
Index coding with outerplanar side information

Yossi Berliner∗ Michael Langberg†

Abstract

We study the Index Coding problem with side information graphs which areouterplanar. For general side
information graphs, linearly solving the Index Coding problem implies a linear solution to the general (non-
multicast) Network Coding problem — a central open problem in the field of network communication. For
outerplanar side information graphs, we show that the IndexCoding problem can be solved efficiently, and
characterize its solution in terms of theclique coversize of the information graph at hand.

1 Introduction

TheIndex Codingproblem is a fundamental non-multicast network coding problem. The problem has a very clean
and elegant structure yet it captures many important aspects of the more general network coding problem. The
Index Coding problem was introduced by Birk and Kol [4] in the context of data dissemination to clients with local
caches. An instance of the Index Coding problem includes a sender node r, a setC = {c1, . . . , cn} of wireless
clients and a setP = {p1, p2, . . . , pn} of n independent messages that belong to some alphabetΣ. The message
pi needs to be delivered to clientci. Each clientci is assumed to hold certainside informationΓi ⊆ P . It is
common to specify the side information by a graphG = (V, E) with vertex setV = {1, . . . , n} in which vertexi
corresponds to clientci and edge(i, j) ∈ E iff j ∈ Γi.

In eachround of communication the sender can transmit a single symbol ofΣ (i.e., a single message). We
assume that all symbols transmitted by the sender are received by all clients without error. Thej’th round of com-
munication is specified by an encoding functiongj : Σn → Σ. The objective is to find a set of encoding functions
Φ = {gi}

ℓ
i=1 that will allow clientci to decode the messagespi it requires while minimizing the number of trans-

missionsℓ = |Φ|. Clientci ∈ C can decode packetpi if there exists a decoding functionγi : Σℓ × Σ|Γi| → Σ that
allowsci to obtainpi from theℓ characters transmitted by the sender and the|Γi| characters of side information.
The minimum value ofℓ is defined to be theround complexityof the index coding instance at hand (in cases in
which the alphabetΣ is specified we denote the round complexity asℓΣ).

In this work we focus on information graphsG which areundirected(namelyi ∈ Γj iff j ∈ Γi), and on the
case in which the encoding functions are linear (or actuallyscalar linear by common terminology). In this case
we also takeΣ to be a finite field. We note that one can extend the definition of the Index Coding problem to
directed side information graphs, to encoding functions which are not scalar linear but rathervector linear(via
time sharing) or non-linear, and to clientsci which require not a single message but multiple ones. We touch on
these extensions in the conclusion of this work.

There exist beautiful connections between combinatorial properties of the undirected side information graph
G and the optimal solution to the corresponding Index Coding problem. In [3] itis shown that the problem of
finding (scalar) linear solutions to the Index Coding problem is equivalentto the problem of minimizing the rank
of a certain matrix with “don’t care” entries. The latter problem, referred toas theMinRank problem (denoted by
MRΣ), has been investigated by Haemers and Peeters [7, 12] in which it is shown that the optimal solution value of

∗The Open University of Israel, Raanana, 43107, Israel. email:yossi berliner@radwin.com
†The Open University of Israel, Raanana, 43107, Israel. email:mikel@openu.ac.il

1

Figure 1: Examples of outerplanar graphs. (a) The “star” graph. (b)The “ring” graph. (c) A general outerplanar
graph. The verticesx, y andz illustrate the proof of Claim 4.3. (d) The outerplanar graphG presented in (c) with
its corresponding tree representationḠ (with dotted edges).

MRΣ(G) is “sandwiched” between the maximum sized independent set inG (denoted byα(G)) and the minimum
sized clique cover ofG (denoted byCC(G)). Here, an independent set inG is a subset of vertices that do not share
any edges, a clique inG is a subset of vertices for which every pair share an edge, and a cliquecover ofG is a
collection of cliques inG such that every vertex inG appears in at least a single clique in the collection. Namely,
for an fieldΣ and an instance to the index coding problem defined by an undirected graph G, the scalar linear
round complexityℓ(lin)

Σ is exactlyMRΣ(G) which in turn satisfiesCC(G) ≥ MRΣ(G) ≥ α(G).
The authors of [3] study the Index Coding problem in the setting of (scalar) linear encoding functions. Lubetzky

et al. [11] show that non-linear codes can significantly outperform linear codes for certain families of problem
instances. El Rouayheb et al. [6] show that any instance of the more general network coding problem can be
efficiently reduced to an instance of the Index Coding problem (under theassumption of linear encodings). This
reduction implies that efficiently finding optimal linear solutions for the Index coding problem implies an efficient
solution to the general (non-multicast) network coding problem — the latter being a central open problem in
network communication. In the scalar linear setting, this implies that it is NP-hard tosolve the index coding
problem (via the hardness results of [10] on scalar linear network coding). Such hardness results were also shown
independently in [12]. The hardness of finding approximate solutions forthe Index Coding problem has been
studied in [9].

1.1 Our contribution

As it is NP-hard to efficiently find scalar linear solutions to the Index Coding problem for arbitrary side information
graphsG, in this work we address the following natural question:On which families of side information graphs
can Index Coding be solved efficiently?

Our work takes a modest step in better understanding this question. Namely, inour study, we investigate
“simple nature” side information graphsG that are so-calledouterplanar— i.e., graphsG that can be drawn in
the plane such that (a) all vertices ofG lie on the boundary of a circle, and (b) representing edges ofG by straight
lines between their corresponding vertices, no two edges ofG intersect. Some examples of outerplanar graphs are
given in Figure 1.

We show that on outerplaner side informations graphsG, the Index Coding problem can be solved efficiently
and can be characterized by the clique cover number ofG. The study of more complicated side information graphs,
such ask-outerplanar graphs1 or planar graphs, is left open in this work. The main contribution of this workcan

1A k-outerplanar graph can be embedded in the plane with no edge intersections in such a way thatk consecutive removals of the outer

2

be summarized by the following theorem.

Theorem 1.1. Let Σ be any finite field. The optimal scalar linear solution to the Index Coding problem overΣ
with outer planar side information graphsG can be found efficiently (i.e., in time which is polynomial in|G|). In

this case, the scalar linear round complexityℓ
(lin)
Σ = MRΣ(G) of the optimal scalar linear index coding solution is

equal to the clique cover sizeCC(G) of G.

Another natural question that motivated our work addresses the relationship between the index coding round
complexityℓlin

Σ = MRΣ(G) and its combinatorial upper and lower bounds — the clique cover sizeCC(G) and the
independent set sizeα(G). It is not hard to find graphsG for which ℓlin

Σ (G) is strictly greater thanα(G), for
example the five cycleC5 satisfiesℓlin

Σ (C5) = 3 while α(C5) = 2. However, it is significantly more difficult to
find graphsG for whichCC(G) is strictly greater thanℓlin

Σ (G).
Roughly speaking, the index coding solutions that correspond to clique covers ofG are extremely simple in

nature. Specifically, for each cliqueC in the cover one defines an encoding functiong which equals the sum
of messagespi corresponding the vertices in the cliqueC. Hence asking whether for a certainG it holds that
CC(G) > ℓlin

Σ (G) is equivalent to asking whether for a certain side information graphG there is an index coding
solution which is better than the trivial one. Such graph (of rather complicated nature) are known to exist, e.g.,
[7, 12]. However, in an attempt to construct simpler families of graphsG for whichCC(G) > ℓlin

Σ (G), it is natural
to ask: For which family of side information graphsG is it the case thatℓlin

Σ (G) = CC(G)? This work takes a
small step in better understanding this question.

1.2 Proof techniques

Many NP-hard graph problems become easier to solve on outerplanar graphs. One general technique for coping
with outerplanarity (and other simple graph structures) is that of Baker [2]. Baker’s approach is based on a decom-
position of the given graph into a tree structure that supports a dynamic programming approach to the problem at
hand. Based on this paradigm, Baker [2] presents efficient algorithms for solving several NP complete problems on
outerplanar graphs. These include for example the maximum independent set (and minimum vertex cover), mini-
mum dominating set, and minimum edge-dominating set problems. Baker’s technique generalize tok-outerplanar
graphs. Baker shows that efficient solutions tok-outerplanar graphs yield high quality approximation algorithms2

for planar graphs.
The clique cover problem on planar graph is known to be NP-complete [5, 8]. To the best of our knowledge

this problem has not been addressed in the context of outerplanar ork-outerplanar graphs. In this work, we extend
the ideas of Baker to show that one can solve clique cover on outerplanargraphs efficiently. Our extension involves
a delicate analysis of the dynamic programming resulting from the tree structuresuggested in [2], and does not
follow directly from [2].

We then turn to tie the clique cover size of a given outerplanar graph to itsMinRank (or equivalently, its scalar
linear index coding round complexityℓ(lin)

Σ). As mentioned above, theMinRank of any graph is at most its clique
cover. In this work we show that for outerplanar graphs the clique cover size andMinRank value are actually
equal. Our proof follows the dynamic nature of Baker’s algorithm. We startby showing how to apply Baker’s
paradigm to the problem of computing theMinRank of a given graphG. This proves that theMinRank problem
on outerplanar graphs can be solved efficiently. As in the case of clique cover, applying the work of [2] to the
MinRank problem involves a delicate analysis that does not follow directly from [2].

To tie the clique cover number with theMinRank of G, we show that throughout the execution of Baker’s
algorithm - no matter what intermediate objective is being considered (the cliquecover size or theMinRank) the

face of the embedding result in the empty graph.
2An r approximation algorithm is one which returns a solution whose value is within anr multiplicative factor of the optimal solution

value.

3

value returned in the intermediate step is identical. This implies that theMinRank of G equals its clique cover in
the outerplanar scenario.

Our proof techniques hold for outerplanar graphs when one computesMinRank over any finiteΣ. It is natural
to ask what happens in thek-outerplanar case. Such generalizations are left open in this work and seemingly
cannot be addressed by the current proof techniques.

1.3 Structure

Our paper is structured as follows. In Section 2, we present some definitions and notation together with some
preliminary properties ofMRΣ andCC that we use throughout the paper. In Section 3, we present a rough overview
of Baker’s algorithmic paradigm [2] for outerplanar graphs and specify the main points that need to be addressed
in order to apply the algorithm to the clique cover andMinRank problems. In Section 4 we address the points
specified in Section 3 for theMinRank problem. In Section 5 we address the points specified in Section 3 for the
clique cover problem. In Section 6 we show the connection between clique cover andMinRank.

2 Preliminaries

Definition 2.1 (MRΣ(G)). LetΣ be a finite field. We say that a matrixA = aij fits an undirected graphG if for all
i andj: aii = 1, andaij = 0 whenever(i, j) is not an edge ofG. MRΣ(G) ≡ min{rankΣ(A) | A fitsG}

Definition 2.2 (CC(G)). A clique in an undirected graphG is a subset of vertices for which every pair share an
edge. A clique cover ofG is a collection of cliques inG such that every vertex inG appears in at least a single
clique in the collection.CC(G) is the size of the minimum clique cover inG.

As described in the Introduction, finding the optimal (scalar) linear solution toan index coding instance with
undirected side information graphG is equivalent to determining the matrixA for whichMinRank(G) = rank(A),
e.g., [3]. Thus, in the remainder of our presentation we will only consider theMinRank problem. For a graphG,
verticesx andy and an edgee, we denote byG + {x}, G − {x}, G + e, G − e, G + (x, y), andG − (x, y) the
new graph obtained by adding or removing the vertexx, the edgee, or the edge(x, y) to G respectively. We now
present severalequivalentproperties ofCC(G) andMRΣ(G) that are used later in our proof.

2.1 Properties of Clique-Cover

Property 2.1. Given a graphG and a nodev, CC(G) ≤ CC(G + {v}) ≤ CC(G) + 1 (Adding a node to a graph
can increase the clique-cover by at most 1).

Proof. The clique which contains the single nodev can be added to the original clique cover ofG. Thus resulting
in new clique cover with sizeCC(G) + 1. For the other direction, any clique cover ofG + {v} induces a clique
cover of the same size inG.

Property 2.2. Given a graphG which contains the nodes{x, y}, and doesn’t contain the edgee(x, y), CC(G) ≥
CC(G + e) ≥ CC(G) − 1 (Adding an edge to a graph can decrease the clique-cover by at most 1).

Proof. Consider a graphG, which includes nodesx, y and does not include the edge(x, y). Suppose that adding
an edge(x, y) to the graph can decrease the clique-cover by at least 2⇒ CC(G + (x, y)) ≤ CC(G)− 2. Removing
the nodey (and as a result the edge(x, y)) from (G + (x, y)) causes a new graph with clique-cover that equals at
most(CC(G) − 2). Thus, adding the nodey again to that graph and the edges ofG adjacent toy, can increase the
clique-cover at most by 1 (according to the first property above)⇒ CC(G) ≤ CC(G)− 1, a contradiction. The first
inequality follows easily by the definition of a clique cover.

4

Property 2.3. LetG1, G2 be 2 graphs with one common nodex (such that there are no edges betweenG1 − {x}
andG2−{x}). If the following values are known:CC(G1), CC(G2), CC(G1−{x}), CC(G2−{x}), then the clique
cover of the union ofG1 andG2 is known and equal to the following:

• If CC(G1) = CC(G1−{x}) or CC(G2) = CC(G2−{x}), thenCC(G1∪G2) = CC(G1−{x})+CC(G2−{x}).

• If CC(G1) = CC(G1 − {x}) + 1 andCC(G2) = CC(G2 − {x}) + 1, thenCC(G1 ∪ G2) = CC(G1 − {x}) +
CC(G2 − {x}) + 1.

Proof. First consider the minimum size clique cover of the union of the disjoint graphs(G1−{x}) and(G2−{x}).
It holds that the minimum size clique cover of the disjoint union equals the sum ofthe (disjoint) minimum size
clique covers (this follows directly from the definition of a clique cover). Now, we will add the nodex to the graph.
By the properties above, the clique-cover size of the new graph can be equal to the clique-cover size of the union
or it may increase by 1. We study two cases:

• If CC(G1) = CC(G1 − {x}) or CC(G2) = CC(G2 − {x}), then addingx to the union of the disjoint graphs
doesn’t increase the clique cover becausex belongs to one of the cliques in the optimal cover ofG1 or G2.

• If CC(G1) = CC(G1 − {x}) + 1 andCC(G2) = CC(G2 − {x}) + 1, we show that addingx to the union
of the disjoint graphs increases the clique cover size by 1 (in this case{x} will be the clique added to the
clique cover). Assume by contradiction thatCC(G1 ∪ G2) = CC(G1 − {x}) + CC(G2 − {x}). Consider the
minimum clique cover onG1 ∪ G2. The clique in this cover that containsx can’t contain additional nodes
from both the graphsG1 andG2 as they are disjoint graphs (excludingx). Assume w.o.l.g. thatx belongs
to a clique with nodes fromG1. Thus, in the clique cover, the number of cliques that coverG1 is exactly
CC(G1∪G2)−CC(G2−{x}) = CC(G1−{x}). This implies thatCC(G1−{x}) = CC(G1), in contradiction
to the assumption.

2.2 Properties ofMinRank

Property 2.4. Given a graphG and a nodev, MRΣ(G) ≤ MRΣ(G + {v}) ≤ MRΣ(G) + 1 (Adding a node to a graph
can increase theMinRank by at most 1).

Proof. Consider the matrixM that realizesMRΣ(G). Adding a new row and column corresponding to the new
vertexv, in which all new entries are of value 0 except the new diagonal entrymv,v that is of value 1, we get that
MRΣ(G + {v}) ≤ MRΣ(G) + 1. For the lower bound notice that any matrix that fitsG + {v} has a corresponding
restriction (of lower or equal rank) that also fitsG.

Property 2.5. Given a graphG which contains the nodes{x, y}, and doesn’t contain the edgee(x, y), MRΣ(G) ≥
MRΣ(G + e) ≥ MRΣ(G) − 1 (Adding an edge to a graph can decrease theMinRank by at most 1).

Proof. Consider a graphG, which includes nodesx, y and does not include the edge(x, y). Suppose that adding
an edge(x, y) to the graph can decrease theMinRank by at least 2. Namely, thatMRΣ(G + (x, y)) ≤ MRΣ(G)− 2.
Removing the nodey (and as a result the edge(x, y)) from (G + (x, y)) causes a new graph withMinRank that
equals at most(MRΣ(G) − 2) (as one can take any matrix that fitsG and turn it into one that fitsG − {y} by
removing the row and column that correspond toy). Thus, adding the nodey again to that graph and the edges of
G adjacent toy, can increase theMinRank at most by 1 (according to the first property above). We conclude that
MRΣ(G) ≤ MRΣ(G)− 1, a contradiction. For the upper bound in the assertion notice that any matrix that fitsG also
fits G + e.

5

Property 2.6. LetG1, G2 be 2 graphs with one common nodex (such that there are no edges betweenG1 − {x}
andG2 − {x}). If the following values are known:MRΣ(G1), MRΣ(G2), MRΣ(G1 − {x}), MRΣ(G2 − {x}), then the
MinRank of the union ofG1 andG2 is known and equal to the following:

• If MRΣ(G1) = MRΣ(G1 − {x}) or MRΣ(G2) = MRΣ(G2 − {x}), thenMRΣ(G1 ∪ G2) = MRΣ(G1 − {x}) +
MRΣ(G2 − {x}).

• If MRΣ(G1) = MRΣ(G1 − {x}) + 1 andMRΣ(G2) = MRΣ(G2 − {x}) + 1, thenMRΣ(G1 ∪ G2) = MRΣ(G1 −
{x}) + MRΣ(G2 − {x}) + 1.

Proof. Let M be a matrix which fitsG1 ∪ G2. AssumeM has the following structure:


























G′
1 G′

2 x

G′
1 G′

1l 0

G′
2 0 G′

2r

x xl xr 1



























In the above description we use the following notation.G′
1 represents the subgraph(G1 −{x}). G′

2 represents
the subgraph(G2 − {x}). The row and column labels appear to the left or above the double line, while the matrix
entries appear to the right and below the double line. Each row (and column)of M corresponds to a vertexv in
G1 ∪ G2. An entrymuv in M corresponds to the verticesu andv in G1 ∪ G2. For the row vector(v1, . . . , vn)
corresponding tov we denote its entries corresponding toG′

1 by vleft or vl, its entries corresponding toG′
2 by

vright or vr and its entries corresponding to a vertexw by vw. For example, for the vertexx we have thatxx = 1.
Also for a vertexv ∈ G′

2 we have thatvl = 0 as there are no edges betweenG′
2 andG′

1. The submatrixG′
1l (G′

2r)
consists of the vectorsvl (vr) for v ∈ G′

1 (v ∈ G′
2). Finally, for any vertexv we abuse notation and refer to the row

vector corresponding tov by the same notation:v. The same goes for subsets of verticesA.
DefineM1 andM2 as matrices that fitG1 andG2 correspondingly, and have the minimumrank among all

such matrices. By definition,MRΣ(G1) = rank(M1) andMRΣ(G2) = rank(M2). That is,M1 andM2 can be
expressed as follows:















G′
1 x

G′
1 H ′

1

x 1





























G′
2 x

G′
2 H ′

2

x 1















The submatrixH ′
1 (H ′

2) consists of the vectors corresponding tov ∈ G′
1 (v ∈ G′

2). We consider two cases:

• If MRΣ(G1) = MRΣ(G1 − {x}) = rank(M1), we first claim that the rows corresponding toG′
1 in M1 span

a vector space of dimensionrank(M1), and the vector corresponding tox in M1 is spanned by the rows

6

corresponding toG′
1. Denote the latter vector byx1. The above follows since the submatrixH ′

1 fits G′
1 and

has rank at most that of the the rows corresponding toG′
1. However, there is no matrix that fitsG′

1 of rank
less thanMRΣ(G1 − {x}).

Now consider the matrixM above. In what follows we will suggest values for the entries ofM that will
yield rank equal toMRΣ(G1 − {x}) + MRΣ(G2 − {x}). Namely, we setG′

1l to be equal toH ′
1, we set the

x’th entry of the rows ofG′
1 in M to be equal to their corresponding entries inM1, we setG′

2r to beH ′
2, the

(row) vectorxlx (the entries of the vectorx in M corresponding to vertices inG′
1 ∪ {x} = G1) to be the

vectorx1, andxr to be 0. As we show above, the vectorxlx is spanned by the rows ofM corresponding to
G′

1. Thusx is spanned by the rows corresponding toG′
1 ∪G′

2. We conclude that the resulting matrixM has
rank rank(M1) + rank(H ′

2) = MRΣ(G
′
1) + MRΣ(G

′
2). This shows thatMRΣ(G) ≤ MRΣ(G

′
1) + MRΣ(G

′
2). To

obtain equality, notice that asG′
1 andG′

2 are disjoint graphs, it is not hard to verify (from the definition of
MinRank) that these rows span a vector space of dimension at leastMRΣ(G

′
1) + MRΣ(G

′
2). The same proof

can be shown for the case thatMRΣ(G2) = MRΣ(G2 − {x}).

• MRΣ(G1) = MRΣ(G1−{x})+1 andMRΣ(G2) = MRΣ(G2−{x})+1. Assume by contradiction that the optimal
matrixM satisfiesrank(M) = MRΣ(G1 ∪G2) = MRΣ(G1 −{x}) + MRΣ(G2 −{x}) = MRΣ(G

′
1) + MRΣ(G

′
2).

This implies thatx ∈ span(G′
1 ∪ G′

2), as otherwise eitherrank(G1l) < MRΣ(G
′
1) or rank(G2r) < MRΣ(G

′
2)

which is a contradiction to the facts thatG′
1l fits G′

1 andG′
2r fits G′

2.

Consider the rows ofM that participate in the linear combination that yields the vectorx. If these rows are
included inG′

1, then it follows that the subvectorxlx (the left coordinates of the vectorx including the coor-
dinate corresponding tox) is in span(G′

1) which implies thatMRΣ(G1) = MRΣ(G1 − {x}), a contradiction.
To see the contradiction, constructM1 by setting the rows corresponding toG′

1 in M1 to be equal to the
corresponding entries in the rows corresponding toG′

1 in M , and the vector corresponding tox in M1 to
be equal toxlx. A similar analysis can be done for the case that the rows ofM that participate in the linear
combination that yields the vectorx are included inG′

2.

If the the rows ofM that participate in the linear combination that yields the vectorx combine vectors from
G′

1 andG′
2, one may consider the partial linear combination fromG′

1 andG′
2 separately. Letx1 be the linear

combination resulting from the rows inG′
1 andx2 be the linear combination corresponding to the rows in

G′
2. Namelyx = x1 +x2. Let the coordinate inxi corresponding to the vertexx beai. As the entryxx = 1,

we have thata1 + a2 = 1. Thus, it cannot be the case that botha1 anda2 are 0. Assume w.l.o.g. that
a1 6= 0. Also assume w.l.o.g. thata1 = 1 (otherwise the entries ofM1 to be constructed shortly can be
scaled accordingly). Now constructM1 by setting the rows corresponding toG′

1 in M1 to be equal to the
corresponding entries in the rows corresponding toG′

1 in M , and the vector corresponding tox in M1 to
be equal to the corresponding coordinates in a revised version ofx1 in which the entry corresponding to the
vertexx in x1 is changed toa1. It is not hard to verify that the modified version ofx1 is spanned by the rows
corresponding toG′

1 in M1 and thusMRΣ(G1) = MRΣ(G1 − {x}), a contradiction.

3 Overview of Baker’s algorithm [2]

Our work is based on Baker’s algorithmic paradigm [2]. In what follows we give a brief (and rough) overview of
the main ideas that govern the algorithm of [2]. We will identify the major points that need to be addressed in order
to apply the paradigm at hand to the case of theMinRank and clique cover problems.

Given an outerplanar graphG, the algorithm of Baker [2] has two major steps. In the first step, a tree represen-
tationḠ of G is constructed. Every node in̄G corresponds to a subgraph ofG, where the root of̄G corresponds to
G itself, each leaf inḠ corresponds to an edge, and internal nodes inḠ correspond to the subgraph ofG induced

7

Figure 2: An outerplanar graph and its corresponding tree representation. Taken from [2].

by their children inḠ. The construction of̄G from G is very simple in nature, and the treēG tightly resembles the
standard notion of thedual to an (outer)planar graph. See Figure 1(d) and Figure 2.

In slightly more detail:Ḡ is constructed as follows (in this presentation we suppose there are no cutpoints in
G, i.e., a vertex whose deletion disconnects the graph). Place a vertex in each interior face and on each exterior
edge, and draw an edge from each vertex representing a facef to each vertex representing either an adjacent face
(i.e., a face sharing an edge withf) or an exterior edge off . (This tree is closely related to the dual of the graph;
however, the dual would lack vertices for exterior edges and would have an additional vertex for the exterior face.)
An example (taken from [2]) is shown in Figure 2.

The planar embedding induces a cyclic ordering on the edges of each vertex in the tree. Choosing a face
vertexv as the root and choosing which child ofv is to be its leftmost child determine the parent and ordering of
children for every other vertex of̄G. Label the vertices of̄G recursively, as follows: Label each leaf of the tree
with the oriented exterior edge it represents. Label each face vertex withthe first and last nodes in its children’s
labels. If a face vertex is labeled(x, y), the leaves of its subtree represent a directed walk of exterior edges in a
counterclockwise direction fromx to y. For the root,x = y and the directed walk covers all the exterior edges.
For any other face vertexv, x 6= y, and(x, y) is an interior edge shared by the face represented byv and the face
represented by its parent in the tree. We defineG(x, y) to be the subgraph corresponding to the subtree ofḠ rooted
at tree-node(x, y). Namely,G(x, y) contains all edges corresponding to leaves in it’s subtree with the addition of
the edge(x, y).

For example, in Figure 2, the leaves of the node labeled(3, 7) represent a walk along nodes3, 4, 5, 6, 7. The
leaves of the root(1, 1) represent a counterclockwise walk around the exterior edges beginning and ending at node
1. The vertex labeled(1, 3) represents the face containing nodes1 − 3, its parent represents the face containing
nodes1, 3, 7, 9, and(1, 3) is the interior edge shared by these faces. We refer the interested reader to Baker’s
original work [2] for a clear and full presentation of the tree structureḠ.

Once the treēG is given, the objective in [2] is to dynamically compute the objective functionObj at hand
(e.g.,MinRank) in abottom upmanner from the leaves to the root. Namely, for each vertex(x, y) of Ḡ, based on
the algorithm of [2], we will define a table for this vertex which contains 4 values:

• The solution to the objective function at hand for the subgraphG(x, y) including the nodesx andy.

• The solution to the objective function at hand for the subgraphG(x, y) including the nodex and noty.

• The solution to the objective function at hand for the subgraphG(x, y) including the nodey and notx.

• The solution to the objective function at hand for the subgraphG(x, y) excluding the nodesx andy

8

Proceduretable(v)

if v is a level 1 leaf corresponding to an edge with label(x, y)
then

return a table representing the edge(x, y);
else * v is a face vertex*

begin
T = table(u), whereu is the leftmost child ofv;
for each other childu of v from left to right

T = merge(T, table(u));
return (adjust(T));
end

Figure 3: The algorithmtable from [2].

The table for a leaf of the tree representing an edge(x, y) specifies (in our case in whichObj is either the
MinRank or clique cover) thatObj for the subgraph considered is1 if exactly one endpoint of(x, y) or both of
them are in the subgraph, and 0 if neitherx nor y are in the subgraph. The table for every other vertex will be
computed recursively by merging the tables of its children according to the algorithm of [2] given in Figure 3.

There are two major operations that need to be addressed in the above procedure. Themergeoperation takes
as input the intermediate tableT and the table of a tree nodeu and returns a “merged” table of the two. More
specifically, letv be a vertex which represents a face vertex(x, y) with the following children:(x, a), (a, b), . . .

(i, z), (z, w), . . . (j, y). Assume that we are considering the child(z, w) of (x, y) in Ḡ. LetG(x, z) be the subgraph
of G that includes all the edges that are in the union of the subgraphsG(x, a)∪G(a, b)∪ ...∪G(i, z). The current
tableT includes information for the subgraphG(x, z). Namely (by induction) assume the current tableT has a
value for eachbit pair representingx andz. By the term “bit pair” we refer to each possibility for the existence of
x andz in the subgraphG(x, z), meaning that the tableT has 4 solutions to the objective function at hand, each
of a subgraphG(x, z) (solution for the subgraph containingx andz, solution for the subgraph containingx and
not containingz, solution for the subgraph containingz and not containingx, solution for the subgraph without
bothx andz.) The childu has label(z, w) for somew, and table(u) has a value for each bit pair representingz

andw. The goal of procedure merge is to construct an updated tableT with a solution of the objective function on
G(x, w) ∪ G(w, z) for every bit pair representingx andw.

The adjust operation takes as input a tableT consisting of the merge of all the children ofv, and returns a
tablev corresponding tov. Specifically, letv be a vertex which represents a face vertex(x, y) with the following
children:(x, a), (a, b), . . . (i, z), (z, w), . . . (j, y). After merging all of the children, we get a table for the subgraph
G(x, y), which includes the clique cover of the subgraphG(x, y) for each bitpair of(x, y), but does not include
the edge(x, y) if such an edge exists. The goal of procedure adjust is to solve the objective function at hand after
adding this edge.

To apply Baker’s algorithm to an objective functionObj of our choice, we must show how to implement the
subroutinesmergeandadjust. It is not hard to verify that to prove that one can implement themergeoperation,
it suffices to present an algorithm that takes as input two induced subgraphsG1 andG2 of G that intersect at a
single vertexx and the solutionsObj(G1), Obj(G1 − {x}), Obj(G2) andObj(G2 − {x}) and returns a solution
for Obj(G1 ∪ G2). Here, as the graphsG1 andG2 are induced subgraphs ofG notice that there are no edges
betweenG1 − {x} andG2 − {x}. Similarly, for theadjust operation, it suffices to present an algorithm which
takes as input an outerplanar graphG that includes verticesx andy but does not include the edge(x, y) on the
outer face ofG, the solutionsObj(G−{x}), Obj(G−{y}), Obj(G−{x, y}), andObj(G) and returns a solution
for Obj(G + e). The implementation of these tasks for the clique cover andMinRank objective functions are in

9

cases highly non-trivial, and to the best of our knowledge have not been addressed in the past. In the upcoming
sections we will address the task of implementing these subroutines efficiently.

4 TheMinRank objective function

4.1 Merge

In themergeoperation one takes two subgraphs that arealmostdisjoint for which the optimalMinRank is known,
and returns theMinRank of their union (including the corresponding matrixA of minimum rank). If the graphs
were disjoint then theMinRank of the union is just the union of the correspondingMinRanks, however, as the
subgraphs share a vertex, theMinRank of their union might be smaller according to the claim below.

Claim 4.1. Let G1 and G2 be induced subgraphs ofG that have a single vertexx in common. IfMRΣ(G1) =
MRΣ(G1−{x}) or MRΣ(G2) = MRΣ(G2−{x}), thenMRΣ(G1∪G2) = MRΣ(G1−{x})+MRΣ(G2−{x}). Otherwise,
MRΣ(G1 ∪ G2) = MRΣ(G1 − {x}) + MRΣ(G2 − {x}) + 1. Moreover, in both cases the corresponding matrixA of
minimum rank that fitsG1 ∪ G2 can be obtained efficiently from the matrices corresponding to theMinRank of
G1 − {x} andG2 − {x}.

Proof. G1 andG2 intersect at a single node, thus, using Property 2.6, we can find theMRΣ of G1 ∪ G2.

4.2 Adjust

In the “adjust” operation one takes an outerplanar graphG with verticesx andy but without the edge(x, y) that
lies on the outer face ofG; and computes theMinRank of G+e based on theMinRank of the graphG−{x}, the
graphG − {y}, the graphG − {x, y} and the graphG. As we have shown, it holds thatMRΣ(G + e) either equals
MRΣ(G) or is smaller and equalsMRΣ(G) − 1, however the correct answer depends strongly on the the values of
theMinRank in the subgraphs ofG that do not include the verticesx or y. The following two claims summarize
the adjust operation when applied to theMinRank objective function. The first claim covers almost all possible
settings except one, and can be proven relatively straightforward from the basic properties ofMinRank combined
with Property 2.6 above. The second claim addresses the last setting, andis more challenging.

Claim 4.2. LetG be an outerplanar graph that includes verticesx andy but does not include the edgee = (x, y)
that sits on the outer face ofG. Then the value ofMRΣ(G + e) is determined by the following table which expresses
the possible input values ofMRΣ(G−{x, y}), MRΣ(G−{x}), andMRΣ(G−{y}) as a function ofλ = MRΣ(G); and
the resulting value ofMRΣ(G + e) as a function ofλ = MRΣ(G):

MRΣ(G − {x, y}) MRΣ(G − {x}) MRΣ(G − {y}) MRΣ(G + e)
λ λ

λ − 2 λ − 1
λ − 1 λ λ − 1 λ

λ − 1 λ − 1 λ λ

Moreover, the minimum rank matrixA corresponding toMRΣ(G + e) can be computed efficiently using the
matrices corresponding to theMinRank of the subgraphs above.

Proof. We consider the different cases stated in the assertion:

1. MRΣ(G − {x, y}) = MRΣ(G). As e = (x, y), it holds thatMRΣ(G + e) ≥ MRΣ(G − {x, y}) (as any matrix
that fitsG + e has a minor which fitsG − {x, y}). Thus, adding the nodes{x, y} and the edge(x, y) can’t
decrease theMinRank of the former graphMRΣ(G − {x, y}) which is equal toMRΣ(G).

10

2. MRΣ(G − {x, y}) = MRΣ(G) − 2. Adding the nodes{x, y} plus the edge(x, y) to G − {x, y} increases its
MinRank by at most 1 (one can just append to a matrix that fitsG − {x, y} the row vector that is1 on
coordinatesx andy and 0 otherwise). Thus we getMRΣ(G + e) ≤ (MRΣ(G) − 2) + 1 = MRΣ(G) − 1. The
valueMRΣ(G + e) can’t be less than or equal toMRΣ(G) − 2 because of Property 2.5 (adding an edge to a
graph can decrease theMinRank by 1 at most).

3. MRΣ(G − {x}) = MRΣ(G). As in the first case it holds thatMRΣ(G + e) ≥ MRΣ(G − {x}) (as any matrix that
fits G + e has a minor which fitsG − {x}).

4. Same as 3.

Claim 4.3. LetG be an outerplanar graph that includes verticesx andy but does not include the edgee = (x, y)
that sits on the outer face ofG. Then ifMRΣ(G − {x, y}) = MRΣ(G − {x}) = MRΣ(G − {y}) = MRΣ(G) − 1
theMinRank of G + e is determined by the following cases. (a) If there are no verticesz in G + e such that
x, y, z from a triangle (a clique) inG + e thenMRΣ(G + e) = MRΣ(G). (b) If there exists a vertexz in G + e

such thatx, y, z from a triangle (a clique) inG + e thenMRΣ(G + e) depends onMRΣ(G − {x, y, z}). Namely, if
MRΣ(G−{x, y, z}) = MRΣ(G)−2 thenMRΣ(G+e) = MRΣ(G)−1, otherwiseMRΣ(G+e) = MRΣ(G). Moreover, the
minimum rank matrix corresponding toMRΣ(G + e) can be computed efficiently using the matrices corresponding
to theMinRank of the subgraphs above.

When using Claim 4.3 in our algorithm we use the fact that in case (b), when the algorithm of Baker [2]
computes theMinRank (and corresponding matrixA) of G theMinRanks (and corresponding matrices) ofG −
{x, z}, G − {y, z} and thus alsoG − {x, y, z} are known. Claim 4.3 is the most challenging claim proven in this
work. Examples in which theMinRank of G after adding the edge(x, y) are equal toMRΣ(G) or MRΣ(G) − 1 are
given below.

• If x − z − y is a path, then adding the edge(x, y) closes a triangle and theMinRank is decreased by 1.

• If x − z − u − v − y is a path, then adding the edge(x, y) doesn’t decrease theMinRank.

Proof. We consider the following cases:

Case 1: There is a node′z′ such that x, y, z close a triangle. According to Baker’s method,(x, z) and(z, y)
are children of the node(x, y), meaning that before finding the value ofMRΣ(G) the procedure ”merge” was
performed with the nodes(x, z) and (z, y). The following values were known in this process:MRΣ(G(x, z)),
MRΣ(G(x, z)− {x, z}), MRΣ(G(z, y)), andMRΣ(G(z, y)− {z, y}). Thus,MRΣ(G)− {x, y, z}) is known and equals
MRΣ(G(x, z)−{x, z})+MRΣ(G(z, y)−{z, y}) (the subgraphsG(x, z) andG(z, y) excluding the nodesx, z, y are
disjoint graphs because of the outerplanarity constraint, see, e.g., Figure 1.

We consider two cases: IfMRΣ(G − {x, y, z}) = MRΣ(G) − 2, we claim thatMRΣ(G + e) = MRΣ(G) − 1. This
follows since, given a matrixA that fitsG − {x, y, z} one can construct one that fitsG + e by expandingA in a
natural way (adding rows/columns corresponding tox, y, z), in which the only new entries that are non-zero are
those corresponding to a pair in{x, y, z} (which can be set to equal 1). Thus,MRΣ(G + (x, y)) = MRΣ(G)− 1 (the
MinRank is decreased by 1 after adding the edge (x,y)).

For the second case, ifMRΣ(G − {x, y, z}) = MRΣ(G) − 1, we now show that adding the edge(x, y) can’t
decrease theMinRank, thusMRΣ(G + (x, y)) = MRΣ(G).

Claim 4.4. If MRΣ(G − {x, y, z}) = MRΣ(G) − 1, thenMRΣ(G + (x, y)) = MRΣ(G).

11

Proof. We start by noting that the removal of the three vertices{x, y, z} in G disconnectsG into 2 disjoint com-
ponents. See, e.g., Figure 1. We denote these components byA1 andA2. As G + e is outerplanar, and the edge
(x, y) is on the outer face ofG + e, we can assume w.l.o.g. that vertices inA1 are not connected by an edge to
vertices inA2. Moreover, vertices inA1 are not connected by an edge toy, while vertices inA2 are not connected
by an edge tox.

DefineM as a matrix which fitsG+(x, y), and has the minimumrank among all such matrices. By definition,
MRΣ(G+(x, y)) = min{rank(M) | M fits (G+(x, y))}. Assume in contradiction that after adding the edge(x, y),
MRΣ(G) is decreased by1, meaning thatrank(M) = MRΣ(G+(x, y)) = MRΣ(G)−1. We will see that by changing
a few entries inM we obtain a new matrixM ′, with the samerank asM , which fitsG (the original graph without
(x, y)), implying thatMRΣ(G) ≤ rank(M ′) = rank(M) = MRΣ(G) − 1, a contradiction. We will thus conclude
thatMRΣ(G + (x, y)) = MRΣ(G). Consider the matrixM :



































A1 x y z A2

A1 A1l 0 0

x xl 1 xy * 0
y 0 yx 1 * yr

z zl * * 1 zr

A2 0 0 A2r



































In the above description we use the following notation.A1 represents the subgraph corresponding to the face
vertex (x, z) in G. A2 represents the subgraph corresponding to the face vertex(z, y) in G. An entrymuv in
M corresponds to the vertices labeled byu andv in G. Each row ofM corresponds to a vertexv in G. For
the row vector(v1 . . . vn) corresponding tov we denote its entries corresponding toA1 by vleft or vl, its entries
corresponding toA2 by vright or vr and its entries corresponding to a vertexw by vw. For example, for the vertex
x we have thatxx = 1. Also for a vertexv ∈ A2 we have thatvl = 0 as there are no edges betweenA2 andA1.
Finally, for any vertexv we abuse notation and refer to the row vector corresponding tov by the same notation:v.
Similarly for a set of verticesA we refer to the row vectors corresponding toA in M by A.

In the description ofM above we have specified entries that must be0, entries that must be1, and some
entries of interest that can be either0 or 1 (denoted by *). For each matrix which fits the graphG (the graph that
doesn’t include the edge(x, y)), it is known thatxy = 0 andyx = 0, because there is no edge betweenx andy.
Consider the matrixM above which fitsG + (x, y). If xy = 0 andyx = 0, thenM also fitsG, implying that
MRΣ(G) ≤ rank(M) = MRΣ(G)− 1, a contradiction. Thus, one of the valuesxy or yx must equal1. Recall that we
are assuming thatMRΣ(G−{x, y, z}) = MRΣ(G)−1, meaning thatrank(M) = MRΣ(G)−1 = MRΣ(G−{x, y, z}) =
MRΣ(A1 ∪ A2). Consider the rows ofM corresponding toA1 andA2. We now claim that these rows span a vector
space of dimensionMRΣ(G) − 1 and thus spanM . Indeed, if the rows ofA1 andA2 spanned a vector space of
lower dimension, then one could construct a matrix that fits the subgraph induced byA1 ∪ A2 with rank lower
thanMRΣ(G) − 1. However, as stated above,MRΣ(A1 ∪ A2) = MRΣ(G) − 1, a contradiction.

We conclude that the row vectorx (corresponding to the vertexx) is in span(A1∪A2). The same holds for the
vectorsy andz. Consider the sub vectorxl. Potentially,xl could be spanned by the left coordinates in the vectors
of A1 (denoted asA1l) and the left coordinates in the vectors ofA2 (denoted asA2l). However,A2l is all zero (as
there are no edges between vertices ofA2 and those ofA1). Thus,xl ∈ span(A1l). Moreover, it also holds that
the vector(xl, xx) (i.e, the entries ofx corresponding to vertices(A1 ∪ x)) is spanned by the coordinates ofA1

corresponding to the vertices(A1 ∪ x).
We now suggest to change the vectorx to x′ such thatx′ ∈ span(A1). This can be done by zeroing out the

12

Figure 4: The partition ofG into 4 graphs in the proof of Claim 4.4 (case 2).

values ofx in the coordinatey and by changing the value ofx in coordinatez to according to the following rule. By
the discussion above, let the coefficients{αi} satisfy :(xl, xx) =

∑

ai∈A1
αi(ail, aix). Now setx′ =

∑

ai∈A1
αiai.

Notice thatx′
y = 0. In a similar (and symmetric) way we can change the vectory to y′ ∈ span(A2) such that

y′x = 0. The resulting matrixM ′ still has rank at mostMRΣ(G)−1 = rank(A1∪A2), as all new and old row vectors
are spanned byA1 ∪ A2. Moreover,M ′ fits G. Thus,MRΣ(G) ≤ rank(M ′) = MRΣ(G) − 1, a contradiction.

Case 2: There is no node′z′ such that x, y, z closes a triangle. In Figure 4 we present a decomposition of
G into 4 graphs:A1, A2, Z, {x, y, m, n}. As described previously, the graphG (denoted byG(x, y) earlier)
corresponds to the subgraph of the face vertex which is labeled(x, y) in the tree construction of Baker. We denote
by m the neighbor ofx (on the corresponding face) which is furthest away fromx in a counterclockwise direction.
We denote byn the neighbor ofy which is furthest away fromy (on the corresponding face) in a clockwise
direction. Removing the verticesx, y, m andn from G, we get the4 disconnected components that appear in
Figure 4.

DefineM as a matrix which fitsG+(x, y), and has the minimumrank among all such matrices. By definition,
MRΣ(G+(x, y)) = min{rank(M) | M fits (G+(x, y))}. Assume in contradiction that after adding the edge(x, y),
MRΣ(G) is decreased by1, meaning thatrank(M) = MRΣ(G+(x, y)) = MRΣ(G)−1. We will see that by changing
a few entries inM we obtain a new matrixM ′, with the samerank asM , which fitsG (the original graph without
(x, y)), implying thatMRΣ(G) ≤ rank(M ′) = rank(M) = MRΣ(G) − 1, a contradiction. We will thus conclude
that MRΣ(G + (x, y)) = MRΣ(G). Consider the matrixM (we use a similar representation to that given in the
analysis of the previous case).











































A1 x m Z n y A2

A1 0 0 0 0

x xl 1 * 0 0 xy 0
m ml * 1 0 0
Z 0 0 0 0
n 0 0 1 * nr

y 0 yx 0 0 * 1 yr

A2 0 0 0 0











































For each matrix which fits the graphG (the graph that doesn’t include the edge(x, y)), it is known thatxy = 0
andyx = 0, because there is no edge betweenx andy. Consider the matrixM above which fitsG + (x, y). If

13

xy = 0 andyx = 0, thenM also fitsG, implying thatMRΣ(G) ≤ rank(M) = MRΣ(G) − 1, a contradiction. Thus,
one of the valuesxy or yx must equal1. Recall that we are asuuming thatMRΣ(G−{x, y}) = MRΣ(G)−1, meaning
thatMRΣ(G)− 1 = rank(M) = rank(G− {x, y}) = MRΣ(A1 ∪A2 ∪ Z ∪m ∪ n) (here, “A1 ∪A2 ∪ Z ∪m ∪ n”
refers to the subgraph induced on these vertices ofG). Consider the rows ofM corresponding toA1 , A2, Z, m,
n. We now claim that these rows span a vector space of dimensionMRΣ(G) − 1 and thus spanM . Indeed, if the
rows ofA1 , A2, Z, m, n spanned a vector space of lower dimension, then one could construct a matrix that fits
the subgraph induced byA1 ∪ A2 ∪ Z ∪ m ∪ n with rank lower thanMRΣ(G) − 1. However, as stated above,
MRΣ(A1 ∪ A2 ∪ Z ∪ m ∪ n) = MRΣ(G) − 1, a contradiction.

As before, for a vertexx we abuse notation and refer tox as the corresponding row vector inM . Similarly for
a set of verticesA we refer to the row vectors corresponding toA in M by A. We conclude that the row vectorx

(corresponding to the vertexx) is in span(A1 ∪ A2 ∪ Z ∪ m ∪ n). The same holds for the vectory.
The following cases must be considered:

• Bothm andn are inspan(A1 ∪A2 ∪Z), meaning thatrank(A1 ∪A2 ∪Z) = MRΣ(G)− 1. In this case, the
row vectorx is in span(A1 ∪ A2 ∪ Z). Consider the sub vectorxl. Potentially,xl could be spanned by the
left coordinates in the vectors ofA1 (denoted asA1l), the left coordinates in the vectors ofA2 (denoted as
A2l), and the left coordinates in the vectors ofZ (denoted asZl). However,A2l is all zero (as there are no
edges between vertices ofA2 and those ofA1), andZl is all zero (as there are no edges between vertices of
Z and those ofA1). Thus,xl ∈ span(A1l). Moreover, it also holds that the vector(xl, xx) (i.e, the entries
of x corresponding to vertices(A1 ∪ x)) is spanned by the coordinates ofA1 corresponding to the vertices
(A1 ∪ x).

We now suggest to change the vectorx to x′ such thatx′ ∈ span(A1). This can be done by zeroing out the
values ofx in the coordinatey and by changing the value ofx in coordinatem according to the following
rule. By the discussion above, let the coefficients{αi} satisfy : (xl, xx) =

∑

ai∈A1
αi(ail, aix). Now set

x′ =
∑

ai∈A1
αiai.

Similarly, we change the vectory to y′ ∈ span(A2) with y′x = 0. The resulting matrixM ′ still has rank
at mostMRΣ(G) − 1 = rank(A1 ∪ A2 ∪ Z), as all new and old row vectors are spanned byA1 ∪ A2 ∪ Z.
Moreover,M ′ fits G. Thus,MRΣ(G) ≤ rank(M ′) = MRΣ(G) − 1, a contradiction.

• n is in span(A1 ∪ A2 ∪ Z), andm not. We first suggest to change the vectorm to m′ by zeroing out the
values ofm in the coordinatesZ andn. Now consider the vectorx, or more specifically the sub vector
xl. Potentially,xl could be spanned by the left coordinates in the vectors ofA1 (denoted asA1l), the left
coordinates in the vectors ofA2 (denoted asA2l), the left coordinates in the vectors ofZ (denoted asZl),
and the left coordinates in the vectorm (denoted asml). However,A2l is all zero (as there are no edges
between vertices ofA2 and those ofA1), andZl is all zero (as there are no edges between vertices ofZ

and those ofA1). Thus,xl ∈ span(A1l ∪ ml) = span(A1l ∪ m′
l). Moreover, it also holds that the vector

(xl, xx) (i.e, the entries ofx corresponding to vertices(A1 ∪x)) is spanned by the coordinates ofA1 andm′

corresponding to the vertices(A1 ∪ x).

We now suggest to change the vectorx to x′ such thatx′ ∈ span(A1 ∪m′). This can be done by zeroing out
the values ofx in the coordinatey and by changing the value ofx in coordinatem according to the following
rule. By the discussion above, let the coefficients{αi} satisfy : (xl, xx) =

∑

ai∈A1∪{m′} αi(ail, aix). Now
setx′ =

∑

ai∈A1∪{m′} αiai. Notice that asm′ is 0 is coordinates corresponding toZ, n, y andA2 the same
holds for so isx′.

We now address the vectory as we did in the former case (recall thatn is in span(A1 ∪ A2 ∪ Z)). Namely,
we change the vectory to y′ ∈ span(A2) with yx = 0. The matrixM ′ with the new rowsm′, x′ andy′

still has rank at mostrank(A1 ∪ A2 ∪ Z ∪ {m′}) ≤ rank(A1 ∪ A2 ∪ Z ∪ {m}) = MRΣ(G) − 1. This

14

follows as all new and old row vectors are spanned byA1 ∪ A2 ∪ Z ∪ {m′}. Moreover,M ′ fits G. Thus,
MRΣ(G) ≤ rank(M ′) = MRΣ(G) − 1, a contradiction.

• n is in span(A1 ∪ A2 ∪ Z) andm not. Similar to the former case.

• bothm andn are not inspan(A1 ∪ A2 ∪ Z). We need to consider the following cases:

– m is not inspan(A1 ∪ A2 ∪ Z ∪ n) andn is not inspan(A1 ∪ A2 ∪ Z ∪ m). We suggest to change
the vectorm to m′ by zeroing out the values ofm in the coordinatesZ andn. We also suggest to
change the vectorn to n′ by zeroing out the values ofn in the coordinatesZ andm. Now we can
change the vectorx to x′ such thatx′ ∈ span(A1 ∪ m′). This can be done by zeroing out the values
of x in the coordinatey and by changing the value ofx in coordinatem as done before. Similarly,
we change the vectory to y′ ∈ span(A2 ∪ n′). The resulting matrixM ′ (with m′, n′, x′ andy′) has
rank at mostrank(A1 ∪ A2 ∪ Z ∪ {m′} ∪ {n′}) ≤ MRΣ(G) − 1, as all new and old row vectors are
spanned byA1 ∪A2 ∪Z ∪m′ ∪ n′. Moreover,M ′ fits G. Thus,MRΣ(G) ≤ rank(M ′) = MRΣ(G)− 1,
a contradiction.

– n is in span(A1 ∪ A2 ∪ Z ∪ m). As n 6∈ span(A1 ∪ A2 ∪ Z) it follows that n = αmm +
∑

ai∈A1∪A2∪Z αiai, wheream 6= 0. Consider the sub vectornl = αmml +
∑

ai∈A1∪A2∪Z αiail.
A2l andZl are all zero, meaning thatnl = αmml +

∑

ai∈A1
αiail. Moreover,nl must equal0 as there

are no edges between vertices ofA1 andn. Thus,0 = αmml +
∑

ai∈A1
αiail whereαm 6= 0. This

implies thatml is in span(A1l). Consider the sub vectorxl. Potentially,xl could be spanned byA1l,
A2l, Zl, ml andnl. A2l , Zl, andnl are all zero, meaning thatxl ∈ span(A1l ∪ ml). As we know that
ml ∈ span(A1l), we conclude thatxl ∈ span(A1l). Now we can change the vectorx to x′ such that
x′ ∈ span(A1) exactly as done before.

To addressy, notice that in this case we have that(yl, yy) is spanned by the corresponding coordinates
of A2. Thus as done before we change the vectory to y′ ∈ span(A2) with y′x = 0. The resulting
matrixM ′ (with x′ andy′) still has rank at mostMRΣ(G)−1 = rank(A1∪A2∪Z ∪m), as all new and
old row vectors are spanned byA1 ∪A2 ∪Z ∪m. Moreover,M ′ fits G. Thus,MRΣ(G) ≤ rank(M ′) =
MRΣ(G) − 1, a contradiction.

– m is in span(A1 ∪ A2 ∪ Z ∪ n).Similar to the former case.

5 The clique cover objective function

As in Section 4 one may prove properties for the clique cover objective on the routines “merge” and ”adjust” in
the algorithm of [2]. The claims corresponding to the clique cover objectivefunction are exactly those presented
in Section 4 when the objectiveMinRank (or MRΣ(G)) is replaced by the term “clique cover” (orCC(G)). We note
that the first and second claims we discuss for the clique cover objective follow relatively straightforwardly from
the basic properties of clique covers in undirected graphs, while the third claim (analogous to Claim 4.3) is more
challenging to prove.

Claim 5.1. Let G1 and G2 be induced subgraphs ofG that have a single vertexx in common. IfCC(G1) =
CC(G1 − {x}) or CC(G2) = CC(G2 − {x}), thenCC(G1 ∪ G2) = CC(G1 − {x}) + CC(G2 − {x}). Otherwise,
CC(G1 ∪G2) = CC(G1 −{x}) + CC(G2 −{x}) + 1. Moreover, in both cases the optimal clique cover ofG1 ∪G2

can be obtained efficiently from those ofG1 − {x} andG2 − {x}.

Proof. G1 andG2 intersect at a single node, thus, using Property 2.3, we can find the cliquecover ofG1∪G2.

15

Claim 5.2. LetG be an outerplanar graph that includes verticesx andy but does not include the edgee = (x, y)
that sits on the outer face ofG. Then the value ofCC(G + e) is determined by the following table which expresses
the possible input values ofCC(G− {x, y}), CC(G− {x}), andCC(G− {y}) as a function ofλ = CC(G); and the
resulting value ofCC(G + e) as a function ofλ = CC(G):

CC(G − {x, y}) CC(G − {x}) CC(G − {y}) CC(G + e)
λ λ

λ − 2 λ − 1
λ − 1 λ λ − 1 λ

λ − 1 λ − 1 λ λ

Moreover, the optimal clique cover ofG + e can be computed in linear time using the optimal clique covers of
the subgraphs above.

Proof. We consider the following cases of the assertion:

1. CC(G−{x, y}) equals toCC(G). As e = (x, y), it holds thatCC(G + e) ≥ CC(G−{x, y}) (as any clique
cover forG + e is one forG − {x, y}).

2. CC(G − {x, y}) = CC(G) − 2. Adding the nodes{x, y} plus the edge(x, y) increasesCC(G) by 1,
because the new clique cover consists of the cliques ofCC(G − {x, y}) with the addition of the clique
(x, y). The new clique cover is(CC(G) − 2) + 1 = CC(G) − 1. The new clique cover (after adding the
edge(x, y)) can’t be less than or equal toCC(G) − 2 because of Property 2.2 (adding an edge to a graph
can decrease the clique-cover by 1 at most).

3. CC(G − {x}) = CC(G). As in the first case, it holds thatCC(G + e) ≥ CC(G − {x}) (as any clique cover
for G + e is one forG − {x}).

4. Same as 3.

Claim 5.3. LetG be an outerplanar graph that includes verticesx andy but does not include the edgee = (x, y)
that sits on the outer face ofG. Then ifCC(G − {x, y}) = CC(G − {x}) = CC(G − {y}) = CC(G) − 1 the
optimal clique cover ofG + e is determined by the following cases. (a) If there are no verticesz in G + e such
that x, y, z from a triangle (a clique) inG + e thenCC(G + e) = CC(G). (b) If there exists a vertexz in G + e

such thatx, y, z from a triangle (a clique) inG + e thenCC(G + e) depends onCC(G − {x, y, z}). Namely, if
CC(G − {x, y, z}) = CC(G) − 2 thenCC(G + e) = CC(G) − 1, otherwiseCC(G + e) = CC(G). Moreover, the
optimal clique cover ofG + e can be computed in linear time using the optimal clique covers of the subgraphs
above.

In the claim above we use the fact that in case (b), when the algorithm of Baker [2] computes the clique cover
of CC(G) the optimal clique covers ofG−{x, z}, G−{y, z} and thus alsoG−{x, y, z} are known. We note that
the clique cover ofG after adding the edge(x, y) can be equal toCC(G) or CC(G) − 1, for example:

• If x − z − y is a path, then adding the edge(x, y) closes a triangle and the clique cover is decreased by 1.

• If x − z − u − v − y is a path, then adding the edge(x, y) doesn’t decrease the clique cover.

Proof. We consider the following cases:
Case 1: There is no node′z′ such that x, y, z close a clique.Consider the clique cover ofG of sizeCC(G).

Assume that adding the edge(x, y) decreasesCC(G) by 1. The minimum clique cover ofG + e must use the edge
e and contain the clique{x, y}, otherwise, the new edge(x, y) doesn’t have any influence and it can’t change the

16

value ofCC. Here we use the fact that any clique containing{x, y} must be of size 2 at most. Thus, the new graph
without the clique{x, y} containsCC(G) − 2 cliques, in contradiction to the assumption thatCC(G − {x, y}) =
CC(G) − 1.

Case 2: There is a node′z′ such thatx, y, z close a triangle.According to Baker’s method,(x, z) and(z, y)
are childs of the node(x, y), meaning that before finding the value ofCC(G(x, y)) the procedure ”merge” was
performed with(x, z) and(z, y). The following values were known in this process:CC(G(x, z)) , CC(G(x, z) −
{x, z}) , CC(G(z, y)) , CC(G(z, y) − {z, y}). We conclude that the clique cover ofG without nodesx, y, z is
known and equalsCC(G(x, z)−{x, z}) + CC(G(z, y)−{z, y}) (the subgraphsG(x, z) andG(y, z) excluding the
nodesx, z, y are disjoint graphs because of the outerplanarity constraint). If this clique cover equalsCC(G) − 2,
then adding the clique{x, y, z} causes the clique cover ofG + e to be of sizeCC(G) − 1 (the clique cover is
decreased by 1). If this clique cover equalsCC(G) − 1, then adding the edge(x, y) can’t decrease the clique cover
size. This follows as the new clique cover must contain a clique including the set {x, y} (otherwise the added edge
e doesn’t have any influence), and can be assumed without loss of generality to contain{x, y, z}. Thus, the clique
cover of the remaining graph (without{x, y, z}) equalsCC(G) − 2 in contradiction to our assumption.

6 Proof of Theorem 1.1

We now prove Theorem 1.1 given in the Introduction and show thatMRΣG = CC(G) in outerplanar graphs (and
that both objective functions can be computed efficiently). In order to findtheMinRank or the clique cover for
outerplanar graphs, we processed a treeḠ (defined in Section 3) that represents the structure ofG. We then used
Baker’s algorithm [2] to calculate for each tree vertex and corresponding subgraphG1 of G the solution to the
corresponding objective function. These computations were based on the “merge” and ”adjust” operations studied
in Sections 4 and 5. As the analysis for theMinRank and minimum clique cover given in Sections 4 and 5 are
analogous, it follows by induction on the execution of Baker’s algorithm that for any intermediate vertex in the tree
Ḡ corresponding to a subgraphG1 it holds thatMRΣ(G1) = CC(G1). In particular, this also holds forG itself.

For the base case, consider alevel 1vertex in the tree, i.e. a leafv representing an edge(x, y). The table ofv
specifies that the size of theMinRank or the clique cover is 1 if exactly one endpoint of(x, y), or both of them
are in the corresponding subgraph, and 0 if neitherx nor y are in the subgraph. Thus, for a leafv, its table values
are equal for both the clique cover andMinRank problems. Assume that the statement is true for levelj < k

vertices in the treēG. The table for a levelk vertex is calculated according to tables of levelj vertices, using
the procedures “merge” and “adjust” analyzed in Sections 4 and 5. As theclaims states in Sections 4 and 5 are
completely equivalent (given the change in the objective function), the inductive assertion follows. All in all, for
any levelk vertex, the calculation of table(v) depends only on the tables of levelj < k vertices. By assumption,
these tables are equal forMinRank and clique cover and thus procedures “merge” and “adjust” give the same
results for the same input. We conclude thatMinRank and clique cover are equal for a levelk vertex as well. This
suffices to conclude our proof. The efficiency of our calculations follow directly from our constructive proofs.

7 Conclusions

The results of this work focus on information graphsG which are undirected and on the case in which the encoding
functions are (scalar) linear. The problem of efficiently computing the index coding round complexity for encoding
functions which are not scalar linear but rathervector linearor non-linear is left open in this work. The connection
between the clique cover ofG and the scalar linear index coding round complexity holds also for directed side
information graphs as well. However, in the directed case it is not hard to find examples in which these two differ
(e.g., any directed cycle). Finally, the side information graph model does not suffice to represent the index coding
problem in which clientsci require not a single message but multiple ones. In this case one should introduce a
hypergraph side information model (e.g., [1]), which does not fit into the framework discussed in this work.

17

References

[1] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim. Broadcasting with side information.In
Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science, pages 823–832, 2008.

[2] B. S. Baker. Approximation Algorithms for NP-complete Problems on Planar Graphs.J. ACM, 41(1):153–
180, 1994.

[3] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol. Index Coding with Side Information. In Proceedings of
47th Annual IEEE Symposium on Foundations of Computer Science, pages 197–206, 2006.

[4] Yitzhak Birk and Tomer Kol. Coding on demand by an informed source (ISCOD) for efficient broadcast of
different supplemental data to caching clients.IEEE Trans. Inform. Theory, 52(6):2825–2830, 2006. An
earlier version appeared in INFOCOM 1998.

[5] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-Complete.Journal of Algorithms, 7:174–184, 1986.

[6] S. El Rouayheb, A. Sprintson, and C. Georghiades. On the relationbetween the index coding and the network
coding problems. InIEEE International Symposium on Information Theory (ISIT), pages 1823–1827, July
2008.

[7] W. H. Haemers. On Some Problems of Lovász Concerning the Shannon Capacity of a Graph.IEEE Trans-
actions on Information Theory,, 25(2):231–232, 1979.

[8] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns. The complexity of planar counting
problems.SIAM J. Comput., 27:1142–1167, August 1998.

[9] M. Langberg and A. Sprintson. On the hardness of approximating thenetwork coding capacity. InInformation
Theory, 2008. ISIT 2008. IEEE International Symposium on, pages 315–319, July 2008.

[10] A. Rasala Lehman.Network Coding. Ph.d. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2005.

[11] E. Lubetzky and U. Stav. Non-linear Index Coding Outperforming the Linear Optimum.In Proceedings of
48th Annual IEEE Symposium on Foundations of Computer Science, pages 161–168, 2007.

[12] R. Peeters. Orthogonal Representations Over Finite Fields and the Chromatic Number of Graphs.Combina-
torica, 16(3):417–431, 1996.

18

	Introduction
	Our contribution
	Proof techniques
	Structure

	Preliminaries
	Properties of Clique-Cover
	Properties of MinRank

	Overview of Baker's algorithm Bak94
	The MinRank objective function
	Merge
	Adjust

	The clique cover objective function
	Proof of Theorem 1.1
	Conclusions

