C + [€])/q. Here< is the set of links in the graph.

receives and those transmitted by inspecting how the igenti Settingé to (CJFCQ)HOg(Q)_] implies that Bob receives the
matrix was transformed. required number of secret bits to decode with asymptoticall

negligible probability of error. Settingn to a value that is
easymptotically negligible inn ensures that the total redun-

eavesdropping capacity; if it can view the information d introduced by Alice i h K bols) i
transmitted onZ; of the edges in the underlying graph. It is ancy introduced by Alice in each packéti{ symbols) is

id to h ) : T iniect inf ) asymptotically negligible im, and therefore we are done. To
said to have jamming capaciflo if it can inject information obtain the rate, complexity, and probability of error appeEs

into the network inZy locations. Throughout, we assUme. iha statement of Theorem 1 we set to be ©(C?). We
that Calvin has unlimited computational power and that t w present the secret-sharing scheme '

network topology is known to Calvin. He knows the encoding
and decoding schemes of Alice and Bob, and the network cale Overview of Scheme
implemented by the interior nodes. (Weakening any of thesel_et the secret bit that Alice wishes to communicate to

resFrictions can be shoyvn to not incregse the achievatde rg{ b 1o genoted ¢ {0,1}. Let Dy and D; represent two
region, hence we consider this scenario, the most favoeiralo o hash functions that are part of code design, and hence
for Calvin.) HoweverZ the random coin tosses made by_Allqngn in advance to all parties (Alice, Bob, and Calvin).
as part of her encoding scheme are not known to Calvin. ¢ jea hehind Alice’s encoding is that her transmission is
Destination: Analogously to how Alice generateX, the chosen to satisfyD; but notD; (wherel is the complement
destination Bob organizes the received packets into a xnatgf 7). Since Calvin sees fewer transmissions than Alice’s
Y. Theit" received packet corresponds to #i& row of Y. rate (Z; < R), based on his eavesdropping he is unable
Bob attempts to reconstruct Alice’s informatiali, using the to distinguish between the case when Alice’s transmission
matrix of received packet¥'. satisfies D; and when it satisfiesD7, hencel is secret
from Calvin. Further it can be shown that despite Calvin’s
injecting fake packets into the network, Bob can still, with
We define the following concepts. Theetwork capacity high probability, distinguish between Alice’s use B, and
denoted byC, is the time-average of the maximum numbeD; to generate her transmissions. Hence Alice can secretly
of packets that can be delivered from Alice to Bob, assumira;d securely transmit bit to Bob.
no adversarial interference, i.e., the max flow. It can be als )
expressed athe min-cut from source to destinatiofFor the B- Alice’s Encoder
corresponding multicast cas@,is defined as the minimum of Let o« = m —b. Two parity-check matriced, and D; with
the min-cuts over all destinations.) Teeor probabilityis the ab columns andh(Zo + 1) rows each are chosen as part of
probability that Bob’s reconstruction of Alice’s infornmiam is code-design, and are therefore known to each of Alice, Bob

Ill. OUR MAIN RESULT: PROOF OFTHEOREM 1

Adversary: A Byzantine adversary Calvin is said to hav

B. Definitions
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and Calvin. Letr; ; fori € {0,1} andj € {1,...,b(Zo+1)} Aisd’«, and (b) For each possible valuekfthe intersection
be2b(Zp+1) elements off, chosen independently at randormof A and the null space dP; is of dimensiony’a—b(Zp+1).
during code design. Faf € {0, 1}, the matrixD; is defined  As mentioned above, (a) will happen with probability at
by the b(Zo + 1) elements{r; ;}. Namely, thejth row of leastl — ¢q~' over the network code choices of the internal

Dy will be the vector(m,j,r%j,...,r?f;). Notice that both nodes of the network. V\ée claim that (b) will occur with
matricesDy, D; have full row rank with high probability due probability at leastl — 222 2o+ (gyer the choice ofr; ;
to well-known properties o¥/andermonde matrices defining the D;s). To see this, we begin by noting that any

Recall thatl € {0,1} is the secret bit that Alice wishes toaffine subspacel is determined (up to an affine shift) by the
communicate to Bob. Alice starts by picking a random lengtltode choices of internal nodes of the network. We use the fact
(b(a — Zo — 1)) vectoru with scalars fromlF,. Alice then that these choices are made independently from the random
computes a lengthtZo + 1) padding vector- such that the choices made in the construction of the matriégs D . Fix
vector D (u,r)” equals0. This can always be done, sincei € {0,1}. Let M, be a matrix of full row-rank whose null-
the length of the vector (which is b(Zp + 1)) is exactly space equals (an affine shift of) the subspdcé.et the rank
the number of rows of thé); matrices. Notice that is a of M, be some valuer. Let M; be the matrix consisting
function of u. Finally the vector(u, r,iden)” (where ‘iden’ of the rows of M, and the topj rows of D;. We show by
is just the column version of thé x b identity matrix) is induction on; that with probabilityl — QT”J the matrix M;
transformed into & x m matrix S. The firstm —(Zo+1)—b has a rankr + j. The casej = 0 is immediate. Assume the
columns correspond te, the nextZp +1 columns correspond inductive step forj. Since); is full-rank, it hasr + j linearly
to » and the remaining columns correspond to the identitgdependent columns. Assume these columns form a square
matrix. Alice then encodes using the encoder defined insub-matrix M3 of M; of full rank. (Otherwise, one can
Section II-A. In what follows we show that (a) no informatiorrearrange the columns @f/;.) Consider ar + j+ 1 dimension
regarding the value of is revealed to Calvin and (b) Bob issquare sub-matriMj}ﬁl{ of Mj, that containij“” as a sub-
able to reconstruct from the information he receives. Thismatrix. Since thej + 1th row of M;;,; comprises entirely of
will conclude our proof. powers ofr; ;1 the determinant of\/54 can be viewed as
a polynomial Pj4 in 7; j+1. Since the determinant de“b
is non-zero,P;; has at least one non-zero coefficient and is

As Z; < C, Calvin does not know precisely the valuenon-zero. Further, it is of degree at medt and therefore has
of u and r. Specifically, Calvin knows two things aboutat most that many distinct roots. The determinantidf
the set of possible pairs of vectofs,r) that could have is zero only ifr; ;,; is a root of P;.;. But sincer; ;.1 is
been transmitted by Alice. First, that Alice’s transmissiochosen uniformly at random frofi,, the probability of this
satisfies one of the twd);s. Second, theZ; packets that event is . Taking the union bound over the probability of
Calvin eavesdropped on. Let the pairs of vectarsr) that our inductive step being false for eaghwe have proven our
are consistent with Calvin’s observations &f packets be assertion regarding (b).
denotedA. Thus A is an affine subspace ¢F,)**. Thisis  Now consider conditioning on a network code and matrices
due to the linearity of the network code constructed by the,. D, as above. Conditioning on the network code implies
internal nodes of the network. With probability— ¢~*~=%7)  that A can be one of;®~%) parallel affine subspaces. We
(see Claim5, [8]) over the network code implemented byshow that for any suct: Pr,[I = 0|A] = Pr,[I = 1|A] =
internal nodes of the network, the subspaces of dimension /2. Indeed, by our conditioning o®;, for eachi € {0,1},
alb—Zr) =a(C - Zo — Z;) = §'a > a. Here we assume the number of possible values 6d, ) that lie in A and are
that theZ; eavesdropping edges of Calvin are on a minimuif the null space ofD; are exacuyqé’a—b(ZoH)_ Therefore
cut between Alice and Bob, otherwise in the above and iAere is no way for Calvin to distinguish which of thg;s
what follows we may replace; by a smaller parameter (thewas used by Alice. ]
latter case makes the communication between Alice and Bob
easier). We wish to prove that the affine subspagealong D- Bob’s Decoder
with the knowledge that Alice’s transmission satisfies ohe o We now show that with high probability Bob is able to
the two D;s, does not reveal any information regarding theeconstruct/. For ease of notation we denote,r)? by
secret/; that is, Calvin has no knowledge as to whibh was z. Using the powerful analytical tools used in the proof of
chosen by Alice. Theorem2 in [8] we have

Claim 1: With probability at leastl — (2ab*(Zo + 1) + Claim 2: Bob can correctly determine a sbtof potential
1)g~! over the randomness of the network code choices magiessages of siz€F,)#°® in which Alice’s transmitted mes-
by internal nodes in the network and the random constructieagez lies.
of the matricesDy, D, for any affine subspacé viewed by By analyzing the rank of the linear transform i3} [8], it
Calvin: Pr,[I = 0|A] = Pr,[I = 1]A] = 1/2. can be shown that the sétBob is able to reconstruct is an

Proof: Letd’ = C—Zo—Z;. In what follows we assume affine subspace o@Fq)“b of dimensionZpb with the form
that the network code implemented by the internal nodes @f + N). Here N is a subspace ofF,)** whose content is
the network and the matricd3; satisfy: (a) The dimension of determined by Calvin. Clearly; € (x + N) = L. The proof

C. Secrecy
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that such a sef. can be obtained by Bob is highly nontrivial,region is positive. This occurs for example when the Byzamti
and is based on the fact that the informatidnreceived by adversary has full eavesdropping capabilities & C) but
Bob is of the formI' X + E. Here X is the information leaving limited jamming rateZo. In this setting it is shown in [8] that
Alice, T' is some linear transform an8 is a Zp rank error the (optimal) achievable rate & — 27,.
matrix. A detailed proof can be found in Section 8 of [8]. We note that in our secret sharing scheme the matrices
To obtain an estimaté’ to the secrefl, Bob performs the D, designed randomly by Alice are assumed to be known
following test. For bothD;, Bob checks to see if there is ato both Calvin and Bob. This corresponds, for example, to the
vector inz’ € (x+N) such thatD;z’ = 0 (this can be done in commonly used setting in which all parties have access to a
poly(mC') time by solving a matrix equation). The test willpublic source of random bits, and these random bits are used
certainly pass forD; as Dyxz = 0 by construction. Thus it to defineD;.
suffices to show that with high probability the test will not ACKNOWLEDGMENT
pass forD; wheni # I.
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the case in whict¥y, = C. However, for many cases the rate
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