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Abstract—This work addresses the computational com-
plexity of achieving the capacity of a general network
coding instance. We focus on the linear capacity, namely
the capacity of the given instance when restricted to
linear encoding functions. It has been shown [Lehman and
Lehman SODA 2005] that determining the (scalar) linear
capacity of a general network coding instance is NP-hard.
In this work we initiate the study of approximation in
this context. Namely, we show that given an instance to
the general network coding problem of linear capacityC,
constructing a linear code with rate αC for any universal
constant α ≤ 1 (independent of the size of the instance)
is “hard”. Specifically, finding such network codes would
solve a long standing open problem in the field of graph
coloring.

In addition, we consider the problem of determining
the (scalar) linear capacity of a planar network coding
instance (a general instance in which the underlying graph
is planar). We show that even for planar networks this
problem remains NP-hard.

I. I NTRODUCTION

In the network coding paradigm, internal nodes of
the network may mix the information content in packets
before forwarding them. This mixing (or encoding) of
information has been extensively studied over the last
decade, e.g., [1], [2], [3], [4], [5]. While the advantages
of network coding in themulticastsetting are currently
well understood, this is far from being the case when
addressing the context of general network coding. Pri-
marily, determining the capacity of a general network
coding instance is a long standing open problem, e.g.,
[6], [7].

This work addresses the computational complexity of
designing network codes that achieve or come close
to achieving the network capacity. An instance to the
Network Coding problem is a directed graphG =
(V, E), a set of source nodes{si} ⊆ V , a set of terminal
nodes{tj} ⊆ V , and a set of source/terminal require-
ments{(si, tj)} (implying that terminaltj is interested
in the information available at sourcesi). In what follows
we will consider acyclic graphsG, and follow standard
definitions appearing for example in [8]. Each sourcesi

holds a messagepi that is to be transmitted to a certain
subset of terminals. Each message is assumed to consist
of k characters of a given finite alphabetΣ (also referred
to aspackets) and each edge of the network is assumed

to have the capability of transmittingℓ characters ofΣ.
We assume that each edgee is used at most once, namely
at mostℓ packets are transmitted overe. With each edge
e = (u, v) we associate an encoding functionge which
ties the packets transmitted on edges enteringu with the
ℓ packets transmitted one.

The objective is to define the encoding functions
corresponding to edges inE such that terminalti will
be able to decode the messagespi it demands from the
packets it receives on its incoming edges. More formally,
we need to define for each terminalti a decoding
function γi : Σdiℓ → Σrik that enablesti to decode the
messages it demands from the information transmitted
on its incoming edges (heredi denotes the in-degree of
ti andri is the number of messagesti requires). If such
encoding and decoding functions exist, we say that the
instanceI to theNetwork Coding problem is(k, ℓ)-
solvable overΣ. If the functions are linear we say that
I has alinear or vector linear (k, ℓ)-solution overΣ.
If the encoding and decoding functions are linear and
k = 1 we say that the instance has a(1, ℓ)-scalar linear
solution overΣ.

Since, any(k, ℓ)-solution implies an(rk, rℓ)-solution
for any integerr, we refer to the ratiok

ℓ as the rate of
a (k, ℓ)-solution to I and denote thecapacityC(I) of
I over Σ as the supremum of the ratiokℓ taken over
(k, ℓ) solutions toI over Σ. Similarly, we define the
linear capacityCl(I) and scalar linear capacityCsl(I)
of I as the maximum rate achievable by vector-linear or
scalar-linear solutions, respectively1.

A. Previous work

Determining the capacity of a generalNetwork
Coding instance is a long standing open problem.
Specifically, it is currently not known whether this prob-
lem is solvable in polynomial time, is NP-hard, or maybe
it is even undecidable [9] (the undecidability assumes
that the alphabet size can be arbitrary and unbounded).
It is shown in [10] that determining the scalar linear
capacity Csl is an NP-hard problem. However, it is
not known whether this holds for the vector-linear or

1Notice thatC(I), Cl(I) and Csl(I) depend onΣ. To simplify
our presentation, we omitΣ from our capacity notation.



general capacity, as the result of [10] does not extend
to (k, ℓ) vector linear codes even fork = 2. In [8]
it is shown that non-linear codes have an advantage
over linear solutions as there exist instances in which
linear codes do not suffice to achieve capacity. For
specific instances to theNetwork Coding problem,
it has been shown that combining combinatorial bounds
and “Shannon-type” information inequalities suffice to
characterize the capacity, e.g., [11], [12], although this
is not the case in general [13].

B. Our contribution

In this work we initiate the study ofapproximation
in the context of network coding. Namely, we show that
given an instanceI to theNetwork Coding problem
of linear capacityCl(I), constructing a linear code with
rateαCl(I) for any universal constantα (independent of
the size of the network) is “hard”. Specifically, finding
such network codes would solve a long standing open
problem in the field of graph coloring. Our results apply
to scalar linear codes and(k, ℓ) vector linear codes for
constant values ofk (independent of the network size).
This implies the first hardness result for the general
Network Coding problem that addresses vector lin-
ear solutions.

In addition, we consider the problem of determin-
ing the scalar linear capacity of aplanar instance (an
instance in which the underlying graph is planar). We
show that even when the network is planar, this problem
remains NP-hard. We note that the reduction presented
in [10] does not result in a planar graph (and hence
their results do not hold in the planar setting). We now
state our main results in detail. We begin with some
preliminaries on the topic of “graph coloring”.

1) Graph coloring: An independent set in an undi-
rected graphG = (V, E) is a set of vertices that induce
a subgraph which does not contain any edges. For an in-
tegerk, ak-coloring ofG is a functionσ : V → [1 . . . k]
which assigns colors to the vertices ofG. A valid k-
coloring of G is a coloring in which each color class is
an independent set. The chromatic numberχ(G) of G is
the smallestk for which there exists a validk-coloring
of G. Findingχ(G) is a fundamental NP-hard problem.
Hence, when limited to polynomial time algorithms, one
turns to the question of estimating the value ofχ(G) or
to the closely related problem ofapproximate coloring
in which one seeks to find a coloring ofG with r ·χ(G)
colors, for some approximation ratior ≥ 1, where the
objective is to minimizer.

For a graphG of size n, the approximate coloring
of G can be solved efficiently within an approximation
ratio of r = O

(

n (log log n)2

log3 n

)

[14]. This result may seem
rather weak — as a trivial approximation algorithm, with
approximation ration, just colors each vertex with a
different color. However, it turns out that one probably
cannot do much better than the trivial algorithm. Namely,
it is NP-hard to approximateχ(G) within a ratio ofn1−ε

for any constantε > 0 [15]. Hence, there has been a

long line of work addressing the coloring of graphsG
which are known to have small chromatic number, e.g.,
[16], [17], [18], [19]. For example (and most relevant
to our work), given a graphG which is known to be3
colorable, the problem of coloringG with as few colors
as possible has been extensively studied, e.g., [16], [17],
[19].

The current state of affairs in the study of coloring3
colorable graphs is an intriguing one. Results in this area
have one of two flavors: “achievability” results, which
specify an efficient algorithm for coloring the given
graphs, or “lower bounds”, which show that coloring
these graphs with a small number of colors is a prov-
ably “hard” problem. On one hand, the currently best
polynomial time algorithm [19] can color a3 colorable
graphG in roughlyn0.21 colors — a polynomial blowup!
On the other hand, not much is known regarding lower
bounds. It is NP-hard to color a3-colorable graphG
with 4 colors [20], [21]. Under stronger complexity
assumptions (related to theUnique Games Conjecture
[22]) it is hard to color a3-colorable graph with any
constant number of colorsr [23] (herer is a universal
constant independent of the size of the input graph).
Resolving this gap between the upper and lower bounds
presented above is a long standing open problem.

In this work we show that finding an approximate
solution to theNetwork Coding problem ofconstant
quality is at least as hard as coloring a3 colorable
graph with a constant number of colors, which in turn
is at least as hard as the hardness assumptions specified
in [23]. Regardless of the validity of the assumptions
given in [23], our reduction shows that approximating
theNetwork Coding problem within constant quality
will solve a long standing open problem in approximate
coloring.

2) Statement of results:Our main result can be sum-
marized by the following theorem. In what follows, and
throughout the paper, anefficientalgorithm is one that
runs in time polynomial in the instance size. Moreover,
throughout, our alphabetsΣ are assumed to be finite.

Theorem 1:Given any3 colorable graphG, one can
efficiently construct an instanceI to the Network
Coding problem with the following property. For any
alphabetΣ, if one can efficiently find a linear(k, ℓ)
solution toI overΣ that satisfieskℓ ≥ αCl(I), then one
can efficiently colorG with 23k/α colors (hereα ≤ 1).

Corollary 2: Let α < 1 be any constant. Letk be
constant. LetΣ be any alphabet. If one can efficiently
find a (k, ℓ) linear solution to every instanceI of the
Network Coding problem overΣ of rate αCl(I),
then one can efficiently color3 colorable graphs with
a constant number of colors.

A network coding instance is said to beplanar if
the underlying network can be drawn in the plane in
such a way that no two edges cross each other. Planar
graphs have seen a significant amount of research in the
field of combinatorial optimization, e.g., [24], and many
problems known to be “hard” on general graphs become
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significantly easier when the input graph is planar. One
may suspect that the same occurs in the case of network
coding. However, in this work we show:

Theorem 3:Given a planar instanceI to the
Network Coding problem, an alphabetΣ and a pa-
rameterℓ, the problem of deciding whetherCsl(I) ≥ 1

ℓ
is NP-complete.

The instancesI implied by Theorems 1 and 3 are
simple in nature and resemble the instances that have
been used in the literature to express the advantage of
network coding, e.g., [1], [25]. More specifically, given a
graphG, the instances we construct correspond to the so-
calledIndexCoding problem recently studied by [26],
[27]. TheIndexCoding problem and its connection to
network coding are described in Section II. We then turn
to prove Theorem 1 and Theorem 3 in Sections III and
IV respectively. Due to space limitations, some of our
claims will appear without proof.

II. PRELIMINARIES: THE IndexCoding PROBLEM

The IndexCoding problem encapsulates the
“source coding with side information” problem in
which a single server wishes to communicate with
several clients each having different side information.
Formally, an instance toIndexCoding includes a
set of clientsC = {c1, . . . , cn} and a set of messages
P = {p1, p2, . . . , pm} to be transmitted by the server.
Each client requires a certain subset of messages inP ,
while some messages inP are already available to it.
Specifically, each clientci ∈ C is associated with two
sets:

• W (ci) ⊆ P - the set of messages required byci.
• H(ci) ⊆ P - the set of messages available atci.

We refer toW (ci) andH(ci) as the “wants” and “has”
sets of ci, respectively. The server uses a broadcast
channel to transmit messages to clients, each message
is an encoding of messages inP . We assume that
all messages transmitted by the server are received by
all clients without an error. The objective is to design
an encoding scheme which minimizes the number of
transmissions.

We consider afractional setting in which each mes-
sage pi ∈ P consists ofk packetsp1

i , . . . , p
k
i each

a character of a given alphabetΣ. In each round of
communication the server can transmit a single char-
acter of Σ (i.e., a single packet). Thej’th round of
communication is specified by an encoding functiongj :
Σmk → Σ. Namely, in thej’th round of communication
the characterxj = gj(P ) is transmitted by the server.

The goal in the IndexCoding problem is to
find a set of encoding functionsΦ = {gi}

ℓ
i=1 that

will allow each client to decode the messages it re-
quested, while minimizingℓ = |Φ|. More formally,
we need to define for each clientci a decoding func-
tion γi : Σℓ × (Σk)|H(ci)| → (Σk)|W (ci)| that enables
the client to decode the required messages in its “want”
set from the transmitted messages and the messages in its
“has” set. If such encoding and decoding functions exist,

p1 p2 p3 pm...

c1 c2 c3 cn

v

u

...

Fig. 1. The instancêI of Proposition 4. There is a source nodepj
for each message inP , a terminal nodeci for each client inC, and
two additional nodesu andv. Each terminalci requires all messages
from sources inW (ci). Eachpj is connected tov, u is connected to
all terminalsci, and v is connected tou. In addition we add edges
(pj , ci) iff pj ∈ H(ci). The broadcast channel corresponds to packets
transmitted on(v, u), while the side information correspons to packets
transmitted on edges(pj , ci).

we say that the instance toIndexCoding is (k, ℓ)-
solvable overΣ, andΦ is its solution. If the encoding and
decoding functions are linear we say that the instance has
a (k, ℓ)-linear solution overΣ. If in addition k = 1 we
say that the instance has a(1, ℓ)-scalar linear solution
over Σ.

As in the case of theNetwork Coding problem,
any (k, ℓ)-solution implies an(rk, rℓ)-solution for any
integer r. For an instanceI to the IndexCoding
problem, we refer to the ratiokℓ as the rate of a(k, ℓ)-
solution to I and denote the capacityOpt(I) of an
instanceI to IndexCoding over Σ as the supremum
of the ratio k

ℓ taken over(k, ℓ) solutions toI over Σ.
We also define byOptl(I) and Optsl(I) the vector-
linear and scalar-linear capacities, i.e., capacities that
can be achieved by using vector linear and scalar linear
solutions, respectively.

There is a natural reduction from theIndexCoding
problem to the problem of designing a network code for
a certain network with general requirements. This con-
nection can be summarized by the following Proposition.

Proposition 4: Let Σ be any alphabet. For every
instance I to the IndexCoding problem one can
efficiently construct an instancêI to the Network
Coding problem such that any(k, ℓ)-solution toÎ over
Σ can be efficiently converted to a(k, ℓ)-solution to
I and vice-versa. These conversions preserve linearity
and thusOptsl(I) = Csl(Î), Optl(I) = Cl(Î) and
Opt(I) = C(Î) (over Σ).

To prove Proposition 4 we use the construction de-
picted in Figure 1 (due to space limitations full proof of
the Proposition is omitted).

TheIndexCoding problem was recently studied in
[26], [27] where special instances ofIndexCoding
were considered. Namely, instancesI in which
|P | = |C| = n and the only message clientci wants
is the messagepi (W (ci) = {pi}). In this case, the
side information{H(ci) | ci ∈ C} can be represented
by a graphG = (C, E) with vertex setC such that
G contains an edge(i, j) if and only if client ci
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has messagepj (i.e., pj ∈ H(ci)). For instancesI
corresponding to undirected graphsG (in which edges
are bi-directional) [26], [27] present certain connections
between combinatorial properties ofG and the value of
Opt(I). Specifically, [26], [27] show that: (a) A certain
property of the adjacency matrix corresponding toG,
referred to as theMinrank2 [28] of G, characterizes
the scalar linear capacityOptsl(I). (b) This capacity is
lower bounded by1/χ(Gc). HereGc is the complement
graph ofG (i.e., an edge(i, j) appears inG iff it does
not appear inGc).

For an undirected graphG, and its corresponding
instance to theIndexCoding problem, computing
the Minrank of G (and thusOptsl(I)) was proven
to be NP-complete in [29]. Namely (in our notation),
using a reduction from the problem of3-coloring, [29]
shows that for any finite fieldΣ, determining whether
Optsl(I) ≥ 1/3 is NP-complete. Combining this result
with Proposition 4 above, establishes that determining
the scalar linear capacity of a general network coding
instance is NP-hard. Notice that this may be viewed as
an alternative proof to that given in [10]. We stress that
the results in [29] do not imply inapproximability results
of the nature presented in this work as in their reduction
one can easily find a scalar linear solution which satisfies
Optsl(I) ≥ 1/4.

III. PROOF OFTHEOREM 1

In this section, we prove the following Theorem 5.
By combining Theorem 5 with Proposition 4, we obtain
Theorem 1 stated in the Introduction.

Theorem 5:Given any3-colorable graphG, one can
efficiently construct an instanceI to theIndexCoding
problem with the following property. For any alphabetΣ,
if one can efficiently find a linear(k, ℓ)-solution toI over
Σ that satisfiesk

ℓ ≥ αOptl(I) then one can efficiently
color G with 23k/α colors (here0 ≤ α ≤ 1).

Proof: Let G = (V, E) be an undirected
graph with V = {v1, . . . , vn}. We start by defin-
ing a corresponding instanceI to IndexCoding
(as explained in Section II). The instance includes
n clients C = {c1, . . . , cn} and n packets P =
{p1, . . . , pn}. For each client we defineW (ci) = {pi}
and H(ci) = {pj|(i, j) ∈ E}, i.e., clientci wants mes-
sagei and has all messages wanted by its neighbors in
G.

Assume that the complement graphGc of G is 3-
colorable (notice that the role ofG in the theorem state-
ment is played here byGc). It follows thatOptsl(I) ≥ 1

3
(for example by [29]3). Assume also that we have
an α approximation algorithm for constructing linear
solutions to instancesI of IndexCoding. Namely,
that we can find a(k, ℓ) linear solution for I with
k
ℓ ≥ αOptl(I) ≥ αOptsl(I) ≥ α

3 . This, in turn, implies

2Due to space limitations we will not define and discuss the notion
of Minrank.

3As Gc is 3-colorable,G can be covered by 3 cliques. For each
such cliqueC, define the corresponding transmitted packetxC =
P

i∈C pi.

that ℓ ≤ 3k/α. Namely, forj = 1, . . . , ℓ let gj ∈ Σkn

characterize the solution toI in which the packetxj

transmitted in communication roundj is equal to〈gj , p̄〉.
Here, 〈·〉 is the standard inner product, and we denote
by p̄ ∈ Σkn the vector consisting of allkn packets in
P .

We will now show, given the set{gj}
ℓ
j=1, how to

construct a coloring ofGc of size2ℓ ≤ 23k/α. This will
suffice to prove our assertion. Consider the firstgenera-
tion p1

i of each message inP (the first generation is the
set that includes the first packet of every message inP ).
As the packets{xj} are a valid solution for instance
I, it holds for each indexi = 1, . . . , n that there is a
vectorhi ∈ span{g1, . . . , gℓ} such that the vector〈hi, p̄〉
may be used by clientci in its decoding scheme when
recoveringp1

i . Namely, the vectorhi has the following
properties: (a) The coefficient inhi corresponding to
packetp1

i is non-zero. (b) Forpj 6∈ (H(ci)∪W (ci)) the
coefficients inhi corresponding to all packets of message
pj are zero. We will use the vectors{h1, . . . , hn} to find
a coloring ofGc.

We say that two vectorshi1 and hi2 are component
equivalentif for everyj thej’th entry ofhi1 differs from
0 iff the same holds forhi2 . Consider two indicesi1 and
i2 for which hi1 andhi2 are component equivalent. We
claim that it must be the case that the corresponding
verticesvi1 and vi2 share an edge inG. This follows
since the coefficient inhi1 corresponding top1

i1 is non-
zero. This, in turn, implies that it must be the case that
i1 ∈ H(ci2). The latter implies that(vi1 , vi2) ∈ E.

We conclude that for eachh ∈ span{g1, . . . , gℓ},
the verticesvi with corresponding vectorshi that are
component equivalent toh form a clique in G. This
implies thatG has a clique cover4 of size2ℓ ≤ 23k/α, or
alternatively thatGc can be colored with23k/α colors. It
is not hard to verify that both the vectors{h1, . . . , hn}
and the coloring ofGc can be efficiently deduced from
the solution{gj}

ℓ
j=1 to I. This concludes our proof.

IV. PROOF OFTHEOREM 3

We now turn to prove Theorem 3. Our starting point is
a reduction presented in [29] between a given undirected
graph G and an instanceI to the IndexCoding
problem5 that satisfiesχ(G) ≤ 3 iff Optsl(I) ≥ 1/3.
In what follows, we present a reduction between the
instanceI and a planar instanceIp to the Network
Coding problem which satisfiesCsl(Ip) ≥ 1 if and
only if Optsl(I) ≥ 1/3. This will suffice to prove
Theorem 3.

The instanceI of [29] includes a set ofn clients
C = {c1, . . . , cn} and n messagesP = {p1, . . . , pn}.
Moreover, each clientci only wants the single message
pi, i.e., W (ci) = {pi}.

4A clique cover of a graphG is a collection of subsets of vertices
U1, . . . , Uk such that∪iUi = V and the subgraph ofG induced by
eachUi is a clique.

5To be more precise, the reduction presented in [29] is between the
problem of graph coloring and theMinrank problem; the extension
of the reduction toIndexCoding is straightforward.
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c1 c2 c3 cn...

h1
1

h1
2

h2
1

h2
2

h3
2

hn
2

h3
1

hn
1

v

s

Fig. 2. A reduction from ProblemIndexCoding to Problem
Network Coding. The bold edges denote three parallel edges of
unit capacity.

We proceed to construct an instanceIp to the
Network Coding problem. We begin by describing
the structure of the underlying planar networkGp(V, E)
(schematically depicted in Figure 2). The set of nodes
V of Gp includes a nodeci for each clientci ∈ C, and
two additional vertices,v and s. In addition, for each
client ci ∈ C we add|H(ci)| verticesh1

i , . . . , h
|H(ci)|
i

that correspond to elements ofH(ci). The set of edges
E of Gp is constructed as follows. First, we connects to
v by three parallel edges. Next,v is connected to each
nodeci by three parallel edges. For each clientci ∈ C

we connect each vertex in{h1
i , . . . , h

|H(ci)|
i } to vertex

ci by a single edge. Finally, the nodes is connected to
the nodes that correspond to{H(ci) |ci ∈ C}.

The instance includes a set ofn sources{si}
n
i=1 that

correspond to messages inP (sourcesi having message
pi). All sources are co-located at vertexs. For each client
ci ∈ C we add 1 + |H(ci)| terminals such that one
terminal is located at nodeci and requires packetpi from
sourcesi (this corresponds to the messagepi wanted
by ci in I). The rest of the terminals are located at
vertices{h1

i , . . . , h
|H(ci)|
i }. Terminalhj

i will require the
j’th message in the setH(ci) (from the corresponding
source). The latter terminals will force the sources to
transmit the “side information” ofI on the edges(s, hj

i ).
Clearly, Gp(V, E) is planar and any (scalar linear)

(1,3)-code forI corresponds to a (scalar linear) (1,1)-
network code forIp. Also, it is not hard to verify that
a (scalar linear) (1,1)-network code forIp corresponds
to a (scalar linear) (1,3)-solution forI, which completes
the proof of the theorem.
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