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1 Introduction

Network coding allows the routers to mix the information content in packets before forwarding
them. This mixing has been theoretically proven to maximize network throughput [1, 44, 40, 29].
For multicast communications it can be done in a distributed manner with low complexity, and
is robust to packet losses and network failures [24, 46]. Furthermore, recent implementations of
network coding for wired and wireless environments demonstrate its practical benefits [32, 20].

But what if the network contains malicious nodes? Nodes that tap the network aim to
eavesdrop on ongoing communication. Further, some nodes may pretend to forward packets
from source to destination, while in reality they inject corrupted packets into the information
flow. Since network coding makes the routers mix packets’ content, a single corrupted packet
can end up corrupting all the information reaching a destination. Unless this problem is solved,
network coding may perform much worse than pure forwarding in the presence of such malicious
adversaries.

This chapter addresses the task of multicast communication using network coding in the
presence of passive eavesdroppers and active jammers. Rather surprisingly, it will be shown that
high-rate private and reliable communication via schemes that are both computationally efficient
and distributed is possible in the settings under study. Despite the complexity introduced by
distributed network coding, it turns out that many of the classical results for private and reliable
communication over point-to-point links have direct analogues in the network setting. This
chapter summarizes almost a decade of study in the very dynamic and intriguing field of private
and reliable network communication.

1.1 Overview of chapter

The chapter consists of four sections. In Section 2 we set the notation, definitions, and model
used throughout. In Section 3 we consider communication in the presence of passive adversaries
who only have eavesdropping capability and wish to learn the information transmitted over
the network. The objective in this case is the design of communication schemes that enable
secrecy, i.e., schemes which do not allow the adversary to learn the information transmitted
by the source. In Section 4 we consider active adversaries, who have both eavesdropping and
jamming capabilities whose objective is to cause a decoding error at the terminal nodes. Here,
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successful communication means reliable communication, i.e. correct decoding. In Section 5
we consider again communication in the presence of active adversaries with both eavesdropping
and jamming capabilities, however in this case our objective is to design communication schemes
that are both reliable and secret. Finally, in Section 6 we briefly note other models that do not
fit into the above classifications. We conclude with a discussion in Section 7.

In each of the sections mentioned above, our overview includes between two to three refined
models. We first address the coherent setting in which the terminal nodes are assumed to know
the topology of the network alongside the (realization of the) communication scheme used. The
second setting we address is the non-coherent setting. Here, no knowledge of the topology
and/or code being used is assumed to be present at the terminal nodes. In both settings
above, we follow an information-theoretic analysis assuming that the adversary has unlimited
computational power and has full knowledge of the network topology and the communication
scheme in use. We stress that any achievable rate R in the non-coherent setting is also achievable
in the coherent one, and any upper bounds presented onR for the coherent setting also hold in the
non-coherent one. Finally, we also consider the case in which the adversary is computationally
limited, and discuss schemes with are conditioned on certain cryptographic assumptions. We
present an extended discussion in Section 4, while cryptographic schemes for Sections 3 and 5
can be reduced to our discussion in Section 4. Each of the refined models is presented in more
detail in Section 2.

2 Model

We use a general model that encompasses both wired and wireless networks. To simplify nota-
tion, we consider only the problem of communicating from a single source to a single destination.
But similarly to most network coding algorithms, our techniques generalize to multicast traffic.

2.1 Threat Model

There is a source, Alice, who communicates over a wired or wireless network to a receiver Bob.
There is also an attacker Calvin, hidden somewhere in the network. Calvin aims to prevent the
transfer of information from Alice to Bob, or at least to minimize it. He can observe some or
all of the transmissions, and can inject his own. When he injects his own data, he pretends it is
part of the information flow from Alice to Bob.

Calvin is quite strong. In both the coherent and non-coherent setting we assume that Calvin
knows the encoding and decoding schemes of Alice and Bob, and the network code implemented
by the interior nodes. He also knows the exact network realization. The computational power
of Calvin is assumed to be unbounded unless specifically mentioned otherwise. In the latter
case we will specify the exact computational problems limiting Calvin (e.g., the Discrete-Log
problem).
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2.2 Network and Code Model

Network Model: The network is modeled as a graph. Each transmission carries a packet of
data over an edge directed from the transmitting node to the observer node. The graph model
captures wired networks. For wireless networks, one may assume a model in which the network
is a hypergraph in which each edge is determined by instantaneous channel realizations (packets
may be lost due to fading or collisions) and connects the transmitter to all nodes that hear the
transmission. In this survey we will focus on the wired setting, although several of the results
extend naturally to the wireless setting as well. Throughout, the graph is unknown to Alice
and Bob prior to transmission in the non-coherent setting, but is assumed to be known in the
coherent setting.

Source: Alice generates incompressible data that she wishes to deliver to Bob over the network.
To do so, Alice encodes her data as dictated by the encoding algorithm (described in subsequent
sections).

Adversary: Calvin is assumed to control certain links of the network. We assume that Calvin
can corrupt the information transmitted on any subset of zO links of the network and can
observe the information on zI links. The set of links controlled by Calvin is unknown to both
Alice and Bob. Moreover, this set of links does not undergo any changes throughout the entire
block-length of communication. In Section 3 we assume that zI is unlimited but zO = 0 (here,
the objective is to design secret communication schemes). In Sections 4 and 5 we assume a
positive value for zO and discuss different settings of zI (here, the objective is to respectively
design reliable communication schemes, and schemes that are both reliable and secret).

In our model the error imposed by the Byzantine adversary Calvin is assumed to be added
to the original information transmitted on the network. One can also consider a model in which
these errors overwrite the existing information transmitted by Alice. We stress that if Calvin is
aware of transmissions on links, these two models are equivalent. Overwriting a message x with
z is equivalent to adding −x+ z over the field over which coding is performed. However, when
Calvin is unaware of the information transmitted over the links, these models may differ.

Receiver: The receiver Bob decodes his incoming information using decoding procedures that
are discussed in subsequent sections.

Network Transform: In many of the proposed schemes, the network performs classical dis-
tributed network coding [24]. Specifically, each packet transmitted by an internal node is a
random linear combination of its incoming packets. Thus, the effect of the network at the des-
tination can be summarized by Y = TX + T ′Z, where the matrix X represents the encoded
source information, the matrix Z represents the error specified by the network, and the matrix
Y corresponds to the incoming information at the terminal node, and both T and T ′ represent
the linear transforms resulting from the network coding scheme. As is common in the network
coding literature, one assumes that the coding is done over a certain finite field F.

Definitions: We define the following concepts. The network capacity, denoted by C, is the time-
average of the maximum number of packets that can be delivered from Alice to Bob, assuming no
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adversarial interference, i.e., the max flow. It can be also expressed as the min-cut from source
to destination. (For the corresponding multicast case, C is defined as the minimum of the min-
cuts over all destinations.) The error probability is the probability that Bob’s reconstruction of
Alice’s information is inaccurate. The rate R is the number of information symbols that can be
delivered on average, per time step, from Alice to Bob. Rate R is said to be achievable if for
any ε1 > 0 and ε2 > 0 there exists a coding scheme of block length n with rate ≥ R − ε2 and
error probability ≤ ε1. The capacity of a certain adversarial setting, is the maximum achievable
rate under this setting.

3 Eavesdropping security

We start by considering private communication in the context of multicast network coding.

3.1 The Coherent Case

We consider the rate of secret communication (also referred to as secure communication) in the
coherent setting in the presence of a hidden eavesdropper that has access to zI links of the net-
work. Specifically, we denote the information transmitted by the source as the random variable
X, that received by terminal ti as Yi and that observed by the adversarial eavesdropper as Z.
Analogously to the conditions Shannon [64] used to define perfectly secure systems, we require
that H(X|Yi) = 0 (implying that the terminal is able to deduce the source information) and
I(X;Z) = 0 (implying that the communication is secure). Letting C denote the maximum mul-
ticast communication rate (in the absence of an eavesdropper), we show that one can securely
communicate at optimal rate R = C − zI . This rate is the best possible, as one cannot com-
municate securely at a higher rate even over the one-hop unicast network consisting of a single
source s that wishes to communicate with a single terminal t over C multiple (s, t) links. This is
implied by the following standard argument. Let Z̄ denote the random variable corresponding
to the information on the links not observed by the eavesdropper (hence Yi = (Z, Z̄)). Then

R = H(X) = H(X|Yi) + I(X;Yi) = H(X|Yi) + I(X;Z, Z̄) (1)
= I(X;Z, Z̄) = I(X;Z) + I(X; Z̄|Z) (2)
= I(X; Z̄|Z) ≤ H(Z̄) ≤ C − zI . (3)

Equalities (1) ⇒ (2) and (2) ⇒ (3) follow from our conditions for secure communications, and
the remaining (in)equalities from standard information (in)equalities and the fact than Z̄ has
at most C − zI links.

Secure communication in the context of coherent network coding has been addressed in
several works over the last decade. This line of study was initiated by Cai and Yeung in [9]
where they consider enhancing any linear network coding scheme which allows communication
at rate C (in the absence of an eavesdropper) to one which is secure. Enhancing an existing
linear network coding scheme (such as that of Jaggi et al. [29]) is done in an end-to-end manner.
Namely, internal nodes of the network are oblivious to the fact that communication is done
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in the presence of an adversarial eavesdropper, and follow the original coding scheme. The
presence of an adversarial eavesdropper is dealt with by an enhanced encoding at the source
node and by specialized decoding at terminal nodes. To this end, the enhanced encoding of the
source includes two steps. Primarily the source takes its C − zI characters of information X
and appends to it a uniformly distributed random vector R of zI characters to obtain (X,R).
Secondly, (X,R) over goes a certain invertible linear transform T resulting in the message M
of length C. The message M is now transmitted over the network using the original (perhaps
insecure) network coding scheme. On decoding, a terminal first recovers M and then via T
recovers X.

We now address the security of the scheme suggested in [9]. Considering the original coding
scheme as fixed, the code design of [9] involves specifying the matrix T which in turn defines
the message M = T (X,R) to be transmitted. Specifically, one needs to design the matrix T
such that any zI linear combinations of M resulting from the linear encoding of the original
network coding scheme do not reveal information on the value of X. This is a non-trivial task
and the construction of T in [9] is done in a greedy iterative manner that resembles the Gilbert
construction for error correcting codes [18]. The analysis of [9] uses a field F of size q ≥

(|E|
zI

)
,

which is exponential in network parameters. (This bound on q follows from the fact that there
are at most

(|E|
zI

)
different possible subsets of zI links that the adversary may eavesdrop on, and

the matrix T has to be resilient to each scenario.) An extension to imperfect security is also
addressed in [9]. Using essentially the same construction and proof technique, it is shown that
allowing I(X;Z) ≤ i (instead of I(X;Z) = 0) one can obtain rate C + i− zI (here one assumes
i ≤ zI).

Theorem 3.1 ([9]) Let G be an acyclic network with cut capacity C. Then, the coherent secure
capacity in the presence of an adversary that may eavesdrop on up to zI of the links of G is
C − zI .

Following the paradigm of [9], Feldman et al. [14], study the achievable trade-off between
rate and field size q. Namely, referring to the matrix T as a “filtered secret sharing scheme”, they
show that finding T is equivalent to finding an error-correcting code with certain generalized
distance properties. The latter is obtained via a random linear construction similar to that of
Varshamov [79]. Using this connection, Feldman et al. [14] show that for any σ > 1 one can
efficiently construct a matrix T that allows secure communication at rate C − σzI and field size
q = |E|Ω( 1

σ−1
). The intuition is that any scheme with the appropriate generalized distance has

the property that projecting the linear transform onto zI links results in a uniformly distributed
random variable from the eavesdropper’s perspective.

In [62, 61], Rouayheb et al. study the two-step paradigm of [9] and take a different approach
in which they concentrate on the design of the internal network coding scheme instead of the
design of T . Namely, [62, 61] tie the task of coherent secure communication with that of the
wiretap channel of type II introduced in the seminal work by Ozarow and Wyner [57, 58]. In the
latter, coset coding is used to enable secure communication at rate C−zI over the simple one-hop
network mentioned previously. The authors of [62, 61] observe that the näıve approach – one in
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which the source pre-encodes its information using the coset coding techniques of [57, 58] (via
T ) and then performs any feasible network coding scheme – does not necessarily yield secure
communication. However, [62, 61] show that if the network coding scheme satisfies certain
requirements with respect to the specific coset coding used, then a secure rate of C − zI is
indeed obtained. To obtain such network codes that have a good fit with a given pre-encoding
scheme T , Rouayheb et al. modify the deterministic algorithm of [29] for the construction of
network coding schemes (in the absence of an eavesdropper) and obtain efficiently constructible
secure codes at optimal rate C − zI with field size roughly |E|zI . To reduce the field size to one
which is independent of the size of the graph G and only depends on C, zI and the number of
terminals in the multicast connection t, [62, 61] use ideas from [42, 43] and obtain a field-size
of
(

2(C−zI)3t2

zI−1

)
+ t, which is independent of |V | and |E| but still exponential in other network

parameters.
Pre-encoding using coset coding is further investigated by Ngai et al. in [53] in which

a comprehensive study is performed. Motivated by the work of Wei on generalized Hamming
weight for linear block codes [83], Ngai et al. define the notion of “Network Generalized Hamming
Weight” and “Network MDS” codes. Roughly speaking, these notions tie block error-correcting
codes with network coding schemes and suffice to characterize pre-encoding schemes T that allow
secure communication when combined with a given network coding scheme (and visa versa).

Considering a weak notion of security Bhattad et al. [7] study the scenario in which the
eavesdropper may indeed obtain partial information regarding the messages multicasted over
the network, however this partial information does not suffice to deduce the exact value of any of
the characters of the source information X. For example, on transmission of a message with two
symbols a and b, eavesdropping on the sum a+ b reveals partial information about the message
(a, b) but does not reveal the exact value of either a or b. Similarly to the paradigm of [9], the
work of [7] shows that any network coding scheme of capacity C can be turned into a weakly
secure one by multiplying the source information X with a certain matrix T . For this reduction
to work, [7] requires a field roughly of size |E|

k
C−k , where k ≤ zI is a parameter corresponding

to the amount of information that the eavesdropper may obtain on the links under his control.
Among other related questions, [7] also addresses the natural question of perfect/weak security
of a random linear network code without any pre-encoding via T . Here, as in [26], a random
linear network code is one in which the linear coefficients governing the coding scheme are all
chosen uniformly and independently at random from the underlying field F. In addition one
assumes that the actions of the eavesdropper (namely which links to control) are independent
of these random choices. In this setting a trade-off between field size and probability of error is
given (for both perfect and weak security). Roughly speaking, if one allows an ε probability of
error in the design process, then the field size (when compared to the bounds of [9] for standard
security and [7] for weak security) are to be multiplied by a factor of 1/ε.

The works mentioned above all focused on acyclic networks. Following the analytical tech-
niques of [9], Jain [30] studies secure network coding in the general (not necessarily acyclic)
setting. Namely, in [9] a general analysis of secure communication was conducted in the case
where the eavesdropper may choose a set of links A ⊆ E from a given set system A. When the
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adversarial eavesdropper may control at most zI links, then A is just the set system consisting
of all subsets of at most zI links. This general analysis is strengthened in [30] for the cyclic case
in which there is a single source node, a single terminal node and one wishes to communicate at
unit rate. Namely, necessary and sufficient conditions for secure unit rate communication are
presented in terms of the topology of G and the set system A. In a nutshell, after preprocess-
ing the graph G and removing from G nodes from which information can not reach the single
terminal node, the necessary and sufficient condition for secure communication is the existence
of a single untapped path, i.e., a path not seen by the adversary, from sender to receiver when
considering the preprocessed graph as undirected. A characterization for higher communication
rate or more terminal nodes is an open problem.

3.2 The Non-Coherent Case

In this section we focus on communication in non-coherent settings. That is, the network
topology and network coding operations are unknown in advance to the communicating parties.
Despite this restriction, it can be shown that essentially the same performance as in the coherent
setting can still be achieved. We focus on two lines of work – schemes with randomized source
encoding functions, and those with deterministic source encoding functions.

The construction of Feldman et al [14] mentioned in the previous section falls in the former
case. In their construction, the linear filter that the source node passes its message through is
obtained by randomly choosing a matrix of the appropriate dimension. Interior nodes in the
network perform random linear combinations over sufficiently large finite fields, in the spirit
of the distributed random linear network coding scheme of Ho et al [26] – indeed, they can
be unified to generate a distributed non-coherent random linear network code that is perfectly
secure against a wiretapper that can eavesdrop on at most zI links. They demonstrate that with
high probability over these random choices, the generated linear code is perfectly secure against
eavesdropping by any adversary that can wiretap at most zI links. Further, if the min-cut of
the network is denoted by C, the rate at which communication can be carried out in this scheme
can be made arbitrarily close to C− zI as the field-size over which the scheme is designed grows
without bound. They also show that the field-size required for such a scheme can be much
smaller in general, than if one required secret communication at a rate exactly equaling C − zI .

Theorem 3.2 ([14]) For any σ > 1, for any field-size q ≥ max{|E|Ω(1/(σ−1)), |S|}, there exists
a feasible linear network coding scheme with rate C − σzI which is perfectly secure against a
wiretapper eavesdropping on zI-links. Further, a random choice of source filter achieves this
performance with high probability.

In contrast, they also show that if the desired rate of communication is exactly C − zI , then the
minimum field-size required is at least |E|Ω(

√
zI/ log zI). The reason that a small gap from the

capacity results in a significant reduction of field-size is that the number of linear transforms
that take a message at rate C −σzI to a message of dimension C is significantly larger than the
number of linear transforms that take a message at rate C − zI to a message of dimension C.
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In contrast, Silva et al [78] consider a deterministic source encoder that can be overlaid
onto a non-coherent random linear network code (for instance, that of Ho et al [26]). Their
work is motivated by Rouayheb and Soljanin’s formulation of a wiretap network and builds on
their results. They propose a coset coding scheme based on “maximum rank-distance” (MRD)
codes, that neither imposes any constraints on, nor requires any knowledge of, the underlying
network code. In other words, for any linear network code that is feasible for multicast, secure
communication at the maximum possible rate is achieved with a fixed outer code. In particular,
the field size can be chosen as the minimum required for multicasting. The essence of their
approach is to use a vector linear outer code over a block-length n that is, in fact, also a linear
code over the extension field Fqn .

Theorem 3.3 ([78]) A perfectly secure communication scheme at rate C − zI can be achieved
by using any feasible Fq-linear network code in conjunction with a fixed end-to-end coset coding
scheme based on any linear MRD (C, zI) code over Fqn.

4 Jamming security

In this section we consider the design of network codes that enable reliable error-detection and
communication in the presence of active jammers that have both eavesdropping and jamming
capabilities. Our discussion follows the outline presented in the Introduction.

4.1 The Coherent Case

For the problem of error-correction we first study the rate of reliable communication in the
coherent setting in the presence of an active jammer that can jam zO links of the network and
observe all links of the network. In a nutshell, we show that this rate is C − 2zO for C ≥ 2zO
and 0 otherwise. Namely, the rate is equal to (C − 2zO)+. We start by considering the class of
one-hop unicast networks. In a one-hop unicast network there is a single source s that wishes to
communicate with a single terminal t over C multiple (s, t) links. We assume that the links may
carry a single character from a given alphabet Σ of size q, and that the source wishes to transmit
R characters of Σ to t. It is not hard to verify that the task of designing a communication scheme
with rate R that allows reliable communication over one-hop unicast networks in the presence of
an adversary that may jam zO of the links is equivalent to the design of [C,R] error correcting
codes that are resilient to zO errors (i.e., have minimum distance 2zO + 1).1

Let q be the size of Σ. There are multiple bounds on the rate R(C, zO, q) of error correcting
codes over alphabets of size q with block length C and minimum distance 2zO+1. It is well-known
that R(C, zO, q) ≤ C − ∆ for ∆ = logq

(∑zO
i=0

(
C
i

)
(q − 1)i

)
, e.g. [48]. This bound is referred

1By a similar argument it can also be observed that errors injected by an adversary who can jam zO links may
be detected if and only if the minimum distance of the code is at least zO + 1, i.e., the maximum rate at which
adversarial errors can still be detected is C − zO. Here, it is crucial that we assume the coherent setting in which
the (network) code is known to all parties. If, however, the adversary cannot observe everything in the network,
the work of [25] demonstrates that errors can still be detected for any rate of communication strictly less than C.
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to as the sphere packing or Hamming bound, and follows from a simple volume argument. As
q approaches infinity it can be verified that this bound approaches C − zO. This bound holds
for all types of errors – random or adversarial. Further, the Singleton bound (e.g. [48]), derived
using the pigeonhole principle, shows that R(C, zO, q) ≤ C − 2zO. Hence for sufficiently large
alphabet sizes q, the Singleton bound is tighter than the sphere packing bound.

What about lower bounds on R(C, zO, q)? Several coding techniques [48] (including for
example Read-Solomon codes) imply C-block error correcting codes resilient to zO errors whose
rate equals C − 2zO. Most relevant to this chapter are the works of Gilbert [18] and Varshamov
[79] that show that R(C, zO, q) ≥ C − ∆ where ∆ = logq

(∑2zO
i=0

(
C
i

)
(q − 1)i

)
. Notice that

the summation in this case is from 0 to 2zO (as apposed to zO in the Hamming bound). The
discussion above implies that as q tends to infinity, the Singleton bound is tight and corresponds
to the capacity of one-hop unicast networks in the presence of jammers.

A natural and intriguing question is whether the above setting also holds in more complicated
networks as well. This question was studied by Cai and Yeung in [87, 10] and was answered in
the affirmative. Namely, [87, 10] show an analogue to the Hamming bound, Singleton bound and
Gilbert-Varshamov bound in the coherent network coding setting. Moreover, they show their
Singleton-type bound for networks equals their Gilbert-Varshamov type bound for large values
of q.2 The crux of their analysis lies in understanding the combinatorial nature of information
transmitted on minimum cut-sets of the network that separate source terminal pairs.3 In what
follows we give an overview of the results in [87, 10].

Consider any given network G = (V,E) with (error free) capacity C. Let A and B be a
partition of V , and let cut(A,B) denote the set of links directed from a node in A to a node in
B. To obtain an analogue to the Hamming bound for networks, [87] considers the information
transmitted over cut sets cut(A,B), or to be precise, the mapping between the source information
X and the information Zm = Z1, . . . , Zm transmitted over the cut set. Here m = |cut(A,B)|.
Roughly speaking, if there are no links directed from B to A in G, it must be the case that
Zm is an [m, 2zO + 1] error correcting code. This follows directly by the fact that decoding at
terminal t is solely a function of Zm. Indeed, if Zm did not have minimum distance 2zO+1 then
a malicious jammer corrupting zO links from cut(A,B) may cause a decoding error at t. Note
that the reduction above relies on the lack of edges from B to A, otherwise errors on certain
links of cut(A,B) may affect other links in cut(A,B) (such effects do not occur in the standard
model of error-correcting codes). Once the reduction between network communication and error
correcting codes is established, the Hamming-type bound and Singleton-type bound follow.

Theorem 4.1 (Network Hamming Bound) Let G an acyclic network with (error free) cut
capacity C, in which each link can carry a single character of an alphabet Σ of size q. Then the

2Tighter bounds on the field-size required were obtained by [2] and in [3] the authors demonstrated that the
field-size requirement can be drastically reduced if one reduces the required rate slightly – the result is analogous
to the one obtained by Feldman et al [14] for eavesdropping security. High-complexity algorithms for adversarial
network error-correction were also obtained in [88].

3The work of [74] translates this analysis (and further results in [87, 10] to be presented shortly) into the
language of “matrix channels”, as discussed in Section 4.2.
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coherent capacity when at most zO of the links of G are jammed is at most C −∆ where

∆ = logq

(
zO∑
i=0

(
C

i

)
(q − 1)i

)
.

As the field-size q approaches ∞ with fixed C and zO, this bound approaches C − zO.

As for classical error-correcting codes, a stronger bound for the network adversarial error
case for large q is the network analogue of the Singleton bound.

Theorem 4.2 (Network Singleton Bound) Let G an acyclic network with (error-free) cut
capacity C. Then, the coherent capacity in the presence of an adversary that may jam up to zO
of the links of G is at most (C − 2zO)+.

We now turn to discuss lower bounds on the coherent capacity in the presence of an adversary
that may jam up to zO links. In [10] a Gilbert-Varshamov bound in the context of network
communication is derived. It is well-known that in the error-free coherent setting, one can
communicate the set ΣC of distinct messages successfully over the network using, for example,
linear network codes that are constructed at random. Using such network codes, the main idea
in [10] is to carefully construct a subset of messages W ⊂ ΣC with the property that no matter
which error pattern is chosen by the adversary, each terminal is able to correctly distinguish the
message w ∈ W transmitted. Namely, two words x and x′ of ΣC are said to be non-separable
if there exist two error patterns e and e′ such that the information reaching a terminal node
when x is transmitted and the adversary applies the error pattern e is identical to that received
when x′ is transmitted and e′ applied. The objective in [10] involves identifying a large subset
W for which each w 6= w′ ∈ W are separable. The crux of their analysis lies in a careful study,
for a given x ∈ ΣC , of the subset Vx of possible words x′ such that x and x′ are non-separable.
Bounding the size V of Vx and following the greedy technique of Gilbert [18] will yield sets W
of size qC/V . Moreover, using a Varshamov-type approach one is able to bound V by q2zO and
obtain a linear W of size qC−2zO .

Theorem 4.3 (Network Gilbert-Varshamov bound) Let G an acyclic network with (error
free) cut capacity C in which each link can carry a single character of an alphabet Σ of size q. If
q is sufficiently large then, the coherent capacity in the presence of an adversary that may jam
up to zO of the links of G is at least (C − 2zO)+.

Corollary 4.1 (Coherent Capacity) Let G an acyclic network with (error free) cut capacity
C. Then, the coherent capacity in the presence of an adversary that may jam up to zO of the
links of G is (C − 2zO)+.
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4.2 The Non-Coherent Case

We now consider the rate of reliable communication in the non-coherent setting in the pres-
ence of a hidden active jammer that can jam zO links of the network. In this setting neither
the network topology nor the network code are known in advance. We show that even then,
the same rate of (C − 2zO)+ is achievable as in the coherent case. In fact, interior nodes in
the network can be oblivious to the presence of adversaries, and may just perform any “good”
predesigned network coding operations (such as deterministic multicast network coding, or dis-
tributed random network coding). All the complexity is absorbed into the encoder and decoder,
which nonetheless have computational complexity that is polynomial in network parameters.

The key to such performance lies in the following observations. As noted in Section 2, if the
network performs linear network coding, the relationship between the source’s information X,
the fake information Z injected by the adversary, and the information received by the receiver
can be expressed as

Y = TX + T ′Z. (4)

This relationship between X and Y is denoted as the (linear) operator channel.
The work of [38, 39] contained the following insights. Let X , Y and Z denote the row-spaces

of the matrices X, Y , and Z. Then Equation (4) implies that the vector-space Y is just the
direct sum of the vector-spaces X and Z, i.e., the smallest vector-space containing both X and
Z. They then noted that a subspace metric dS(., .) can be defined on the set of all subspaces of
Fnq . This is as follows – for any subspaces U and V of Fnq ,

dS(U ,V) = dim U + dim V − 2 dim(U ∩ V).

It can be seen that this definition does induce a metric – in particular, the triangle inequality is
satisfied by dS(., .).

This then indicates a strategy for “good” code design for the operator channel, closely
paralleling classical algebraic code designs (such as Reed-Solomon codes). The communicating
parties choose in advance a codebook comprising of subspaces of Fnq , such that each pair of
subspaces have a subspace distance of at least 4zO + 1 between them4. In [38, 39] the authors
demonstrate that it is possible to choose such a codebook with at least q(C−2zO)(n−C) elements.
For a sufficiently large field-size q and packet-length n, this approaches qC−2zO .

The decoder then does the following – it finds the codeword in the codebook that is closest
in subspace distance to the observed space Y. Since the adversary controls at most zO links,
the dimension of Z is at most zO, and hence this decoding algorithm is guaranteed to work
correctly.

The authors of [38, 39] demonstrate computationally efficient encoding and decoding of such
codes via codes based on linearized polynomials, which are analogues of Reed-Solomon codes from

4The reason that the appropriate choice is 4zO + 1 rather than the more “’intuitive” 2zO + 1 one would expect
from classical coding theory is as follows. Each packet injected by the adversary may, in the worst case, reduce
the dimension of the row-space of TX by one, and simultaneously add a vector to it that is in the row-space of
TX ′ for some X ′ 6= X. Hence each packet injected by the adversary can change the subspace distance by up to
two. An alternative metric, the injection metric defined in [74] does not require this extra factor of two.
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classical algebraic coding theory. They then demonstrate in [71, 77, 73] alternative decoding
methods of such codes by using rank-metric decoding algorithms proposed by Gabidulin [17].

Taken together, these results imply the following elegant theorem.

Theorem 4.4 (Noncoherent Capacity for Adversarial Errors) The noncoherent capac-
ity in the presence of an adversary that may jam up to zO of the links of G is (C − 2zO)+.
This can be achieved by codes that have computational complexity O(C2n).

The problem of detecting (rather than correcting) adversarial network errors in a non-
coherent setting is considerably more straightforward. In a scheme proposed in [25] the source
appends a non-linear hash to each packet of the data contained within it. They then show that
as long as there is even one uncorrupted path from the source to the destination, then arbitrary
errors by the adversary can be detected with high probability, via a low-complexity scheme.

Related work also considers the case of random errors on links rather than adversarial errors.
In this model the matrices Z are chosen uniformly at random from the set of zO × n matrices,
rather than deliberately chosen by an adversary so as to minimize the rate at which the sender
and the receiver can communicate with each other. Hence one could in principle hope for a
higher rate than with adversarial errors. The work in [50] and subsequently the work in [76]
show that this is indeed the case. The proof in [76] is admirable in its succinctness, and we
sketch the main ideas here.

By assumption (or with high probability under random network code design as in [26]), the
transfer matrix T may be assumed to be invertible. Hence (4) may be rewritten as

Y = T (X + T−1T ′Z). (5)

Here T−1T ′Z may also be assumed to be uniformly distributed over the set of all matrices of that
dimension5. The code construction is then very similar to the random code construction in [26],
except that X is padded with rows and columns comprising entirely of zeroes. More precisely,
the first zO rows and columns of X are all set to be zero, and the remaining (C− zO)× (n− zO)
sub-matrix comprises of a (C − zO)× (C − zO) identity sub-matrix, and a (C − zO)× (n− C)
payload matrix U , as in [

0zO×zO 0C×zO 0n×C
0(C−zO)×zO I(C−zO)×(C−zO) U

]
(6)

Then it can be shown [76] that if the top left zO × zO sub-matrix of W is full rank, then by
Gauss-Jordan elimination the row-reduced form of the received matrix Y equals[

Z1 0C×zO Z2

0(C−zO)×zO TI(C−zO)×(C−zO) TU

]
(7)

But if this is the case, since T is assumed to be invertible, the information payload U can be
reconstructed from the last C − zO rows of (7). The only remaining step is to demonstrate that

5This turns out to be the worst case – if T−1T ′Z is not uniformly distributed due to rank deficiency in T−1T ′,
the problem may be transformed linearly into another one with different parameters where in fact this is the case.
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W does indeed satisfy, with high probability over Z, the rank constraint assumed above. It is
shown in [76] that for large q or n this probability is at least 1− o(1/qn−2zO).

This leads to the following theorem.6

Theorem 4.5 (Noncoherent Capacity for Random Errors) Let G an acyclic network with
(error free) cut capacity C. Then with probability at least 1 − o(1/qn−2zO) the noncoherent ca-
pacity in the presence of random packets injected on at most zO of the links of G is C − zO.
This can be achieved by codes that have decoding complexity O(C2n).

Lastly, we touch upon an alternate schema for efficient noncoherent network error correction,
proposed in [27, 28] in parallel to the work in [38, 39]. While the rates achievable are asymptot-
ically equivalent in the limit of large field-size q and packet-length n, the parameters for [27, 28]
are generally inferior, in that the required q and n are larger in [27, 28], and the computational
complexity is Θ(n3) rather than O(C2n) as in [38, 39].

However, one advantage of the proof techniques in [27, 28] is that they allow for computa-
tionally efficient “linear list-decoding”. A code is said to be l-list decodable at rate R(C, zO, q)
if, given the constraint zO on the set of error patterns, the decoder can always output a list of
size at most l which is guaranteed to contain the transmitted codeword. Further, it is said to
be linear list decodable at that rate if the list can be represented in the form of an affine shift
of a subspace of Fnq . That is, every vector in the list is of the form v + L, for some fixed vector
v and some fixed subspace L with l elements. Then

Theorem 4.6 (Linear List Decoding) There exist codes of rate C − zO that are linear qC
2
-

list decodable in the presence of an adversary that may jam up to zO of the links of G. The
computational complexity of such codes is O(C3n).

The idea is as follows. The encoder chooses a codebook comprising of qC−zO matrices X,
each of rank C − zO. Since the rank of Z is at most zO, therefore the rank of the matrix whose
rows comprise of the rows respectively of X and Z is at most C – without loss of generality, we
henceforth assume that it is in fact exactly C (if not, similar arguments hold for smaller values
of the rank).

The decoder selects C linearly independent columns of Y , and denotes the corresponding
matrix Y s. The columns of X and Z corresponding to those in Y s are denoted Xs and Zs

respectively. By (4), Y s = [T |T ′]
[
Xs

Zs

]
. Also, since Y s acts as a basis for the columns of Y ,

we can write Y = Y sF for some matrix F . The decoder can compute F as (Y s)−1 Y . Therefore
Y can also be written as

Y = [T |T ′]
[
XsF
ZsF

]
(8)

6A similar result and algorithm for random errors was also independently proposed in [88].
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Comparing (4) and (8), and again using the assumption that [T |T ′] is invertible (with high
probability) implies that

X = XsF, (9)
Z = ZsF. (10)

In particular, (9) gives a linear relationship on X that can be leveraged into a list-decoding
scheme for the decoder. The number of variables in Xs is C2. Therefore the entries of the
matrix Xs span a vector space of dimension C2 over Fq. Bob’s list is the corresponding C2-
dimensional vector space L spanned by XsF .

Such a list-decoding result is useful in a variety of settings. For instance, in [27, 28] this
result is used as the first stage of a noncoherent network error-correcting code – first this result
is used by the decoder to generate an affine subspace containing the source’s message X, and
then the decoder refines this list using extra constraints imposed on the codebook as part of
code design. Even though the size of this list is large (qC

2
) this refinement procedure can be

done computationally efficiently, since the list is affine. Another use of this list decoding result
is seen in the next section, on cryptographic protocols.

Note: A special class of errors is that of “packet erasures”. As has been observed by several
authors (see, for instance [38]), zO packet erasures, whether random or adversarial, correspond
to a rate-loss of at most zO, in contrast to a rate-loss of 2zO in the presence of adversarial errors.
Hence the best achievable rate in the presence of zO erasures is C − zO.

4.3 The Cryptographic setting

In this section we address adversarial jammers that are computationally bounded. Namely,
jammers against which one can apply certain cryptographic primitives. In this line of study, one
assumes that certain computational tasks (such as Discrete Log or Factoring) are intractable,
and based on these assumptions designs a feasible communication scheme. We show the ability
to communicate at rate C − zO in the presence of a computationally bounded adversary that
can corrupt up to zO links of the network. Notice that this improves on the rate of C − 2zO
presented in Sections 4.1 and 4.2 in which the jammer has no computational limitations. Also
notice that this rate is the best possible. Since most of the schemes described below proceed by
first detecting adversarial attacks and then discarding erroneous packets, network error-detection
is a direct by-product of the schemes.

Roughly speaking, the works we survey have one of two flavors: in-network authentication
or end-to-end authentication. In the in-network setting, one designs certain authentication
mechanisms that allow internal nodes of the network to identify information packets that have
been corrupted by the jammer. Once such faulty packets are found, the internal nodes of the
network may discard them. This reduces communication in the presence of a jammer to such in
which the jammer is absent - but some links of the network are not able to transmit information.
The latter scenario, for which standard random linear network coding schemes (e.g., [26]) allow
reliable communication, is well understood. There are several challenges in this line of study.
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These include the design of efficient signature schemes that are on one hand closed under linear
coding operations (such signature schemes are referred to as homomorphic [12, 60, 6, 4, 5, 31, 49])
and on the other do not need an elaborate infrastructure to support key distribution among
internal nodes of the network. In-network authentication indeed guarantees communication at
rate C − zO, however, in many cases a higher rate is achievable (depending on the exact links
controlled by the jammer).

In end-to-end authentication, internal nodes of the network are oblivious to the fact that
communication is done in the presence of an adversarial jammer, and follow standard coding
protocols used commonly when a jammer is absent. The presence of the jammer is dealt with by
an enhanced encoding at the source node and by specialized decoding at terminal nodes. End-
to-end schemes have obvious advantages in code management over in-network authentication,
and as in-network schemes they promise rate C − zO. However, when compared to in-network
authentication on an “instance to instance” basis it may be true that end-to-end authentication
obtains a lower rate (here the location of the jammer comes into play – end-to-end authentication
schemes assume that the adversary locates itself in a worst-case manner in the network, and
hence might be unduly pessimistic.).

In-network authentication A hash function h is referred to as homomorphic if for x =
∑

i xi
it holds that h(x) =

∑
i h(xi). Homomorphic hash functions lend themselves naturally to the

random (non-coherent) network coding scheme of Ho et al. [26]. A node receiving information
ye, and coefficients {αi} (that in the error free scenario should satisfy ye =

∑
αixi for source

information xi) may check if h(ye) =
∑
αih(xi) and by so, authenticate the received information.

Here local information h(xi) is assumed to be known at internal nodes of the network. Indeed, if
h is homomorphic and it is computationally hard for a given y to compute x such that h(x) = y,
then a corrupted ye will, with high probability, fail the authentication check.

Given the outline above it is natural to study the requirements from the local information
h(xi) specified above. In the works of Krohn et al. [41] and Gkantsidis and Rodriguez [21], the
hashes of the source information h(xi) are assumed to be reliably communicated to internal
nodes of the network (otherwise, an adversary able to forge this information may indeed inject
fake messages that will pass the internal node authentication process). Hence, a centralized
trusted authority is assumed to provide these hashes. The security of the communication scheme
suggested in [41, 21] is based on the hardness of the Discrete-Log problem.

In the works of Charles et al. [11], Zhao et al. [13], and Boneh et al. [8] the need for a reliable
channel to distribute the hash values used for authentication is obviated using the notion of
public key cryptography. In [11], the communication scheme suggested is based on the hardness
of Discrete-Log and the computational co-Diffie-Hellman problem on elliptic curves. Zhao et
al. [13] present a scheme based on linear subspace authentication which prevents the adversarial
jammer to inject a fake message v into the network given that v is not in the space V spanned
by the source information. Their scheme relies solely on the hardness of Discrete Log. Finally,
in [8], two schemes based on the linear subspace authentication paradigm of [13] are presented.
Boneh et. al [8] show that both schemes have public key sizes that are essentially optimal for
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this authentication paradigm. The first scheme of [8] is a homomorphic one and is based on
the computational Diffie-Hellman assumption, while the second scheme is a non-homomorphic
variation to the schemes of [41] and [13] which is based on the Discrete-Log problem.

Theorem 4.7 (In-network authentication) Let G an acyclic network with (error free) cut
capacity C. Using in-network authentication, the capacity in the presence of a computationally
bounded adversary that may jam up to zO of the links of G is C − zO.

End-to-end authentication Similar to the works mentioned above, in [54] Nutman and
Langberg also consider enhancing the (non-coherent) network coding scheme of Ho et al. [26].
However, in the communication scheme presented in [54] internal nodes of the network follow the
exact same protocol as specified in [26] - and are thus oblivious to the presence of an adversarial
jammer. The only changes made with respect to [26] are in the encoding and decoding procedures
of the source and terminals.

To be more precise, the protocol of [54] builds on the non-coherent schemes of Jaggi et
al. [27, 28] (which in turn builds on [26]) and has the following overall structure. In [27, 28], a
non-coherent communication scheme of rate C − zO in the presence of an unconditional jammer
(with unlimited computational power) that controls C−zO links is presented. The rate of C−zO
is not possible in light of the discussion in Section 4.1 and can only be obtained under additional
assumptions. Indeed in [27, 28], the rate C−zO is obtained under the additional assumption that
the source and terminal nodes share a low rate side channel in which they may communicate a
short secret (which is not known to the adversarial jammer). The analysis in [27, 28] is based on
the observation that allowing list decoding (as opposed to unique decoding) at terminal nodes,
rate C − zO is achievable in the presence of a jammer controlling zO links (see Theorem 4.6).
Once such a list is obtained, each terminal may pick the correct element from its list using the
secret side information transmitted. The secrecy of the side information is crucial to avoid the
jammer from imposing tailor-made errors that will imply certain lists at terminal nodes that
cannot be disambiguated using the side information.

With the list decoding results of [27, 28] in mind (or any other list decodable scheme such
as [47]), [54] considers the following natural modification. Instead of transmitting the side
information of [27, 28] over a side channel (which is not present in the current model), [54]
encrypts this information using any (not necessarily homomorphic) public key encryption scheme
and transmit the encrypted side information over the network. Assuming the jammer cannot
break the encryption scheme ensures that the side information remains secret, however the side
information still needs to be transmitted to the terminals reliably. To attain this goal, [54]
uses any one of the encoding schemes from Section 4.2 on the encrypted side information.
Using the fact that the side information is of low rate, time sharing between the encoded side
information and the coded source information yields rate C−zO. We note that to ensure reliable
communication of the side information, [54] requires that C > 2zO. This last condition is proven
in [54] to be necessary (under certain assumptions).

Theorem 4.8 (End-to-end authentication) Let G be an acyclic network with (error free)
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cut capacity C. Using end-to-end authentication, the capacity in the presence of a computation-
ally bounded adversary that may jam up to zO of the links of G is C − zO for C > 2zO.

5 Secret transmission in presence of eavesdropping and jam-
ming adversaries

5.1 The Coherent Case

In this final section we consider the interplay between eavesdropping and jamming. As we saw
in Section 3, to protect a message against an eavesdropper that can listen to zI links requires a
rate-loss of at least zI . We also saw that distributed low-complexity schemes with this rate-loss
exist and achieve a secrecy rate of C − zI . They do this essentially by linearly mixing a random
message of rate zI with the source message of rate C − zI . Thus, these schemes can thus be
thought of as a one-time pad ([64]) combined with network coding.

Next, in Section 4 we have seen that a network with a hidden adversarial jammer who
observes all transmissions, and can jam zO links, can effectively reduce the rate at which in-
formation can be transmitted from the source to the destination, down to C − 2zO. Further,
there are distributed low-complexity schemes that achieve this rate. These schemes can then
be thought of as converting an error-prone operator channel of capacity C into an error-free
operator channel of capacity C − 2zO.

In scenarios where the adversary can only observe zI transmissions in the network and jam
zO links, it is natural to ask what the best achievable rates of secret and reliable communication
are. In the case with zero errors and single-letter coding, the work of [52] shows this to be the
“natural” combination of the two above bounds, for an overall rate of C− 2zO− zI . They prove
this by similar techniques as used to bound the rates in the previous two sections. This bound was
extended by [72] and [75] to zero-error block-length coding as well. 7 Also, algorithms meeting
these bounds are presented for the coherent case in [51] (for block coding) and [52] (for single-
letter coding). These algorithms essentially work by merging the algorithms in the previous two
sections – first they construct a coding scheme that converts the error-prone operator channel
into an error-free operator channel of rate C−2zO, and on this channel they overlay a “one-time
pad + network coding” scheme that ensures secrecy against a wiretapping adversary, which
further reduces the rate to the overall rate of C− 2zO− zI . This leads to the following theorem.

Theorem 5.1 ([51], [52], [72],[75]) The maximal rate at which secret information can be re-
liably communicated (with zero-error) over a network containing a hidden adversary who can
eavesdrop on zI links and jam zO links is C − 2zO − zI .

Interestingly, if one relaxes the requirement to zero-error to one of “small” error (asymptot-
ically small in the field-size or block-length), then the upper bound of C − 2zO − zI no longer

7In fact [72] prove the more general lower bound of C − 2zO − zI − ρ, where ρ is the number of (possibly
adversarially located) erasures.
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holds – only a bound of C − zO − zI can be shown. And in fact, as we shall see in the next
sub-section, this higher rate is in fact achievable with low-complexity code designs.

5.2 The Non-Coherent Case

The work of in [72], [75] extends the results of Section 5.1 to give universal code designs. That is,
given an arbitrary linear network code such that the rank of the linear transform is C, [72], [75]
present an end-to-end scheme that treats the network code as an operator channel, and achieves
the secrecy rate of C− 2zO− zI as in Section 5.1. These constructions are based on rank-metric
codes – it is shown that such codes are good not just for error-correction as in Section 4.2, but
also simultaneously for secrecy-preserving linear mappings at the source.

Further work in [86] demonstrated that as long as the sum of the adversarys jamming rate zO
and his eavesdropping rate zI is less than the network capacity C, (i.e., zO+zI < C), there exist
codes with low computational complexity that can communicate (with vanishingly small error
probability) a single bit correctly and without leaking any information to the adversary. This is
then combined with a “secret-sharing” result of [27, 28] to design codes that allow communication
at the optimal source rate of C − zO + zI while keeping the communicated message secret from
the adversary. In particular, the secret-sharing result of [27, 28] implies:

Theorem 5.2 ([27, 28]) If in a network containing a hidden adversary who can jam at most
zO links, εn bits (for any fixed ε > 0) can be secretly and reliably transmitted from the source
to the destination, then in fact (C − zO − zI)n bits can be secretly and reliably transmitted from
the source to the destination.

The main idea behind Theorem 5.2 is as follows. If the source node generates a “small” secret
linear hash of its information and sends it to the receiver over a secret and reliable channel, then,
using the linear list decoding result of Theorem 4.6, with high probability the receiver is able to
refine the list down to a single element.

It only remains to describe a protocol to secretly and reliably share a bit over the network (one
that may emulate a secret and reliable channel). To do this [86] use the following straightforward
“rank modulation” protocol. If the bit to be shared is a 0, then the source’s message is a
matrix (over a short block-length, and hence asymptotically negligible in the true block-length
corresponding to the packet-size) of rank C − zO − 1. Else its message is a random matrix of
rank C. The decoder decodes by estimating the rank of the received matrix. If it equals C, it
decodes the secret bit as 1, else it decodes to 0.

To check that the above protocol succeeds with high probability one needs to check both its
secrecy and the reliability. Secrecy is guaranteed since the adversary eavesdrops on at most zI
transmissions, which, due to the random linear mixing in the network and the constraint that
C − zO − zI > 0, are not enough for it to be able to distinguish between a source message of
rank C− zO−1, and a source message of rank C packets. Reliability is due to the following two
arguments. First, since the adversary can inject at most zO packets, if the source’s message was
0 and so it transmits a matrix of rank C − zO − 1 the rank of the received matrix must still be
less than C. Conversely, if the source’s message was 1 and hence it transmitted a truly random
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matrix of rank C, since the adversary does not know what this matrix is, the probability that
it is able to reduce the rank of the received matrix is small.

6 Some other variants

We summarize here some of the other work on topics related to secure and reliable communica-
tion over networks, which do not fall neatly into previous sections.

• The work in [63, 36, 37] considers network error-correction problems in scenarios where
links have unequal capacities – a complete characterization of achievable rates in this case
is still open.

• Kosut et al. [55, 56] consider the problem where nodes rather than edges are adversarially
controlled. Here, again, the rate-region is yet to be fully characterized. Reliable com-
munication using network coding in the presence of untrusted nodes is also considered in
[82].

• Multiple-access variants of network error-correction have been considered in, [68, 70, 69,
84, 81].

• As an analogue of the classical algorithms for point-to-point channels considered in [22],
the work of [47] presents non-trivial list-decoding algorithms of network error-correcting
codes.

• The work of [59] considers the problems of reliability and secrecy for distributed data
storage.

• The problem of finding the actual location of errors in the network has been considered
in, among other works, [15, 16, 67, 65, 19, 66, 23, 85].

• In [45, 80], a Secure Practical Network Coding scheme (SPOC) is suggested that allows
private communication against a computationally bounded adversary that may eavesdrop
on all communication transmitted over the network. At its core, SPOC runs a modified
variant of random linear coding [26] in which the header of each packet (containing the
coding coefficients) is encrypted and unknown to the adversary while the body of the
packet (containing the encoded information via network coding) is sent in the clear.

• The authors of [35, 33, 34] consider error detection in wireless networks in which adversarial
nodes may behave maliciously. Using the algebraic watchdog scheme, upstream nodes can
detect malicious behaviors probabilistically by taking advantage of the broadcast nature
of the wireless medium.
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7 Discussion

This chapter gives a brief summary of the coding schemes used in multicast network coding in the
presence of passive and active jammers. We have seen that non-coherent secure communication
at rate C − zI is possible in the presence of a passive eavesdropper that controls zI links of
the network. This rate in the best possible, even when considering coherent communication
schemes. For active jammers, we have shown that non-coherent reliable communication at rate
C − 2zI is possible in the presence of a jammer that controls zO links of the network. If the
jammer is computationally limited, a higher rate of C − zO is achievable. As before, these rates
are the best possible, even when considering coherent communication schemes. Finally, when
communicating in the presence of adversaries that may jam zO links and eavesdrop on zI links,
communication which is both secure and reliable is possible at a tight rate of C − 2zO − zI (or
C − zO − zI once one allows a small probability of error). The algorithmic techniques presented
cover several paradigms and include tools from the study of combinatorics, linear algebra, and
coding theory. The chapter at hand has addressed the task of multicast in acyclic networks.
Understanding the power of network coding in a more general setting with or without adversaries
remains an intriguing field of study that will surely evolve over the decades to come.
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