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Abstract

In this paper, we study the multiple unicast network comroation problem on undirected graphs. It has been
conjectured by Li and Li [CISS 2004] that, for the problem ahd, the use of network coding does not allow any
advantage over standard routing. Loosely speaking, we shatwinder certain (strong) connectivity requirements
the advantage of network coding is indeed bounded.by

. INTRODUCTION

In the network coding paradigm, internal nodes of the netwoay mix the information content of the received
packets before forwarding them. This mixing (or encodinfghtormation has been extensively studied over the last
decade, e.g., [2], [11], [9], [7], [6]- While the advantagd#snetwork coding in themulticastsetting are currently
well understood, this is far from being the case in the cantégeneralnetwork coding. In particular, determining
the capacity of a general network coding instance is a loagdstg open problem, e.g., [3], [14].

In the general network coding problem, a set of source nddgs C V, wishes to transmit information to
a set of terminal node$t;} C V, according to a set of source/terminal requiremeftts, ¢;)} (implying that
terminal¢; is interested in the information available at sousge For directed networks it was shown in [4] that
any general network coding problem can be reduced to a rasltipicast network coding instance in which there
are k source/terminal pairés;, t;) and the objective is to design a coding scheme which allgws recover the
information present at;. Unlike the multicast scenario, determining the capacfty &-unicast network coding
instance is a long standing open problem. Specifically, cuisently not known whether this problem is solvable in
polynomial time, is NP-hard, or maybe it is even undecidgbig (the undecidability assumes that the alphabet size
can be arbitrary and unbounded). Nevertheless, it is kndvah there is an unbounded gap between the capacity
of the k-unicast problem in the directed network coding setting pgosed to the traditional setting of routing
(were no encoding at internal nodes is allowed), e.g., [bjsGap even holds for the simpler multicast scenario.
The advantage of using network coding over traditionalinguis the central theme discussed in this paper and is
denoted throughout as tleeding advantage

Network coding inundirectednetworks has received considerably less attention fronrékearch community.

In such settings, the network is modeled by an undirecteglgéa= (V, E). Each link (v,u) € E can transmit
the information in both directions, i.e., fromto » and fromu to v, subject to the restriction that the total amount
of information transmitted over linkv, ») does not exceed its capacity.

The problems of unicast, broadcast, and multicast in uogicenetworks were studied by Li and Li in [12].
It was shown that for unicast and broadcast there is no adganh the use of network coding over traditional
routing. For the case of multicast, the coding advantageshiag/n to be at most, which complements the result
of [1] stating that this advantage may be at le&&t. Little is known regarding the coding advantage for the more
generalk-unicast setting. To this day, the possibility that the addage be unbounded (i.e., a function of the size
of the network) has not been ruled out in the literature. IR],[113] it is conjectured that for undirected graphs
there is no coding advantage at all. This fact was verifiedemerml special cases such as bipartite graphs [8], [5]
and planar graphs [13] however is still open in general.

Loosely speaking, the Li and Li conjecture states that anreotd graph allowing &-unicast connection using
network coding also allows the same connection using rgutim this work we address a relaxed version of this
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Fig. 1. (a) The flow F» equals the (disjoint) union of the flow§ . for : = 1,...,k (herek = 5). Notice that each flow of typ¢; > may
consist of multiple paths connecting andt». For example, in the figure, the floyi » consists of 2 disjoint paths (each of half the capacity)
and the flowfs > consists of a single patlfb) The flows corresponding tg¢; in the proof of Lemma 1. Some of the flows connegtand

to “directly”, while others are routed via relay nodes and sz. Notice, that in both(a) and (b), we represent our grapfi schematically
by drawing the source and terminal nodes only.

conjecture. Our relaxation has the following flavor. We shibnat an undirected graph allowingore than ak-
unicast connection using network coding valmostallow a k-unicast connection using routing. The question here
is how exactly do we define “more” and “almost”.

Recall that in theék-unicast problem, there afesources(sy, ..., sx}, k terminals{t;, ..., t;}, and one is required
to design an information flow allowing each sourgeto transmit information to its corresponding terminal
In the k-multicast problem, one is required to design an information flow allgyvieach source; to transmit
information to all the terminalqty,...,t;}. Clearly, requiring that a network allows /amulticast connection
implies the corresponding-unicast connection. In this work we show that an undiredesbh allowing ak-
multicast connection at rate- using network coding will allow the correspondirigunicast connection at rate
closeto r, namely at rate-/3. The proof of our result is very simple in nature, and is based certainflow
decompositiorof the graph at hand.

We would like to stress that in our comparison of coding vensiting we are considering multiple-multicast
coding rate on one hand and multiple unicast routing raténerother. Considering the multiple unicast problem on
both ends (as in th&-unicast conjecture) remains an intriguing open problemaddition, we note that (although
strongly related) the term of“multicast” and the standard notion of “multicast” (in whithere is a single source)
have subtle differences that seem central to the work at.Hakdelaborate on these differences in Section I-C.

We further observe that our result implies an appealjnglitative statement regarding the use of network coding.
Let G = (V, E) be a directed graph. We denote 6y= (V, E)) the undirectedgraph obtained fronG in which
each directed edge = (u,v) in E appears as an undirected edgev) in E. Our result outlined above now
implies the following statement. Given a directed graplwhich allows k-multicast communication at rate on
k source/terminal pairgs;,t;), by undirecting the edges a (to obtainG) one can obtain a feasible-unicast
routing solution of rate at least/3. Namely, this implies the following informal statement:

Statement 1:in the setting in which one is guarantekdnulticast communication, but requires oriyunicast:
undirecting the edges a¥ is as strongas allowing network coding (up to a factor 8.

A. Preliminaries

Let G = (V, E) be a directed graph. We denote &y= (V, E) the undirectedgraph obtained frond> in which
each directed edge = (u,v) of capacityc, in E appears as an undirected edgev) of capacityc, in E. For
simplicity we will considerc, = 1 throughout this work. Our results extend naturally to a#it edge capacities.

We consider thek-unicast problem on directed and undirected networks. F@ced networks, an instance
of the problem is a grapl’ and & source terminal pair$s;,t;) in G. The objective is to trasmitt information
generated at sourcg to terminalt; at maximal rate. The information generated at differentreesi is assumed
to be independent. For a rigorous and detailed definitiorhefttansmission rate and capacity of network coding
instances see for example [14].

We define themultiple unicast routing ratef G, denoted a%zz(G), as the maximum value such that there
exists a routing scheme which enables communication betweery sources; and its corresponding terminaj
at rater. Equivalently,Ugz (G) equals the value of the multicommodity flow on the instanckaatd. We define the



multiple unicast coding ratef G, denoted adicr(G), as the maximum value such that there exists a network
coding scheme which enables communication between everrges;, and its corresponding termingl at rater.
The k-unicast problem on undirected grapiss defined similarly. Roughly speaking, a routing scheméwoek
coding scheme) of is said to satisfy the capacity requirements’bff one can direct the edges ¢f to obtain a
directed graphH for which the scheme still satisfies the capacity requirdsiehH . In this process, an undirected
edge(u,v) of capacityc can be turned into two directed edgesv) and (v, u) of capacities:; andc, respectively,
for any c; + co = c. More formally, we seek a directed gragh = (V, Ey) for which H = G and the scheme
at hand satisfies the capacity requirementgfofHere, we considefl = G iff the graphs have the same edge set
and edge capacititeg/ is sometimes referred to as amientationof G. We define the routing ratézg (G) and

coding rateUcg (G) accordingly.

Multiple unicast conjecture [12], [13]: In [12], [13], Li and Li conjectured that in an undirected wetk G with
multiple unicast sessions, network coding does not leadyocading advantage. Namely, that

Conjecture 1 ([12], [13]): For an undirected grap@' it holds thatUcy(G) = U (G).

An equivalent way to phrase this conjecture is:

Conjecture 2:For any directed grapty it holds thatUcg (G) < Ups(G).

This can be interpreted as follows. Given a directed gr@pivhich allows coding rat&c(G), by undirecting
the edges of7 one can obtain a feasible routing solution of rate at 18agt=). Namely, this implies the following
informal statement‘Undirecting the edges of G is as strong as allowing network coding”. For completeness,
we prove the equivalence between the two conjectures.

Proof: Assume that Conjecture 1 holds. Namely thiat(G) = Upr(G). As Ur(G) < Ues(G), we conclude

that Ucg (G) < Ucr(G) = Urs(G). Assume now that Conjecture 2 holds. LEtbe the directed graph for which

H = G andUg(H) = Ucr(G). Namely, H is the directed graph thaealizesUc(G). Now by Conjecture 2,

Ucr(G) = Uer(H) < Upr(H) = Upr(G). As it always holds thatcg(G) > Upr(G), we conclude Conjecture 1. m

B. Our result

In this work we prove a relaxed version of Conjecture 1 and &.9¢drt by some definitions. Lét be a directed
graph and{(s;, t;)}%_, be a set ok source/terminal pairs. We say thatallows k-multicast communication of rate
r (or thatMe (G) = r) between the sourcds, ..., sy} and the terminalgtq, ..., tx} if there is a network coding
scheme which allows each terminglto recover the information (of entropy present at each one of the sources.
Again, for a rigorous and detailed definition of the transiua rate and capacity of network coding instances see
for example [14].

It is not hard to verify tha¥c (G) > 0 only if G contains a path between each sourcand terminak;. We refer
to such graphgs asstrongly connectedWe say that a directed gragh has strong connectivitgc(G) = r if for
every terminak;, j = 1,..., k, there exists aalid multicommodity flowF; consisting ofk disjoint flows{f; ;}¥_,
where eaclhy; ; connectss; andt; with capacityr. See Figure 1(a). Here and throughout, a multicommodity flow
F is valid if in taking all (disjoint) flowsf € F' together, one does not exceed the given edge capacitissedisy
to verify that the strong connectivity @¥ equals the capacityc (G). For completeness, the proof is given below.

Claim 1: Meg(G) = SC(G).

Proof: In what follows, we assume th&8C(G) = 1 or Meg(G) = 1 (the proof extends naturally to the general
case ofr > 1 as well). Assume thatC(G) = 1. The first direction of our assertion now follows sinGesatisfies
the so-callednulticast requirementdNamely, enhancé& by adding a new node connected by an edge of unit
capacity to all sources;. Denote the enhanced graph 6y. Consider the multicast df units of information over
G, from s to all terminalst;. As SC(G) = 1, the minimum cut between and each; in G, is at leastk. This
implies the existence of a network code o¥&r which allows the required multicast, e.g., [11]. Adas exactly
k outgoing edges of unit capacity, we may assume w.l.o.g. ithélhis network coding scheme no encoding is
performed on the edges leaving It is now not hard to verify that the exact same coding scheren applied
on the original graphG’ will allow each terminalt; to recover the information of all sources, implying that
MCR(G) 2 1.

Now assume thallcg(G) = 1. As before consider the graphs. The coding scheme aff directly implies a
multicast coding scheme fa¥,, which in turn imply for each terminal a flow from s to ¢; of capacityk, e.g.,



Communication taslﬂ Notation with coding| Notation without coding Coding advantage

Multiple multicast Mer(G) = SC(G) Not referred to in this work At least8/7 [1]
Multiple unicast Uer(G) Una(G) Unknown, see conjecture of [12], [13]
TABLE |

A SUMMARY OF THE NOTATION USED THROUGHOUT THIS WORKLET G BE AN UNDIRECTED GRAPH FOR THE MULTIPLE MULTICAST

SCENARIO, IT HOLDS THAT Mz (G) = SC(G) (A SLIGHT VARIANT OF CLAIM 1). THE GAP BETWEEN ROUTING AND CODING IN THIS
CASE IS AT LEAST THAT OF THE(SINGLE SOURCBH MULTICAST CASE, WHICH IS AT LEAST 8/7 [1]. FOR THE MULTIPLE-UNICAST

SCENARIO IT HOLDS THATUc (G) > Upn(G), HOWEVER NO GAP IS KNOWN TO EXISTIN A SENSE IN THIS WORK WE COMPAREapples

and orangesNAMELY, WE COMPAREM (G) AND Uss (G). WE NOTE THAT THE TABLE ABOVE REFERS TO UNDIRECTED GRAPHE/. THE
RATE OBTAINABLE FOR ANY DIRECTED ORIENTATIONG OF G IS AT MOST THAT OF G (IN ALL THE SETTINGS ABOVE).

[14]. As the edges leaving are all unit capacity, that latter implies a set of disjoiruw { f; ;};, where f; ;
connectss; andt; with unit capacity. This in turn implies th&c(G) > 1. |

The result of this work can be summarized in the followingotteen. Before we state our theorem, we refer the
reader to a summary of our notation in Table I.

Theorem 1:Let G be a directed graph anfls;,#;)}*_, be a set oft source terminal pairs. The3Ugs(G) >
MCR(G).

We note that one may phrase Theorem 1 in the following eqemtahanner: LetG be an undirected graph and
{(si,t:)}¥_| be a set ofk source terminal pairs. The3Ups(G) > Mcr(G). To put our result in perspective, we
further elaborate on the results and proof techniques aimgeia [12].

C. Comparison to techniques of [12]

Let G be a directed graph. In the network codimylticastscenario, there is a single sourgevhich wants to
transmit the exact same information to a sulisef terminals inG. In the work of [12] the task of multicasting over
undirected graph& was studied. Using our notation, it was shown in [12] thatG) > SC(G) > SC(G) = Mer(G).

Here 7(G) is the multicast routing rate, argt(G) is the (minimum over the) Min-Cut betweenand terminals
t; € T denoted by in [12]. The result of [12] is similar in nature to our main uits In fact, the constant of
in the work of [12] beats the constaBtappearing in our result. However, the multicast scenafierdi from that
of k-multicast studied in this work in the sense that there is ingle source node but ratherk source nodes
S1y+«-5Sk-

In a nutshell, the crux of the proof of [12] includes a redoitin which the multicast instana@ undergoes
severalsplitting modifications, until it is turned into an instan€® to the broadcastproblem (in which the terminal
set includes the entire vertex set@f). Roughly speaking, this reduction preserves the (relatigpp between the)
values ofr(G’) andSC(G’) when compared to that of(G) and SC(G). Once turned into a broadcast instance, it
is proven thar(G’) > SC(G’). This implies thalr(G) > SC(G) > SC(G) = M (G).

To the best of our judgment, the reduction used in [12] dodsadapt to thek-multicast scenario addressed
in this work. The main reason being the lack of a single sodrgeverning the multicast connection. One may
attempt to use the reduction of [12] combined with the idea€laim 1 in which we transform a multi-source
instance into a single source instance. However, in sueimats, the reduced graph will have diverse connectivity
and will no longer match the broadcast scenario of [12] asdhitalysis.

I[I. PROOF OFTHEOREM1

As before we assume thiagz (G) = 1, and use the fact that this implies(G) = 1 (Claim 1). The proof extends
naturally to the general case as well (in whitg(G) = r). Consider the graphy. Clearly, asSC(G) = 1 it holds
that SC(G) = 1 also. We now prove the following Lemma which implies tiias(G) > 1/3. This will conclude
our proof.

Lemma 1:Let £ > 2. If for every j = 1,...,k there exists a valid multicommodity flow; consisting
of k disjoint flows {f; ;}¥ , where eachf; ; connectss; and¢; with unit capacity; then there exists a valid
multicommodity flow F™* consisting ofk disjoint flows f connectings; to ¢;, each of capacity /3.



Proof: Consider the familyF of unit capacity flowsJU;F; = {fi;]i,j € [k]}. Here, and throughoutk] =
{1,2,...,k}. The family F is not necessarily a valid multicommaodity flow &, in the sense that taking all flows in
F one may exceed certain edge capacities. We first start byimgfrvariant ofF that is indeed a multicommodity
flow in G. Recall, that eaclt; = {f;;|i € [k]} is a valid multicommodity flow inG. Moreover,U;F; = F. Thus, it
holds that reducing the capaC|ty of flowsnfrom unit value to a value oﬁ will result in a valid multicommodity
flow. Let J—H be the set of flows appearing if after their capacity has been reduced—to

We now, reflne the fam|Iy7-'1 as follows: for each flow;; € ]-'1 of capacr[yk we define3k — 4 identical flows

{ Y2k each of capac|t),;(3k,—4 Denote the new collection of flows b?;? ={f! i, € [k, €€ [3k—4]}.
It |s not hard to verify that?-" F is a valid multlcommodlty flow.

Finally, we turn the valid multlcommodlty flow-“ into a flow F* = {f*|i € [k]} as asserted. It suffices to

define f* for eachi € [k]. The flow f;* will consist of two types of flows. The first type of flows will noects;
andt; directly. Namely, we add tg7, 2k — 3 flows ff, from the setF__.__. The second flow type will connest

k3k4

andt; via two “relays”t, andsz. Namely, for eachy, 3 € [k] \ {i} we WI|| add to f a flow fé from s; to t,;
the reverseof a flow fé from t, to sg; and a rowfé from s3 to t;. See Figure 1(b) These three flows together
will connects; andt;. All in all, to constructf;* we use the following flows oﬂ-‘
o 2k — 3 copies of f;.
« For eacha € [k] \ {i}: k — 1 copies Offi4.
o For eachs € [k] \ {i}: k — 1 copies offg,.
o For eacha, 3 € [k]\ {i}: 1 copy of f3,.
The total amount of flow frony; to ¢; will be

(2k=3)+(k—1)?*  k*—2 1

KBk—4)  EBk—4) 3
It remains to show that™ = {f|i € [k]} is indeed a valid multicommodity flow. Namely, that it usesety
the flows of #__. _ as its building blocks. Let # j. In the process of constructing the flows Aff we use flows

k’ik4

of type fg exactly3k 4 times: (k — 1) times when constructing;’; (k — 1) times when constructing;; and
once for eachf* whena # i anda # j. The same goes for the floy: (2k — 3) times when constructing;;
and once for eaclf; whena # i. [ |

IIl. CONCLUSIONS

We have shown that, in undirected graphs that-as&ongly connected, the use of network codingienulticast
is comparable (within a factor of 3) to the routing rate of ahitaary set ofk unicast connections. Our results
address a relaxed version of the Li and Li conjecture, usidgfarent approach to that used by Li and Li, which
does not extend gracefully to our setting. We would like t@sd that in our comparison of coding verses routing
we are considering-multicast coding rate on one hand akdinicast routing rate on the other. Considering the
multiple unicast problem on both ends (as in thenicast conjecture) remains an intriguing open problem. A
interesting consequence of our result is that the bulk ofitheantage (in our setting) of coding versus not coding in
directed graphs may be obtained through considering amestdd version of the graph. This may have interesting
consequences for wireless networks, since they are ggnaralirected. While it may at first blush seem that our
results imply a bound of a factor of for the advantage ok-multicast coding versug-unicast non-coding in
wireless networks, such a conclusion would misinterpretreaults. Indeed, broadcast and half-duplex constraints
do not in general allow us to operate a wireless network agfaitrary undirected network.

There are several interesting directions for future worle. 8foose to mention the one that motivated this work:
Can one prove the Li and Li conjecture when restricted to lygahat arer-strongly connected? Namely, given
such graphs, can one show no (or a limited) advantage fongddithe multiple unicast setting, thus proving the
Li and Li conjecture at least for-strongly connected networks.
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