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Abstract

In this paper, we study the multiple unicast network communication problem on undirected graphs. It has been
conjectured by Li and Li [CISS 2004] that, for the problem at hand, the use of network coding does not allow any
advantage over standard routing. Loosely speaking, we showthat under certain (strong) connectivity requirements
the advantage of network coding is indeed bounded by3.

I. INTRODUCTION

In the network coding paradigm, internal nodes of the network may mix the information content of the received
packets before forwarding them. This mixing (or encoding) of information has been extensively studied over the last
decade, e.g., [2], [11], [9], [7], [6]. While the advantagesof network coding in themulticastsetting are currently
well understood, this is far from being the case in the context of generalnetwork coding. In particular, determining
the capacity of a general network coding instance is a long standing open problem, e.g., [3], [14].

In the general network coding problem, a set of source nodes{si} ⊆ V , wishes to transmit information to
a set of terminal nodes{tj} ⊆ V , according to a set of source/terminal requirements{(si, tj)} (implying that
terminal tj is interested in the information available at sourcesi). For directed networks it was shown in [4] that
any general network coding problem can be reduced to a multiple-unicast network coding instance in which there
are k source/terminal pairs(si, ti) and the objective is to design a coding scheme which allowsti to recover the
information present atsi. Unlike the multicast scenario, determining the capacity of a k-unicast network coding
instance is a long standing open problem. Specifically, it iscurrently not known whether this problem is solvable in
polynomial time, is NP-hard, or maybe it is even undecidable[10] (the undecidability assumes that the alphabet size
can be arbitrary and unbounded). Nevertheless, it is known that there is an unbounded gap between the capacity
of the k-unicast problem in the directed network coding setting as opposed to the traditional setting of routing
(were no encoding at internal nodes is allowed), e.g., [1]. This gap even holds for the simpler multicast scenario.
The advantage of using network coding over traditional routing is the central theme discussed in this paper and is
denoted throughout as thecoding advantage.

Network coding inundirectednetworks has received considerably less attention from theresearch community.
In such settings, the network is modeled by an undirected graph G = (V,E). Each link (v, u) ∈ E can transmit
the information in both directions, i.e., fromv to u and fromu to v, subject to the restriction that the total amount
of information transmitted over link(v, u) does not exceed its capacity.

The problems of unicast, broadcast, and multicast in undirected networks were studied by Li and Li in [12].
It was shown that for unicast and broadcast there is no advantage in the use of network coding over traditional
routing. For the case of multicast, the coding advantage wasshown to be at most2, which complements the result
of [1] stating that this advantage may be at least8/7. Little is known regarding the coding advantage for the more
generalk-unicast setting. To this day, the possibility that the advantage be unbounded (i.e., a function of the size
of the network) has not been ruled out in the literature. In [12], [13] it is conjectured that for undirected graphs
there is no coding advantage at all. This fact was verified on several special cases such as bipartite graphs [8], [5]
and planar graphs [13] however is still open in general.

Loosely speaking, the Li and Li conjecture states that an undirected graph allowing ak-unicast connection using
network coding also allows the same connection using routing. In this work we address a relaxed version of this
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Fig. 1. (a) The flow F2 equals the (disjoint) union of the flowsfi,2 for i = 1, . . . , k (herek = 5). Notice that each flow of typefi,2 may
consist of multiple paths connectingsi andt2. For example, in the figure, the flowf1,2 consists of 2 disjoint paths (each of half the capacity)
and the flowf2,2 consists of a single path.(b) The flows corresponding tof∗

2 in the proof of Lemma 1. Some of the flows connects2 and
t2 “directly”, while others are routed via relay nodestα and sβ . Notice, that in both(a) and (b), we represent our graphG schematically
by drawing the source and terminal nodes only.

conjecture. Our relaxation has the following flavor. We showthat an undirected graph allowingmore than ak-
unicast connection using network coding willalmostallow ak-unicast connection using routing. The question here
is how exactly do we define “more” and “almost”.

Recall that in thek-unicast problem, there arek sources{s1, . . . , sk}, k terminals{ti, . . . , tk}, and one is required
to design an information flow allowing each sourcesi to transmit information to its corresponding terminalti.
In the k-multicast problem, one is required to design an information flow allowing each sourcesi to transmit
information to all the terminals{t1, . . . , tk}. Clearly, requiring that a network allows ak-multicast connection
implies the correspondingk-unicast connection. In this work we show that an undirectedgraph allowing ak-
multicast connection at rater using network coding will allow the correspondingk-unicast connection at rate
close to r, namely at rater/3. The proof of our result is very simple in nature, and is basedon a certainflow
decompositionof the graph at hand.

We would like to stress that in our comparison of coding verses routing we are considering multiple-multicast
coding rate on one hand and multiple unicast routing rate on the other. Considering the multiple unicast problem on
both ends (as in thek-unicast conjecture) remains an intriguing open problem. In addition, we note that (although
strongly related) the term of “k-multicast” and the standard notion of “multicast” (in which there is a single source)
have subtle differences that seem central to the work at hand. We elaborate on these differences in Section I-C.

We further observe that our result implies an appealingqualitativestatement regarding the use of network coding.
Let G = (V,E) be a directed graph. We denote bȳG = (V, Ē) the undirectedgraph obtained fromG in which
each directed edgee = (u, v) in E appears as an undirected edge(u, v) in Ē. Our result outlined above now
implies the following statement. Given a directed graphG which allowsk-multicast communication at rater on
k source/terminal pairs(si, ti), by undirecting the edges ofG (to obtainḠ) one can obtain a feasiblek-unicast
routing solution of rate at leastr/3. Namely, this implies the following informal statement:

Statement 1:In the setting in which one is guaranteedk-multicast communication, but requires onlyk-unicast:
undirecting the edges ofG is as strongas allowing network coding (up to a factor of3).

A. Preliminaries

Let G = (V,E) be a directed graph. We denote byḠ = (V, Ē) the undirectedgraph obtained fromG in which
each directed edgee = (u, v) of capacityce in E appears as an undirected edge(u, v) of capacityce in Ē. For
simplicity we will considerce = 1 throughout this work. Our results extend naturally to arbitrary edge capacities.

We consider thek-unicast problem on directed and undirected networks. For directed networks, an instance
of the problem is a graphG and k source terminal pairs(si, ti) in G. The objective is to trasmitt information
generated at sourcesi to terminal ti at maximal rate. The information generated at different sources is assumed
to be independent. For a rigorous and detailed definition of the transmission rate and capacity of network coding
instances see for example [14].

We define themultiple unicast routing rateof G, denoted asURR(G), as the maximum valuer such that there
exists a routing scheme which enables communication between every sourcesi and its corresponding terminalti
at rater. Equivalently,URR(G) equals the value of the multicommodity flow on the instance athand. We define the



multiple unicast coding rateof G, denoted asUCR(G), as the maximum valuer such that there exists a network
coding scheme which enables communication between every sourcesi and its corresponding terminalti at rater.

Thek-unicast problem on undirected graphsḠ is defined similarly. Roughly speaking, a routing scheme (network
coding scheme) on̄G is said to satisfy the capacity requirements ofḠ if one can direct the edges of̄G to obtain a
directed graphH for which the scheme still satisfies the capacity requirements of H. In this process, an undirected
edge(u, v) of capacityc can be turned into two directed edges(u, v) and(v, u) of capacitiesc1 andc2 respectively,
for any c1 + c2 = c. More formally, we seek a directed graphH = (V,EH) for which H̄ = Ḡ and the scheme
at hand satisfies the capacity requirements ofH. Here, we consider̄H = Ḡ iff the graphs have the same edge set
and edge capacitites.H is sometimes referred to as anorientation of Ḡ. We define the routing rateURR(Ḡ) and
coding rateUCR(Ḡ) accordingly.

Multiple unicast conjecture [12], [13]: In [12], [13], Li and Li conjectured that in an undirected network Ḡ with
multiple unicast sessions, network coding does not lead to any coding advantage. Namely, that

Conjecture 1 ([12], [13]): For an undirected graph̄G it holds thatUCR(Ḡ) = URR(Ḡ).
An equivalent way to phrase this conjecture is:
Conjecture 2:For any directed graphG it holds thatUCR(G) ≤ URR(Ḡ).
This can be interpreted as follows. Given a directed graphG which allows coding rateUCR(G), by undirecting

the edges ofG one can obtain a feasible routing solution of rate at leastUCR(G). Namely, this implies the following
informal statement:“Undirecting the edges ofG is as strong as allowing network coding”. For completeness,
we prove the equivalence between the two conjectures.

Proof: Assume that Conjecture 1 holds. Namely thatUCR(Ḡ) = URR(Ḡ). As UCR(G) ≤ UCR(Ḡ), we conclude
that UCR(G) ≤ UCR(Ḡ) = URR(Ḡ). Assume now that Conjecture 2 holds. LetH be the directed graph for which
H̄ = Ḡ and UCR(H) = UCR(Ḡ). Namely, H is the directed graph thatrealizesUCR(Ḡ). Now by Conjecture 2,
UCR(Ḡ) = UCR(H) ≤ URR(H̄) = URR(Ḡ). As it always holds thatUCR(Ḡ) ≥ URR(Ḡ), we conclude Conjecture 1.

B. Our result

In this work we prove a relaxed version of Conjecture 1 and 2. We start by some definitions. LetG be a directed
graph and{(si, ti)}

k
i=1 be a set ofk source/terminal pairs. We say thatG allowsk-multicast communication of rate

r (or thatMCR(G) = r) between the sources{s1, . . . , sk} and the terminals{t1, . . . , tk} if there is a network coding
scheme which allows each terminaltj to recover the information (of entropyr) present at each one of the sources.
Again, for a rigorous and detailed definition of the transmission rate and capacity of network coding instances see
for example [14].

It is not hard to verify thatMCR(G) > 0 only if G contains a path between each sourcesi and terminaltj. We refer
to such graphsG asstrongly connected. We say that a directed graphG has strong connectivitySC(G) = r if for
every terminaltj, j = 1, . . . , k, there exists avalid multicommodity flowFj consisting ofk disjoint flows{fi,j}

k
i=1

where eachfi,j connectssi andtj with capacityr. See Figure 1(a). Here and throughout, a multicommodity flow
F is valid if in taking all (disjoint) flowsf ∈ F together, one does not exceed the given edge capacities. It is easy
to verify that the strong connectivity ofG equals the capacityMCR(G). For completeness, the proof is given below.

Claim 1: MCR(G) = SC(G).
Proof: In what follows, we assume thatSC(G) = 1 or MCR(G) = 1 (the proof extends naturally to the general

case ofr > 1 as well). Assume thatSC(G) = 1. The first direction of our assertion now follows sinceG satisfies
the so-calledmulticast requirements. Namely, enhanceG by adding a new nodes connected by an edge of unit
capacity to all sourcessi. Denote the enhanced graph byGs. Consider the multicast ofk units of information over
Gs from s to all terminalstj. As SC(G) = 1, the minimum cut betweens and eachtj in Gs is at leastk. This
implies the existence of a network code overGs which allows the required multicast, e.g., [11]. Ass has exactly
k outgoing edges of unit capacity, we may assume w.l.o.g. thatin this network coding scheme no encoding is
performed on the edges leavings. It is now not hard to verify that the exact same coding schemewhen applied
on the original graphG will allow each terminaltj to recover the information of all sourcessi, implying that
MCR(G) ≥ 1.

Now assume thatMCR(G) = 1. As before consider the graphGs. The coding scheme ofG directly implies a
multicast coding scheme forGs, which in turn imply for each terminalj a flow from s to tj of capacityk, e.g.,



Communication task Notation with coding Notation without coding Coding advantage

Multiple multicast MCR(Ḡ) = SC(Ḡ) Not referred to in this work At least8/7 [1]

Multiple unicast UCR(Ḡ) URR(Ḡ) Unknown, see conjecture of [12], [13]

TABLE I
A SUMMARY OF THE NOTATION USED THROUGHOUT THIS WORK. LET Ḡ BE AN UNDIRECTED GRAPH. FOR THE MULTIPLE MULTICAST

SCENARIO, IT HOLDS THAT MCR(Ḡ) = SC(Ḡ) (A SLIGHT VARIANT OF CLAIM 1). THE GAP BETWEEN ROUTING AND CODING IN THIS

CASE IS AT LEAST THAT OF THE(SINGLE SOURCE) MULTICAST CASE, WHICH IS AT LEAST 8/7 [1]. FOR THE MULTIPLE-UNICAST

SCENARIO IT HOLDS THATUCR(Ḡ) ≥ URR(Ḡ), HOWEVER NO GAP IS KNOWN TO EXIST. IN A SENSE, IN THIS WORK WE COMPAREapples
and oranges. NAMELY, WE COMPAREMCR(Ḡ) AND URR(Ḡ). WE NOTE THAT THE TABLE ABOVE REFERS TO UNDIRECTED GRAPHS̄G. THE

RATE OBTAINABLE FOR ANY DIRECTED ORIENTATIONG OF Ḡ IS AT MOST THAT OF Ḡ (IN ALL THE SETTINGS ABOVE).

[14]. As the edges leavings are all unit capacity, that latter implies a set of disjoint flows {fi,j}i, wherefi,j

connectssi and tj with unit capacity. This in turn implies thatSC(G) ≥ 1.
The result of this work can be summarized in the following theorem. Before we state our theorem, we refer the

reader to a summary of our notation in Table I.
Theorem 1:Let G be a directed graph and{(si, ti)}

k
i=1 be a set ofk source terminal pairs. Then3URR(Ḡ) ≥

MCR(G).
We note that one may phrase Theorem 1 in the following equivalent manner: Let̄G be an undirected graph and

{(si, ti)}
k
i=1 be a set ofk source terminal pairs. Then3URR(Ḡ) ≥ MCR(Ḡ). To put our result in perspective, we

further elaborate on the results and proof techniques appearing in [12].

C. Comparison to techniques of [12]

Let G be a directed graph. In the network codingmulticastscenario, there is a single sources which wants to
transmit the exact same information to a subsetT of terminals inG. In the work of [12] the task of multicasting over
undirected graphs̄G was studied. Using our notation, it was shown in [12] that2π(Ḡ) ≥ SC(Ḡ) ≥ SC(G) = MCR(G).
Here π(Ḡ) is the multicast routing rate, andSC(Ḡ) is the (minimum over the) Min-Cut betweens and terminals
tj ∈ T denoted byλ in [12]. The result of [12] is similar in nature to our main result. In fact, the constant of2
in the work of [12] beats the constant3 appearing in our result. However, the multicast scenario differs from that
of k-multicast studied in this work in the sense that there is no single source nodes but ratherk source nodes
s1, . . . , sk.

In a nutshell, the crux of the proof of [12] includes a reduction in which the multicast instancēG undergoes
severalsplitting modifications, until it is turned into an instancēG′ to thebroadcastproblem (in which the terminal
set includes the entire vertex set ofḠ′). Roughly speaking, this reduction preserves the (relationship between the)
values ofπ(Ḡ′) andSC(Ḡ′) when compared to that ofπ(Ḡ) andSC(Ḡ). Once turned into a broadcast instance, it
is proven that2π(Ḡ′) ≥ SC(Ḡ′). This implies that2π(Ḡ) ≥ SC(Ḡ) ≥ SC(G) = MCR(G).

To the best of our judgment, the reduction used in [12] does not adapt to thek-multicast scenario addressed
in this work. The main reason being the lack of a single sources governing the multicast connection. One may
attempt to use the reduction of [12] combined with the ideas of Claim 1 in which we transform a multi-source
instance into a single source instance. However, in such attempts, the reduced graph will have diverse connectivity
and will no longer match the broadcast scenario of [12] and its analysis.

II. PROOF OFTHEOREM 1

As before we assume thatMCR(G) = 1, and use the fact that this impliesSC(G) = 1 (Claim 1). The proof extends
naturally to the general case as well (in whichMCR(G) = r). Consider the graph̄G. Clearly, asSC(G) = 1 it holds
that SC(Ḡ) = 1 also. We now prove the following Lemma which implies thatURR(Ḡ) ≥ 1/3. This will conclude
our proof.

Lemma 1:Let k ≥ 2. If for every j = 1, . . . , k there exists a valid multicommodity flowFj consisting
of k disjoint flows {fi,j}

k
i=1 where eachfi,j connectssi and tj with unit capacity; then there exists a valid

multicommodity flowF ∗ consisting ofk disjoint flowsf∗

i connectingsi to ti, each of capacity1/3.



Proof: Consider the familyF of unit capacity flows∪jFj = {fij|i, j ∈ [k]}. Here, and throughout,[k] =
{1, 2, . . . , k}. The familyF is not necessarily a valid multicommodity flow in̄G, in the sense that taking all flows in
F one may exceed certain edge capacities. We first start by defining a variant ofF that is indeed a multicommodity
flow in Ḡ. Recall, that eachFj = {fij|i ∈ [k]} is a valid multicommodity flow inḠ. Moreover,∪jFj = F . Thus, it
holds that reducing the capacity of flows inF from unit value to a value of1

k
will result in a valid multicommodity

flow. Let F 1

k

be the set of flows appearing inF after their capacity has been reduced to1
k
.

We now, refine the familyF 1

k

as follows: for each flowfij ∈ F 1

k

of capacity1
k

we define3k− 4 identical flows

{f ℓ
ij}

3k−4
ℓ=1 , each of capacity 1

k(3k−4) . Denote the new collection of flows byF 1

k(3k−4)
= {f ℓ

ij |i, j ∈ [k], ℓ ∈ [3k−4]}.
It is not hard to verify thatF 1

k(3k−4)
is a valid multicommodity flow.

Finally, we turn the valid multicommodity flowF 1

k(3k−4)
into a flowF ∗ = {f∗

i |i ∈ [k]} as asserted. It suffices to

definef∗

i for eachi ∈ [k]. The flow f∗

i will consist of two types of flows. The first type of flows will connectsi

andti directly. Namely, we add tof∗

i , 2k− 3 flows f ℓ
ii from the setF 1

k(3k−4)
. The second flow type will connectsi

and ti via two “relays” tα andsβ. Namely, for eachα, β ∈ [k] \ {i} we will add tof∗

i a flow f ℓ
i,α from si to tα;

the reverseof a flow f ℓ
β,α from tα to sβ; and a flowf ℓ

β,i from sβ to ti. See Figure 1(b). These three flows together
will connectsi and ti. All in all, to constructf∗

i we use the following flows ofF 1

k(3k−4)
:

• 2k − 3 copies offii.
• For eachα ∈ [k] \ {i}: k − 1 copies offiα.
• For eachβ ∈ [k] \ {i}: k − 1 copies offβi.
• For eachα, β ∈ [k] \ {i}: 1 copy offβα.

The total amount of flow fromsi to ti will be

(2k − 3) + (k − 1)2

k(3k − 4)
=

k2 − 2

k(3k − 4)
>

1

3

It remains to show thatF ∗ = {f∗

i |i ∈ [k]} is indeed a valid multicommodity flow. Namely, that it uses exactly
the flows ofF 1

k(3k−4)
as its building blocks. Leti 6= j. In the process of constructing the flows inF ∗ we use flows

of type f ℓ
ij exactly 3k − 4 times: (k − 1) times when constructingf∗

i ; (k − 1) times when constructingf∗

j ; and
once for eachf∗

α whenα 6= i andα 6= j. The same goes for the flowf ℓ
ii: (2k − 3) times when constructingf∗

i ;
and once for eachf∗

α whenα 6= i.

III. C ONCLUSIONS

We have shown that, in undirected graphs that arer-strongly connected, the use of network coding fork-multicast
is comparable (within a factor of 3) to the routing rate of an arbitrary set ofk unicast connections. Our results
address a relaxed version of the Li and Li conjecture, using adifferent approach to that used by Li and Li, which
does not extend gracefully to our setting. We would like to stress that in our comparison of coding verses routing
we are consideringk-multicast coding rate on one hand andk-unicast routing rate on the other. Considering the
multiple unicast problem on both ends (as in thek-unicast conjecture) remains an intriguing open problem. An
interesting consequence of our result is that the bulk of theadvantage (in our setting) of coding versus not coding in
directed graphs may be obtained through considering an undirected version of the graph. This may have interesting
consequences for wireless networks, since they are generally undirected. While it may at first blush seem that our
results imply a bound of a factor of3 for the advantage ofk-multicast coding versusk-unicast non-coding in
wireless networks, such a conclusion would misinterpret our results. Indeed, broadcast and half-duplex constraints
do not in general allow us to operate a wireless network as an arbitrary undirected network.

There are several interesting directions for future work. We choose to mention the one that motivated this work:
Can one prove the Li and Li conjecture when restricted to graphs that arer-strongly connected? Namely, given
such graphs, can one show no (or a limited) advantage for coding in the multiple unicast setting, thus proving the
Li and Li conjecture at least forr-strongly connected networks.
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