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Abstract—This work addresses the computational com- to have the capability of transmittingcharacters of.
plexity of achieving the capacity of a general network \We assume that each edgis used at most once, namely
coding instance. We focus on the linear capacity, namely 5t mosty packets are transmitted overWith each edge

the capacity of the given instance when restricted to = iat dina functi hich
linear encoding functions. It has been shown [Lehman and ¢ = (1, v) We associate an encoding functign whic

Lehman SODA 2005] that determining the (scalar) linear ties the packets transmitted on edges entesimgth the
capacity of a general network coding instance is NP-hard. ¢ packets transmitted on

In this work we initiate the study of approximation in The objective is to define the encoding functions
this context. Namely, we show that given an instance to corresponding to edges i such that terminat; will

the general network coding problem of linear capacityC, .
constructing a linear code with rate aC for any universal D€ able to decode the messagest demands from the

constant o < 1 (independent of the size of the instance) Packets it receives on its incoming edges. More formally,
is “hard”. Specifically, finding such network codes would we need to define for each terminal a decoding

solve a long standing open problem in the field of graph fynction; : ¥4¢ — X"i¥ that enables; to decode the
coloring. messages it demands from the information transmitted

In addition, we consider the problem of determining o . .
the (scalar) linear capacity of aplanar network coding ©N its incoming edges (her& denotes the in-degree of

instance (a general instance in which the underlying graph t: andr; is the number of messagesrequires). If such
is planar). We show that even for planar networks this encoding and decoding functions exist, we say that the

problem remains NP-hard. instancel to theNet wor k Codi ng problem is(k, ¢)-
solvable overy. If the functions are linear we say that
I has alinear or vector linear (k, ¢)-solution over.

In the network coding paradigm, internal nodes df the encoding and decoding functions are linear and
the network may mix the information content in packetg = 1 we say that the instance hagla¢)-scalar linear
before forwarding them. This mixing (or encoding) ofolution overX.
information has been extensively studied over the lastSince, any(k, £)-solution implies ar(rk, r¢)-solution
decade, e.g., [1], [2], [3], [4], [5]. While the advantagefor any integerr, we refer to the ratid as the rate of
of network coding in thenulticastsetting are currently a (k, ¢)-solution to/ and denote theapacity C(I) of
well understood, this is far from being the case when over ¥ as the supremum of the rati§> taken over
addressing the context of general network coding. Prik, /) solutions tol over ¥. Similarly, we define the
marily, determining the capacity of a general networknear capacityC;(/) and scalar linear capacity.; (1)
coding instance is a long standing open problem, e.@f, I as the maximum rate achievable by vector-linear or
[6], [7]. scalar-linear solutions, respectivély

This work addresses the computational complexity of
designing network codes that achieve or come cloge Previous work
to achieving the network capacity. An instance to the

Net vor k Codi ng problem is a directed grapl = Codi ng instance is a long standing open problem.

(V; E), a set of source nodds;} C V', a set c.)f term'”a.' Specifically, it is currently not known whether this prob-
nodes{t;} C V, and a set of source/terminal require;

ments{ (s;.£,)} (implying that terminalt. is interested lem is solvable in polynomial time, is NP-hard, or maybe
. .{(S“ J)}. Implying inat; 1s 1 it is even undecidable [9] (the undecidability assumes
in the information available at soureg. In what follows

we will consider acyclic graphg, and follow standard that the alphabet size can be arbitrary and unbounded).

definitions appearing for example in [8]. Each sousge It is shown in [10] that determining the scalar linear

holds a meszg ; thgat is to beptransmit.ted to a cergt:ai capacity Cy is an NP-hard problem. However, it is
e X ot known whether this holds for the vector-linear or

subset of terminals. Each message is assumed to consist

of k characters of a given finite alphabiealso referred  1\gtice thatc(1), €,(1) and €4 (1) depend ons. To simplify

to aspacket¥ and each edge of the network is assumedlr presentation, we omk from our capacity notation.

I. INTRODUCTION

Determining the capacity of a generélet wor k



general capacity, as the result of [10] does not extetahg line of work addressing the coloring of grapfis

to (k,¢) vector linear codes even fdte = 2. In [8] which are known to have small chromatic number, e.g.,
it is shown that non-linear codes have an advantaff5], [17], [18], [19]. For example (and most relevant
over linear solutions as there exist instances in whidb our work), given a grapli which is known to be3
linear codes do not suffice to achieve capacity. Faolorable, the problem of coloring with as few colors
specific instances to thet wor k Codi ng problem, as possible has been extensively studied, e.g., [16], [17],
it has been shown that combining combinatorial bound$9].

and “Shannon-type” information inequalities suffice to The current state of affairs in the study of colorifig
characterize the capacity, e.g., [11], [12], although thisblorable graphs is an intriguing one. Results in this area

is not the case in general [13]. have one of two flavors: “achievability” results, which
o specify an efficient algorithm for coloring the given
B. Our contribution graphs, or “lower bounds”, which show that coloring

In this work we initiate the study oépproximation these graphs with a small number of colors is a prov-
in the context of network coding. Namely, we show thadbly “hard” problem. On one hand, the currently best
given an instancé to theNet wor k Codi ng problem polynomial time algorithm [19] can color & colorable
of linear capacityC; (1), constructing a linear code with graphG in roughlyn®2! colors — a polynomial blowup!
rateaCy(I) for any universal constant (independent of On the other hand, not much is known regarding lower
the size of the network) is “hard”. Specifically, findingoounds. It is NP-hard to color a-colorable grapht
such network codes would solve a long standing op#¥ith 4 colors [20], [21]. Under stronger complexity
problem in the field of graph coloring. Our results applgssumptions (related to tHenique Games Conjecture
to scalar linear codes ar(d, ¢) vector linear codes for [22]) it is hard to color a3-colorable graph with any
constant values of (independent of the network size).constant number of colors [23] (herer is a universal
This implies the first hardness result for the genergpnstant independent of the size of the input graph).
Net wor k Codi ng problem that addresses vector linResolving this gap between the upper and lower bounds
ear solutions. presented above is a long standing open problem.

In addition, we consider the problem of determin- In this work we show that finding an approximate
ing the scalar linear capacity of @anar instance (an solution to theNet wor k Codi ng problem ofconstant
instance in which the underlying graph is planar). Wguality is at least as hard as coloring3acolorable
show that even when the network is planar, this problegfaph with a constant number of colors, which in turn
remains NP-hard. We note that the reduction presentidat least as hard as the hardness assumptions specified
in [10] does not result in a planar graph (and hende [23]. Regardless of the validity of the assumptions
their results do not hold in the planar setting). We nowiven in [23], our reduction shows that approximating
state our main results in detail. We begin with somtheNet wor k Codi ng problem within constant quality
preliminaries on the topic of “graph coloring”. will solve a long standing open problem in approximate

1) Graph coloring: An independent set in an undi-coloring.
rected graphG = (V, E) is a set of vertices that induce 2) Statement of resultOur main result can be sum-
a subgraph which does not contain any edges. For an imarized by the following theorem. In what follows, and
tegerk, ak-coloring of G is a functiono : V' — [1...k] throughout the paper, agfficientalgorithm is one that
which assigns colors to the vertices 6f A valid k- runs in time polynomial in the instance size. Moreover,
coloring of G is a coloring in which each color class isthroughout, our alphabes are assumed to be finite.
an independent set. The chromatic numbgt) of G is Theorem 1:Given any3 colorable graphG, one can
the smallest: for which there exists a valid-coloring efficiently construct an instancé to the Net wor k
of G. Finding x(G) is a fundamental NP-hard problem.Codi ng problem with the following property. For any
Hence, when limited to polynomial time algorithms, onelphabety, if one can efficiently find a linea(k, ¢)
turns to the question of estimating the valuex@t~) or  solution toI overX that satisfies; > aC;(I), then one
to the closely related problem afpproximate coloring can efficiently colorG with 23%/¢ colors (heren < 1).

in which one seeks to find a coloring 6f with r- x(G) Corollary 2: Let o < 1 be any constant. Lek be
colors, for some approximation ratio > 1, where the congstant. Let be any alphabet. If one can efficiently
objective is to minimizer. find a (k, /) linear solution to every instance of the

For a graphG of size n, the approximate coloring Net wor k Codi ng problem overX of rate aC;(I),
of @ can be solved efficiently within an approximationhen one can efficiently colos colorable graphs with
ratio ofr = O (n%) [14]. This result may seem a constant number of colors.
rather weak — as a trivial approximation algorithm, with A network coding instance is said to k@anar if
approximation ration, just colors each vertex with athe underlying network can be drawn in the plane in
different color. However, it turns out that one probablguch a way that no two edges cross each other. Planar
cannot do much better than the trivial algorithm. Namelgraphs have seen a significant amount of research in the
it is NP-hard to approximate(G) within a ratio ofn' == field of combinatorial optimization, e.g., [24], and many
for any constant > 0 [15]. Hence, there has been groblems known to be “hard” on general graphs become



significantly easier when the input graph is planar. One
may suspect that the same occurs in the case of network
coding. However, in this work we show:

Theorem 3:Given a planar instancel to the
Net wor k Codi ng problem, an alphabef and a pa-
rameter¢, the problem of deciding whethé¥; (1) > %
is NP-complete.

The instanced implied by Theorems 1 and 3 are
simple in nature and resemble the instances that have
been used in the literature to express the advantage of

network coding, e.g., [1], [25]. More specifically, given fig- L o The instan%ef Oft PFOPOTitior& 4. fThere iﬁ aI_SOltJtceCmﬂ%
- r each message i, a terminal node:; for each client inC, an
grath, the instances we construct correspond to the %&fo additional nodes: andv. Each terminak; requires all messages

calledl ndexCodi ng problem recently studied by [26], from sources i (c;). Eachp; is connected tw, u is connected to
[27]_ Thel ndexCodi ng problem and its connection to all terminalsc;, andv is connected ta:. In addition we add edges

. . . . i,ci) iff p; € H(c;). The broadcast channel corresponds to packets
network COdmg are described in Sec“pn II. We then tu Jnsmitted 6r(v, u), while the side information correspons to packets
to prove Theorem 1 and Theorem 3 in Sections Il anghnsmitted on edge;, c;).
IV respectively. Due to space limitations, some of our

claims will appear without proof.

we say that the instance tondexCodi ng is (k,¢)-
solvable ovel:, and® is its solution. If the encoding and
The I ndexCodi ng problem encapsulates thedecoding functions are linear we say that the instance has

“source coding with side information” problem ina (k,¢)-linear solution overX. If in addition £ = 1 we
which a single server wishes to communicate witBay that the instance has(a, ¢)-scalar linear solution
several clients each having different side informatiover 3.

Formally, an instance td ndexCodi ng includes a  As in the case of théet wor k Codi ng problem,
set of clientsC' = {cy,...,c,} and a set of messagesany (k, ¢)-solution implies an(rk, »¢)-solution for any
P = {p1,p2,...,pm} to be transmitted by the serverinteger r. For an instance/ to the | ndexCodi ng
Each client requires a certain subset of messagd®, in problem, we refer to the ratié as the rate of 4k, ()-
while some messages iR are already available to it. solution to I and denote the capacit@pt (1) of an
Specifically, each client; € C' is associated with two instancel to | ndexCodi ng over ¥ as the supremum

Il. PRELIMINARIES: THE | ndexCodi ng PROBLEM

sets: of the ratio% taken over(k, ¢) solutions tol over X.
« W(c;) C P - the set of messages requiredqy ~ We also define byOpt ;(I) and Opt (1) the vector-
e H(c;) C P - the set of messages availablecat  linear and scalar-linear capacities, i.e., capacities tha

We refer tolW (c;) and H(c;) as the “wants” and “has” €an be achieved by using vector linear and scalar linear
sets of ¢;, respectively. The server uses a broadca3flutions, respectively. _
channel to transmit messages to clients, each messagéhere is a natural reduction from thedexCodi ng

is an encoding of messages iR. We assume that problem to the problem of designing a network code for
all messages transmitted by the server are received dyertain network with general requirements. This con-
all clients without an error. The objective is to desigf€ction can be summarized by the following Proposition.
an encoding scheme which minimizes the number of Proposition 4:Let > be any alphabet. For every

transmissions. instance I to the | ndexCodi ng problem one can
We consider dractional setting in which each mes- efficiently construct an instancé to the Net wor k
sagep; € P consists ofk packetsp!,...,pF each Codi ng problem such that anff, ¢)-solution tol over

a character of a given alphab& In eachround of ¥ can be efficiently converted to @, ¢)-solution to
communication the server can transmit a single chaf-and vice-versa. These conversions preserve linearity
acter of & (i.e., a single packet). The'th round of and thusOpt (1) = Cyu(I), Opt (1) = Ci(I) and
communication is specified by an encoding functign ~ Opt (I) = C(I) (overX).
Y™k 5 3. Namely, in thej'th round of communication ~ To prove Proposition 4 we use the construction de-
the character:; = g;(P) is transmitted by the server. picted in Figure 1 (due to space limitations full proof of
The goal in thel ndexCodi ng problem is to the Proposition is omitted).
find a set of encoding function® = {g;}{_, that Thel ndexCodi ng problem was recently studied in
will allow each client to decode the messages it r§26], [27] where special instances didexCodi ng
quested, while minimizing¢ = |®|. More formally, were considered. Namely, instances in which
we need to define for each clienf a decoding func- |P| =|C| =n and the only message cliemt wants
tion ~; : B¢ x (XF)IHEl - (ok)Wledl that enables is the message; (W(c;) = {p:}). In this case, the
the client to decode the required messages in its “warglde information{ H(c;) | ¢; € C} can be represented
set from the transmitted messages and the messages ibytsa graphG = (C, E) with vertex setC' such that
“has” set. If such encoding and decoding functions existy contains an edg€(i,j) if and only if client ¢;



has message; (i.e., pj € H(c;)). For instancesl that/ < 3k/a. Namely, forj = 1,....¢ let g; € X+»
corresponding to undirected grap&s(in which edges characterize the solution té in which the packetz;

are bi-directional) [26], [27] present certain connectiorntransmitted in communication rouryds equal to(g;, 7).
between combinatorial properties 6f and the value of Here, (-) is the standard inner product, and we denote
Opt (I). Specifically, [26], [27] show that: (a) A certainby p € ¥*" the vector consisting of altn packets in
property of the adjacency matrix correspondingdo P.

referred to as thévl nr ank? [28] of G, characterizes We will now show, given the sefg; le, how to
the scalar linear capaci@pt (7). (b) This capacity is construct a coloring of¢ of size 2! < 23/ This will
lower bounded byl /x(G*). HereG* is the complement suffice to prove our assertion. Consider the fijshera-
graph of G (i.e., an edgdj, j) appears inG iff it does tion p} of each message iR (the first generation is the

not appear inG*). . ~ set that includes the first packet of every message)in
~ For an undirected grapliz, and its corresponding As the packets{z;} are a valid solution for instance
instance to thel ndexCodi ng problem, computing 7, it holds for each index = 1,...,n that there is a

the M nrank of G (and thusOpt (1)) was proven vectorh; € span{gi, ..., g} such that the vectd,, p)

to be NP-complete in [29]. Namely (in our notation)may be used by client; in its decoding scheme when
using a reduction from the problem 8fcoloring, [29] recoveringp!. Namely, the vectoh; has the following
shows that for any finite field, determining whether properties: (a) The coefficient ih; corresponding to
Opt (I) > 1/3 is NP-complete. Combining this resultpacketp! is non-zero. (b) Fop; ¢ (H(c;) UW (c;)) the
with Proposition 4 above, establishes that determiningefficients ink; corresponding to all packets of message
the scalar linear capacity of a general network codir)g. are zero. We will use the vectof#,, ..., h,} to find
instance is NP-hard. Notice that this may be viewed @scoloring of G°.

an alternative proof to that given in [10]. We stress that We say that two vectors;, and h;, are component
the results in [29] do not imply inapproximability resultsequivalenif for every j the j’th entry of h;, differs from

of the nature presented in this work as in their reductianiff the same holds fof,;,. Consider two indice$; and
one can easily find a scalar linear solution which satisfies for which h;, andh,, are component equivalent. We
Opt (1) > 1/4. claim that it must be the case that the corresponding
verticesv;, andv;, share an edge id:. This follows

: . . since the coefficient irk;, corresponding tg; is non-
In this section, we prove the following Theorem 5 -

e . S “zero. This, in turn, implies that it must be the case that
By combining Theorem 5 with Proposition 4, we obtalg1 € H(ci,). The latter implies thatu;, , vi,) € E
12 )" 119 Y12 :

Ther(])rem 1 st'ag(.ed in the Intrlodugflon. G We conclude that for each € span{gi,...,g¢},
Theorem 5:Given any3-colorable grapltz, one can o yerticesy; with corresponding vectors; that are

efficiently construct an instandeto thel ndexCodi ng component equivalent té form a clique inG. This
problem with_the foIIo_wing property. For any alphabgt implies thatG has a clique covérof size2! < 23%/, or
if one can efficiently find a linedfi, ¢)-solution tol over - gyernatively thati® can be colored with/ colors. It
> that satisfies; > aQpt (1) then one can efficiently i ot hard to verify that both the vectofss, ..., hn}

color G with 2°*/* colors (here) < o < 1). and the coloring of3¢ can be efficiently deduced from

Proof: Let ¢ = (V,E) be an undirected y,q solution{g;}¢_, to 1. This concludes our proofm
graph with V' = {vy,...,v,}. We start by defin- :

ing a corresponding instancé to | ndexCodi ng IV. PROOF OFTHEOREM 3

(as gxplained in Section 1l). The instance includes \ye now turn to prove Theorem 3. Our starting point is
n clients ¢ = {ci,...,cn} and n packets P = 4 reduction presented in [29] between a given undirected
{p1,...,pn}. For each client we defin®’(c;) = {pi} graph G and an instancel to the I ndexCodi ng
and H(c;) = {p;|(i,j) € E}, i.e., clientc; wants mes- proplent that satisfiesy(G) < 3 iff Opt ,(I) > 1/3.
sagei and has all messages wanted by its neighbors g \what follows, we present a reduction between the
G. . instance/ and a planar instancé, to the Net wor k
Assume that the complement gragff of G is 3-  codi ng problem which satisfie<,;(I,) > 1 if and
colorable (natice that the role @f in the theorem state- only if Opt ,(I) > 1/3. This will suffice to prove
ment is played here bg<). It follows thatOpt (I) > +  Theorem 3. B
(for example by [29)). Assume also that we have The instancel of [29] includes a set ofr clients
an o approximation algorithm for constructing linear — {c1,...,cn} andn message = {p1,....pn}-
solutions to instanced of I ndexCodi ng. Namely, Moreover, each client; only wants the single message
that we can find a(k, /) linear solution for/ with . e, Wi(c) = {pi}.

k> aOpt (1) > aOpt (1) > £. This, in turn, implies

Ill. PROOF OFTHEOREM 1

“4A clique cover of a graplt@ is a collection of subsets of vertices
2Due to space limitations we will not define and discuss théonot Uq, ..., Uy such thatu;U; = V and the subgraph off induced by
of M nr ank. eachU; is a clique.
3As G° is 3-colorable,G' can be covered by 3 cliques. For each 5To be more precise, the reduction presented in [29] is betwiee
such cliqueC, define the corresponding transmitted packet =  problem of graph coloring and thd nr ank problem; the extension
> iec Pi- of the reduction td ndexCodi ng is straightforward.
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Fig. 2. A reduction from Problem ndexCodi ng to Problem
Net wor k Codi ng. The bold edges denote three parallel edges
unit capacity.

iy

We proceed to construct an instandg to the
Net wor k Codi ng problem. We begin by describing
the structure of the underlying planar netwa@rk(V, E)  [13]
(schematically depicted in Figure 2). The set of nodes
V of G, includes a node; for each client; € C, and [14]
two additional verticesp and s. In addition, for each
client ¢; € C we add|H(c;)| verticesh!, ... ")
that correspond to elements &f(c;). The set of edges 1%
E of G), is constructed as follows. First, we connedb
v by three parallel edges. Next,is connected to each
nodec; by three parallel edges. For each cliepte ¢ [18
we connect each vertex i, ..., b)) to vertex
c; by a single edge. Finally, the nodeis connected to [17]
the nodes that correspond {&7(c;) |c; € C}. (18]

The instance includes a set ofsources{s;}" ; that
correspond to messagesih(sources; having message
pJAmem%amc&bwmdmvamﬁmemhdbm[m
¢; € C we addl + |H(¢;)| terminals such that one
terminal is located at nodg and requires packet from
sources; (this corresponds to the messagewanted
by ¢; in I). The rest of the terminals are located at
vertices{h!, ..., n" )} Terminaln? will require the [21]
j'th message in the séi(¢;) (from the corresponding
source). The latter terminals will force the sources ta2]
transmit the “side information” of on the edgess, h/).

Clearly, G,,(V, E) is planar and any (scalar linear);;;
(1,3)-code forI corresponds to a (scalar linear) (1,1)-
network code forl,,. Also, it is not hard to verify that
a (scalar linear) (1,1)-network code fé§ corresponds
to a (scalar linear) (1,3)-solution fdr, which completes [25]
the proof of the theorem.
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