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Abstract

We study the Index Coding problem with side information gnsp/hich areouterplanar For general side
information graphs, linearly solving the Index Coding desb implies a linear solution to the general (non-
multicast) Network Coding problem — a central open problenthie field of network communication. For
outerplanar side information graphs, we show that the Indeding problem can be solved efficiently, and
characterize its solution in terms of thkque coversize of the information graph at hand.

1 Introduction

Thelndex Codingoroblem is a fundamental non-multicast network coding problem. The profies a very clean
and elegant structure yet it captures many important aspects of the mmaealgeetwork coding problem. The
Index Coding problem was introduced by Birk and Kadl [4] in the contéxtada dissemination to clients with local
caches. An instance of the Index Coding problem includes a sendernadsetC = {ci,...,c,} of wireless
clients and a seP = {p1, p2, ..., pn} Of n independent messages that belong to some alphabehe message
p; needs to be delivered to client. Each clientc; is assumed to hold certaside informationl’; C P. Itis
common to specify the side information by a graph= (V, E') with vertex sef” = {1,...,n} in which vertexi
corresponds to client and edgdi, j) € E iff j € T;.

In eachround of communication the sender can transmit a single symbal {ife., a single message). We
assume that all symbols transmitted by the sender are received by all clidrastverror. Thej'th round of com-
munication is specified by an encoding functign " — 3. The objective is to find a set of encoding functions
® = {g;}¢_, that will allow clientc; to decode the messaggesit requires while minimizing the number of trans-
missions/ = |®|. Clientc; € C can decode packet if there exists a decoding functiop : ©¢ x L/ — ¥ that
allows ¢; to obtainp; from the? characters transmitted by the sender andhecharacters of side information.
The minimum value of is defined to be theound complexityof the index coding instance at hand (in cases in
which the alphabeX is specified we denote the round complexityak

In this work we focus on information graplds which areundirected(namely: € I'; iff j € I';), and on the
case in which the encoding functions are linear (or actusdblar linear by common terminology). In this case
we also takex to be a finite field. We note that one can extend the definition of the Index Ggquoblem to
directed side information graphs, to encoding functions which are ntdrdaaear but rathewector linear(via
time sharing) or non-linear, and to clientswhich require not a single message but multiple ones. We touch on
these extensions in the conclusion of this work.

There exist beautiful connections between combinatorial propertiegafrttiirected side information graph
G and the optimal solution to the corresponding Index Coding problem.]In [8]shown that the problem of
finding (scalar) linear solutions to the Index Coding problem is equivatetite problem of minimizing the rank
of a certain matrix with “don’t care” entries. The latter problem, referreasttheM nRank problem (denoted by
MRs), has been investigated by Haemers and Peétersl[7, 12] in which it imghatthe optimal solution value of
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Figure 1. Examples of outerplanar graphs. (a) The “star” graphTlfe)“ring” graph. (c) A general outerplanar
graph. The vertices, y andz illustrate the proof of Clairh 4]13. (d) The outerplanar gr@ppresented in (c) with
its corresponding tree representati@rfwith dotted edges).

MRz (G) is “sandwiched” between the maximum sized independent sgt(afenoted byx(G)) and the minimum
sized clique cover of7 (denoted bycC(()). Here, an independent setéhis a subset of vertices that do not share
any edges, a clique i@ is a subset of vertices for which every pair share an edge, and a clayee ofG is a
collection of cliques in7 such that every vertex i@ appears in at least a single clique in the collection. Namely,
for an fieldX and an instance to the index coding problem defined by an undirecteld @tajpe scalar linear
round complexityﬁgm) is exactlyMRg (G) which in turn satisfieSC(G) > MRz(G) > a(G).

The authors of [3] study the Index Coding problem in the setting of (Sdalaar encoding functions. Lubetzky
et al. [11] show that non-linear codes can significantly outperform flinedes for certain families of problem
instances. El Rouayheb et al.l [6] show that any instance of the moerajeretwork coding problem can be
efficiently reduced to an instance of the Index Coding problem (undeagtemption of linear encodings). This
reduction implies that efficiently finding optimal linear solutions for the Indedirog problem implies an efficient
solution to the general (non-multicast) network coding problem — the lattegkeeicentral open problem in
network communication. In the scalar linear setting, this implies that it is NP-hasdlve the index coding
problem (via the hardness results[of|[10] on scalar linear network ghdBuch hardness results were also shown
independently in[[12]. The hardness of finding approximate solutionthioindex Coding problem has been
studied in[[9].

1.1 Our contribution

As itis NP-hard to efficiently find scalar linear solutions to the Index Codmoglem for arbitrary side information
graphsG, in this work we address the following natural questi@n which families of side information graphs
can Index Coding be solved efficiently?

Our work takes a modest step in better understanding this question. Namely; study, we investigate
“simple nature” side information graplts that are so-calleduterplanar— i.e., graphs= that can be drawn in
the plane such that (a) all vertices@flie on the boundary of a circle, and (b) representing edgés oy straight
lines between their corresponding vertices, no two edgésiofersect. Some examples of outerplanar graphs are
given in FigurdL.

We show that on outerplaner side informations gra@hghe Index Coding problem can be solved efficiently
and can be characterized by the clique cover numbét. e study of more complicated side information graphs,
such ask-outerplanar grapAsor planar graphs, is left open in this work. The main contribution of this veark

A k-outerplanar graph can be embedded in the plane with no edge intersentirch a way that consecutive removals of the outer



be summarized by the following theorem.

Theorem 1.1. Let X be any finite field. The optimal scalar linear solution to the Index CodinglprotoverX:
with outer planar side information graphs can be found efficiently (i.e., in time which is polynomialGfj). In

this case, the scalar linear round complexﬁg?") = MRy (G) of the optimal scalar linear index coding solution is
equal to the clique cover siz€(G) of G.

Another natural question that motivated our work addresses the rekipdmstween the index coding round
complexity /" = MRz (G) and its combinatorial upper and lower bounds — the clique covercsi#@) and the
independent set size(G). It is not hard to find graph& for which ¢i(G) is strictly greater tham(G), for
example the five cycl€; satisfiestl (C5) = 3 while a(C5) = 2. However, it is significantly more difficult to
find graphs for which CC(G) is strictly greater thadi"(G).

Roughly speaking, the index coding solutions that correspond to cliqeexofG are extremely simple in
nature. Specifically, for each cliqué in the cover one defines an encoding functipwhich equals the sum
of messagegp; corresponding the vertices in the cliqgieé Hence asking whether for a certaihit holds that
CC(G) > EQ”(G) is equivalent to asking whether for a certain side information g(@phere is an index coding
solution which is better than the trivial one. Such graph (of rather compliczdture) are known to exist, e.g.,
[7,[12]. However, in an attempt to construct simpler families of gra@lisr which cc(G) > ¢i*(@G), itis natural
to ask: For which family of side information graphG is it the case thatli"(G) = ¢C(G)? This work takes a
small step in better understanding this question.

1.2 Proof techniques

Many NP-hard graph problems become easier to solve on outerplampdisgr@ne general technique for coping
with outerplanarity (and other simple graph structures) is that of BakeBgRer’'s approach is based on a decom-
position of the given graph into a tree structure that supports a dynangjcgonming approach to the problem at
hand. Based on this paradigm, Baker [2] presents efficient algorithmesifang several NP complete problems on
outerplanar graphs. These include for example the maximum indepemdéahd minimum vertex cover), mini-
mum dominating set, and minimum edge-dominating set problems. Baker’s teelgggaralize té&-outerplanar
graphs. Baker shows that efficient solutiongtouterplanar graphs yield high quality approximation algoriﬂms
for planar graphs.

The clique cover problem on planar graph is known to be NP-completd.[Fo&he best of our knowledge
this problem has not been addressed in the context of outerplahauderplanar graphs. In this work, we extend
the ideas of Baker to show that one can solve clique cover on outerglaaprs efficiently. Our extension involves
a delicate analysis of the dynamic programming resulting from the tree stristtggested in 2], and does not
follow directly from [2].

We then turn to tie the clique cover size of a given outerplanar graphib itRank (or equivalently, its scalar
linear index coding round complexiﬁgm)). As mentioned above, thd nRank of any graph is at most its clique
cover. In this work we show that for outerplanar graphs the cliquerceize andM nRank value are actually
equal. Our proof follows the dynamic nature of Baker’s algorithm. We $taighowing how to apply Baker's
paradigm to the problem of computing thenRank of a given graplG. This proves that thl nRank problem
on outerplanar graphs can be solved efficiently. As in the case of clioner,capplying the work of 2] to the
M nRank problem involves a delicate analysis that does not follow directly fidm [2].

To tie the clique cover number with tid nRank of GG, we show that throughout the execution of Baker’s
algorithm - no matter what intermediate objective is being considered (the dayee size or thé1 nRank) the

face of the embedding result in the empty graph.
2An r approximation algorithm is one which returns a solution whose value is withinnamltiplicative factor of the optimal solution
value.



value returned in the intermediate step is identical. This implies thafith®ank of G equals its clique cover in
the outerplanar scenario.

Our proof techniques hold for outerplanar graphs when one computglank over any finiteX. It is natural
to ask what happens in theouterplanar case. Such generalizations are left open in this workesmdirsgly
cannot be addressed by the current proof techniques.

1.3 Structure

Our paper is structured as follows. In Sectidn 2, we present some definaiod notation together with some
preliminary properties afiRz andCC that we use throughout the paper. In Secfibn 3, we present a roeghiew

of Baker’s algorithmic paradigni [2] for outerplanar graphs and spel# main points that need to be addressed
in order to apply the algorithm to the clique cover afichRank problems. In Sectiohl4 we address the points
specified in Sectiop] 3 for thel nRank problem. In Sectiohl5 we address the points specified in Sddtion 3 for the
clique cover problem. In Secti¢h 6 we show the connection between cligyge @aodM nRank.

2 Preliminaries

Definition 2.1 (MRz(G)). LetX be a finite field. We say that a matrk = a;; fits an undirected graphy if for all
iandj: a; = 1, anda;; = 0 wheneve(i, j) is not an edge of7. MRz (G) = min{ranky(A) | A fitsG}

Definition 2.2 (CC(G)). A clique in an undirected graply is a subset of vertices for which every pair share an
edge. A clique cover d@F is a collection of cliques ifz such that every vertex i& appears in at least a single
clique in the collectionCC(G) is the size of the minimum clique coverGn

As described in the Introduction, finding the optimal (scalar) linear soluti@ntmdex coding instance with
undirected side information graghis equivalent to determining the mattixfor whichMinRank(G) = rank (A),
e.g., [3]. Thus, in the remainder of our presentation we will only considetmRank problem. For a graphy,
verticesz andy and an edge, we denote by + {2}, G — {z}, G + ¢, G — e, G + (z,y), andG — (z,y) the
new graph obtained by adding or removing the vertethe edge:, or the edgéz, y) to G respectively. We now
present severaquivalentproperties of£C(G) andMRx(G) that are used later in our proof.

2.1 Properties of Clique-Cover

Property 2.1. Given a graphG and a nodev, CC(G) < CC(G + {v}) < CC(G) + 1 (Adding a node to a graph
can increase the clique-cover by at most 1).

Proof. The clique which contains the single nodean be added to the original clique coveraf Thus resulting
in new clique cover with size€C(G) + 1. For the other direction, any clique cover@f+ {v} induces a clique
cover of the same size . O

Property 2.2. Given a graphG which contains the nod€s:, y}, and doesn’t contain the edgéx, y), CC(G) >
CC(G + e) > CC(G) — 1 (Adding an edge to a graph can decrease the clique-cover by at njost 1

Proof. Consider a grapli7, which includes nodes, y and does not include the ed@e, y). Suppose that adding
an edggx, y) to the graph can decrease the clique-cover by at leastCZ(G + (z,y)) < CC(G) — 2. Removing

the nodey (and as a result the edge, y)) from (G + (x,y)) causes a new graph with clique-cover that equals at
most(CC(G) — 2). Thus, adding the nodgagain to that graph and the edges‘badjacent tay, can increase the
clique-cover at most by 1 (according to the first property abey&)C(G) < CC(G) — 1, a contradiction. The first
inequality follows easily by the definition of a clique cover. O



Property 2.3. LetG1, G2 be 2 graphs with one common nadésuch that there are no edges betwéen— {z}
andGsy — {z}). If the following values are knowrtC(G ), CC(G2), CC(G1 —{x}), CC(G2 — {z}), then the clique
cover of the union off; and G5 is known and equal to the following:

o If CC(Gy) = CC(G1 — {x}) or CC(G2) = CC(Ga— {}), thencC(G1 UGs) = CC(Gy — {}) +CC(Ga — {z}).

o |f CC(Gl) = CC(G1 — {SL‘}) +1 andCC(Gg) = CC(GQ — {$}) +1, thenCC(G1 @] Gg) = CC(Gl — {l‘}) +
CC(GQ — {l‘}) + 1.

Proof. First consider the minimum size clique cover of the union of the disjoint gré@hs {«}) and(G2 —{x}).

It holds that the minimum size clique cover of the disjoint union equals the suteddisjoint) minimum size
clique covers (this follows directly from the definition of a clique cover)wiwe will add the node to the graph.
By the properties above, the clique-cover size of the new graph caquaéte the clique-cover size of the union
or it may increase by 1. We study two cases:

e If CC(G1) = CC(G1 — {x}) or CC(G2) = CC(G2 — {z}), then addingr to the union of the disjoint graphs
doesn’t increase the clique cover becaund®longs to one of the cliques in the optimal covetgfor G,.

e If CC(G1) = CC(Gy — {z}) + 1 andCC(G2) = CC(G2 — {z}) + 1, we show that adding to the union
of the disjoint graphs increases the clique cover size by 1 (in this{eds®ill be the clique added to the
clique cover). Assume by contradiction tl&{(G; U G2) = CC(G1 — {z}) + CC(G2 — {z}). Consider the
minimum clique cover o7, U G5. The clique in this cover that containiscan’t contain additional nodes
from both the graphé/; andG, as they are disjoint graphs (excludinyy Assume w.o.l.g. that belongs
to a clique with nodes frond=;. Thus, in the clique cover, the number of cliques that caveis exactly
CC(G1UG2) —CC(Ga—{zx}) = CC(G1 —{x}). This implies thatC(G; —{z}) = CC(G), in contradiction
to the assumption.

O]

2.2 Properties ofM nRank

Property 2.4. Given a graph and a nodey, MRz (G) < MRz(G + {v}) < MRz(G) + 1 (Adding a node to a graph
can increase thé nRank by at most 1).

Proof. Consider the matrix\/ that realizeRs(G). Adding a new row and column corresponding to the new
vertexv, in which all new entries are of value 0 except the new diagonal enfry that is of value 1, we get that
MRs(G + {v}) < MRg(G) + 1. For the lower bound notice that any matrix that fits+ {v} has a corresponding
restriction (of lower or equal rank) that also fits O]

Property 2.5. Given a graph which contains the nod€s:, v}, and doesn’t contain the edgér, y), MRz (G) >
MRz (G + e) > MRz (G) — 1 (Adding an edge to a graph can decreaseMh@Rank by at most 1).

Proof. Consider a graplir, which includes nodes, y and does not include the ed@e, y). Suppose that adding

an edggx, y) to the graph can decrease lenRank by at least 2. Namely, thaRy (G + (x,y)) < MRz(G) — 2.
Removing the nodg (and as a result the edge, y)) from (G + (z,y)) causes a new graph wi nRank that
equals at mosfMRz(G) — 2) (as one can take any matrix that fiand turn it into one that fités — {y} by
removing the row and column that correspond YoThus, adding the nodgagain to that graph and the edges of
G adjacent tgy, can increase thiel nRank at most by 1 (according to the first property above). We conclude that
MRz(G) < MRg(G) — 1, a contradiction. For the upper bound in the assertion notice that any matriit$itz also

fits G + e. O



Property 2.6. LetG1, G2 be 2 graphs with one common nadésuch that there are no edges betwéen— {z}
andGy — {z}). If the following values are knownRs(G1 ), MRz(G2), MRz (G1 — {z}), MRz(G2 — {z}), then the
M nRank of the union of7; andGs is known and equal to the following:

o If MR5(G1) = MRy(G1 — {z}) or MRy(G2) = MRy(Go — {z}), thenMRz (G U G2) = MRz(Gy — {z}) +
MRZ(GQ — {.Z'})

o If MRZ(Gl) = MRZ(Gl — {x}) +1 andMRg(Gg) = MRZ(GQ — {1‘}) +1, thenMRz(Gl U Gg) = MRZ(Gl —
{z}) + MRz(G2 — {z}) + 1.

Proof. Let M be a matrix which fitg€7; U Go. AssumeM has the following structure:

| G | G =
o | e | o
Gyl O or
x ] Ty 1

In the above description we use the following notatiéf).represents the subgrapi; — {z}). G/, represents
the subgrapliGs — {x}). The row and column labels appear to the left or above the double line, whaitadlrix
entries appear to the right and below the double line. Each row (and colfmid)corresponds to a vertexin
G1 U Ga. An entrym,, in M corresponds to the verticesandv in G; U G. For the row vectofv, ..., v,)
corresponding t@ we denote its entries corresponding@9 by v or v, its entries corresponding 1@;, by
vright OF v, @nd its entries corresponding to a vertedby v,,. For example, for the vertex we have that:, = 1.
Also for a vertexv € G, we have that; = 0 as there are no edges betw&&nandG’. The submatridxG’; (G5,)
consists of the vectors (v,) forv € G} (v € GS). Finally, for any vertex» we abuse notation and refer to the row
vector corresponding to by the same notation:. The same goes for subsets of vertiges

Define M7 and M, as matrices that fi&/; and G2 correspondingly, and have the minimuamk among all
such matrices. By definitiotMRz(G1) = rank(M;) andMRs(G2) = rank(Mz). That is,M; and M, can be
expressed as follows:

| ¢ e
G| Hi
x 1
| ¢ |«
Gy || Hy
@ 1

The submatrix{; (HJ) consists of the vectors correspondingita G} (v € G%). We consider two cases:

e If MRs(G1) = MRx(G1 — {z}) = rank (M), we first claim that the rows corresponding@§ in A/, span
a vector space of dimensioank (1), and the vector corresponding toin )M, is spanned by the rows



corresponding t@>}. Denote the latter vector by;. The above follows since the submatfi fits G} and
has rank at most that of the the rows corresponding@’toHowever, there is no matrix that fis] of rank
less thartMRz (G — {z}).

Now consider the matriXx/ above. In what follows we will suggest values for the entries/bthat will
yield rank equal toRz(G1 — {z}) + MRz(G2 — {z}). Namely, we setG), to be equal taH|, we set the
z'th entry of the rows of&} in M to be equal to their corresponding entries\ifi, we set’,, to be H), the
(row) vectorz,, (the entries of the vector in M corresponding to vertices i@} U {z} = G}) to be the
vectorz, andz, to be 0. As we show above, the vectg,. is spanned by the rows @il corresponding to
G}. Thusz is spanned by the rows correspondingpuU GY,. We conclude that the resulting mattiX has
rankrank (M) + rank (H}) = MRg(G)) + MRz (G5). This shows thaRz(G) < MRz(G}) + MRz (G5). To
obtain equality, notice that &) and G/, are disjoint graphs, it is not hard to verify (from the definition of
M nRank) that these rows span a vector space of dimension atMaagt’; ) + MRx(G5). The same proof
can be shown for the case th&;(G2) = MRg (G2 — {z}).

e MRz(G1) = MRg(G1—{z})+1andMRg(G2) = MRz (G2 —{z})+1. Assume by contradiction that the optimal
matrix M satisfiegank (M) = MRz(G1 U G32) = MRg(G1 — {z}) + MRx(G2 — {x}) = MRx(G}) + MRs(GY).
This implies thate € span(G'; U GY}), as otherwise eitheank (Gy;) < MRz(G) or rank (Ga,) < MRz (G%)
which is a contradiction to the facts thaf, fits G|, andG,, fits G5,.

Consider the rows ao#/ that participate in the linear combination that yields the vectdf these rows are
included inG’,, then it follows that the subvectat, (the left coordinates of the vecterincluding the coor-
dinate corresponding te) is in span(G}) which implies thatRsz(G1) = MRs(G1 — {z}), a contradiction.
To see the contradiction, construkf; by setting the rows corresponding € in M; to be equal to the
corresponding entries in the rows corresponding-toin M/, and the vector corresponding toin M; to
be equal tor;,. A similar analysis can be done for the case that the rows @hat participate in the linear
combination that yields the vecterare included irG5.

If the the rows ofM that participate in the linear combination that yields the vectoombine vectors from
G andGY%, one may consider the partial linear combination fréfnandG/, separately. Let; be the linear
combination resulting from the rows &} andz, be the linear combination corresponding to the rows in
G). Namelyx = x1 + 5. Let the coordinate im; corresponding to the vertexbea;. As the entryr, = 1,
we have that; + a2 = 1. Thus, it cannot be the case that bathanda, are 0. Assume w.l.o.g. that
a1 # 0. Also assume w.l.o.g. that; = 1 (otherwise the entries af/; to be constructed shortly can be
scaled accordingly). Now construdf; by setting the rows corresponding @ in M to be equal to the
corresponding entries in the rows corresponding-toin M, and the vector corresponding toin M; to
be equal to the corresponding coordinates in a revised versioninfwhich the entry corresponding to the
vertexx in x1 is changed ta;. It is not hard to verify that the modified version.of is spanned by the rows
corresponding t@-} in M; and thusMRz(G1) = MRz(G1 — {z}), a contradiction.

3 Overview of Baker’s algorithm [2]

Our work is based on Baker’s algorithmic paradidrn [2]. In what follovesgive a brief (and rough) overview of
the main ideas that govern the algorithm(df [2]. We will identify the major pointsrtbad to be addressed in order
to apply the paradigm at hand to the case ofitheRank and clique cover problems.

Given an outerplanar graggh, the algorithm of Bakeir 2] has two major steps. In the first step, a treesep-
tationG of G is constructed. Every node @ corresponds to a subgraph@f where the root of corresponds to
G itself, each leaf in; corresponds to an edge, and internal nodes orrespond to the subgraphGfinduced
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Figure 2: An outerplanar graph and its corresponding tree repréisentéaken from([2].

by their children inGi. The construction of? from G is very simple in nature, and the trégtightly resembles the
standard notion of thdualto an (outer)planar graph. See Figlre 1(d) and Figlre 2.

In slightly more detail:G is constructed as follows (in this presentation we suppose there are rmntsitip
G, i.e., a vertex whose deletion disconnects the graph). Place a vertexitingardor face and on each exterior
edge, and draw an edge from each vertex representing & faceach vertex representing either an adjacent face
(i.e., a face sharing an edge with or an exterior edge of. (This tree is closely related to the dual of the graph;
however, the dual would lack vertices for exterior edges and would &aadditional vertex for the exterior face.)
An example (taken froni[2]) is shown in Figurk 2.

The planar embedding induces a cyclic ordering on the edges of edelx wierthe tree. Choosing a face
vertexv as the root and choosing which child ofs to be its leftmost child determine the parent and ordering of
children for every other vertex af. Label the vertices of: recursively, as follows: Label each leaf of the tree
with the oriented exterior edge it represents. Label each face vertexheitiirst and last nodes in its children’s
labels. If a face vertex is labeldd, y), the leaves of its subtree represent a directed walk of exterior edges in a
counterclockwise direction from to y. For the rootx = y and the directed walk covers all the exterior edges.
For any other face vertex x # y, and(z, y) is an interior edge shared by the face representeddnyd the face
represented by its parent in the tree. We defitie, y) to be the subgraph corresponding to the subtreg mfoted
at tree-nodéz, y). Namely,G(x, y) contains all edges corresponding to leaves in it's subtree with the addition of
the edgdz, y).

For example, in Figurgl 2, the leaves of the node labé&led) represent a walk along nodgs4, 5,6,7. The
leaves of the rootl, 1) represent a counterclockwise walk around the exterior edges begiamihending at node
1. The vertex labeledl, 3) represents the face containing nodes 3, its parent represents the face containing
nodesl, 3,7,9, and (1, 3) is the interior edge shared by these faces. We refer the interested tedskker’s
original work [2] for a clear and full presentation of the tree structilre

Once the tre€’ is given, the objective in]2] is to dynamically compute the objective funciofn at hand
(e.g.,M nRank) in abottom upmanner from the leaves to the root. Namely, for each vettey) of G, based on
the algorithm of[[2], we will define a table for this vertex which contains 4 eaiu

e The solution to the objective function at hand for the subgi@ph, y) including the nodes andy.

e The solution to the objective function at hand for the subgi@ph, v) including the node: and noty.

e The solution to the objective function at hand for the subgi@ph, v) including the nodey and notz.
)

e The solution to the objective function at hand for the subgi@ph, y) excluding the nodes andy

8



Proceduret abl e( v)

if vis alevel 1 leaf corresponding to an edge with lahely)
then
return atable representing the edge y);
else * vis aface vertex*
begin
T = tablef:), whereu is the leftmost child ob;
for each other child: of v from left to right
T = merge(T, tableq));
return (adjust(T));
end

Figure 3: The algorithm abl e from [2].

The table for a leaf of the tree representing an edgey) specifies (in our case in whidhbj is either the
M nRank or clique cover) thadbj for the subgraph consideredlisf exactly one endpoint ofz, y) or both of
them are in the subgraph, and 0 if neithenor y are in the subgraph. The table for every other vertex will be
computed recursively by merging the tables of its children according to theithig of [2] given in FiguréB.

There are two major operations that need to be addressed in the abogdyre Thanerge operation takes
as input the intermediate tallé and the table of a tree nodeand returns a “merged” table of the two. More
specifically, letv be a vertex which represents a face vertexy) with the following children:(zx, a), (a,b), ...

(i, 2), (z,w), ... (j,y). Assume that we are considering the clfidcw) of (x, ) in G. LetG(x, z) be the subgraph

of G that includes all the edges that are in the union of the subgi@phs:) U G(a,b) U ... UG(i, z). The current
tableT" includes information for the subgraph(z, z). Namely (by induction) assume the current tabléas a
value for eaclbit pair representing: andz. By the term “bit pair” we refer to each possibility for the existence of
x andz in the subgrapl@(z, z), meaning that the tabl& has 4 solutions to the objective function at hand, each
of a subgraptz(x, z) (solution for the subgraph containingand z, solution for the subgraph containingand

not containingz, solution for the subgraph containingand not containing:, solution for the subgraph without
bothz andz.) The childu has labelz, w) for somew, and tableg) has a value for each bit pair representing
andw. The goal of procedure merge is to construct an updated Tablith a solution of the objective function on
G(z,w) U G(w, z) for every bit pair representing andw.

The adjust operation takes as input a talifeconsisting of the merge of all the children of and returns a
tablev corresponding t@. Specifically, letv be a vertex which represents a face veftexy) with the following
children:(z,a), (a,b), ... (i, 2), (z,w), ... (J,y). After merging all of the children, we get a table for the subgraph
G(z,y), which includes the clique cover of the subgragh, y) for each bitpair of(z, y), but does not include
the edg€z, y) if such an edge exists. The goal of procedure adjust is to solve thetigbjemction at hand after
adding this edge.

To apply Baker’s algorithm to an objective functiohj of our choice, we must show how to implement the
subroutinesnerge andadjust. It is not hard to verify that to prove that one can implementrttegge operation,
it suffices to present an algorithm that takes as input two induced qi®fa and G-, of G that intersect at a
single vertexz and the solutionsbj(G1), 0bj(G1 — {x}), 0bj(G2) and0bj(G2 — {z}) and returns a solution
for 0bj(G1 U G2). Here, as the graphS; and G, are induced subgraphs 6f notice that there are no edges
betweenG; — {z} andG2 — {x}. Similarly, for theadjust operation, it suffices to present an algorithm which
takes as input an outerplanar gra@tthat includes vertices andy but does not include the edde, y) on the
outer face of7, the solution®bj (G — {z}), 0bj(G — {y}), 0bj(G — {z,y}), and0bj(G) and returns a solution
for 0bj(G + e). The implementation of these tasks for the clique coverMnaRank objective functions are in



cases highly non-trivial, and to the best of our knowledge have nat ddressed in the past. In the upcoming
sections we will address the task of implementing these subroutines efficiently.

4 TheM nRank objective function

4.1 Merge

In themergeoperation one takes two subgraphs thateingostdisjoint for which the optimaM nRank is known,
and returns th&1 nRank of their union (including the corresponding matrixof minimum rank). If the graphs
were disjoint then thé nRank of the union is just the union of the correspondMgnRanks, however, as the
subgraphs share a vertex, tenRank of their union might be smaller according to the claim below.

Claim 4.1. Let G; and G4 be induced subgraphs @f that have a single vertex in common. IMRs(G1) =

MRs(G1—{x}) or MRg(G2) = MRy (G2 —{z}), thenMRy(G1 UG2) = MRy (G — {x}) + MRg (G2 — {z}). Otherwise,
MRz (G1 U G2) = MRz(G1 — {z}) + MRz(G2 — {z}) + 1. Moreover, in both cases the corresponding mattinf

minimum rank that fit€7; U Go can be obtained efficiently from the matrices corresponding tdvthreRank of

G1 — {.ZL'} anng — {JZ}

Proof. G; andGs intersect at a single node, thus, using Proderty 2.6, we can findkghef G U Go. O

4.2 Adjust

In the “adjust” operation one takes an outerplanar gr@phith verticesz andy but without the edgéx, y) that

lies on the outer face @¥; and computes thigl nRank of G + e based on th&! nRank of the graphG — {z}, the
graphG — {y}, the graph — {z, y} and the grapldz. As we have shown, it holds th#Ry(G + ¢) either equals

MRz (G) or is smaller and equalRs(G) — 1, however the correct answer depends strongly on the the values of
theM nRank in the subgraphs aff that do not include the verticesor y. The following two claims summarize

the adjust operation when applied to tllenRank objective function. The first claim covers almost all possible
settings except one, and can be proven relatively straightforwardtfre basic properties ® nRank combined

with Propertyf 2.6 above. The second claim addresses the last settirig,raock challenging.

Claim 4.2. LetG be an outerplanar graph that includes verticeandy but does not include the edge= (z, y)

that sits on the outer face 6f. Then the value afRy(G + ¢) is determined by the following table which expresses
the possible input values MRy (G — {z, y}), MRz(G — {z}), andMRz(G — {y}) as a function o = MRz(G); and

the resulting value afiR;(G + e) as a function o\ = MRz (G):

MRs(C — (2,y)) | MRa(G — {2)) | MRs(C — (y)) || MRs(G + ©)
A A
A—2 A—1
-1 A A—1 A
A—1 A—1 A A

Moreover, the minimum rank matrix corresponding ta'Rz(G + e) can be computed efficiently using the
matrices corresponding to thd nRank of the subgraphs above.

Proof. We consider the different cases stated in the assertion:
1. MRy(G — {z,y}) = MRz(G). Ase = (z,y), it holds thatMRs(G + e¢) > MRz (G — {z,y}) (as any matrix

that fitsG + e has a minor which fit&s — {x, y}). Thus, adding the nod€s:, y} and the edgéz, y) can't
decrease th®l nRank of the former grapiRs (G — {z, y}) which is equal t&Rz(G).
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2. MRz (G — {z,y}) = MRg(G) — 2. Adding the nodegz, y} plus the edgéz, y) to G — {x, y} increases its
M nRank by at most 1 (one can just append to a matrix thatdits- {z,y} the row vector that id on
coordinates: andy and O otherwise). Thus we geéks(G + ¢) < (MRz(G) — 2) + 1 = MRz(G) — 1. The
valueMRs(G + ¢) can't be less than or equal MRy (G) — 2 because of Properfy 2.5 (adding an edge to a
graph can decrease tMenRank by 1 at most).

3. MRz(G — {z}) = MRz(G). As in the first case it holds th#R: (G + ¢) > MRs(G — {z}) (as any matrix that
fits G + e has a minor which fit&/ — {z}).

4. Same as 3.

O]

Claim 4.3. Let G be an outerplanar graph that includes verticeandy but does not include the edge= (z, y)

that sits on the outer face @¥. Then ifMRsz(G — {z,y}) = MRz(G — {z}) = MRz(G — {y}) = MRz(G) — 1
theM nRank of G + ¢ is determined by the following cases. (a) If there are no verticesG + e such that
x,y, z from a triangle (a clique) inG + e thenMRz(G + ¢) = MRg(G). (b) If there exists a vertexin G + ¢
such thatz, y, z from a triangle (a clique) inG + e thenMRz(G + e) depends oMRz(G — {z,y, z}). Namely, if

MRz (G —{z,y, 2}) = MRz(G) — 2 thenMRz (G + ¢) = MRz (G) — 1, otherwise'Rs (G +¢) = MRy (G). Moreover, the
minimum rank matrix corresponding K&z (G + ¢) can be computed efficiently using the matrices corresponding
to theM nRank of the subgraphs above.

When using Claini4]3 in our algorithm we use the fact that in case (b), wheealgforithm of Baker[[2]
computes thél nRank (and corresponding matri®) of G theM nRanks (and corresponding matrices)@f—
{z,z}, G —{y, 2z} and thus als&r — {x,y, z} are known. Claini4l3 is the most challenging claim proven in this
work. Examples in which tht! nRank of G after adding the edger, y) are equal tdlRz(G) or MRz (G) — 1 are
given below.

e If z — 2z — yis a path, then adding the ed@e y) closes a triangle and thd nRank is decreased by 1.
e If 2 — 2z —u — v — yis apath, then adding the ed@e y) doesn’t decrease thd nRank.

Proof. We consider the following cases:

Case 1: There is a nodéz’ such thatz, y, ~ close a triangle. According to Baker's methodz, z) and(z, y)
are children of the nodéz,y), meaning that before finding the value iy (G) the procedure "merge” was
performed with the nodegr, z) and (z,y). The following values were known in this procedy(G(z, z)),
MRz(G(z, z) — {x, z}), MRz(G(z,v)), andMRs (G (z,y) — {z,y}). ThusMRz(G) — {z,y, z}) is known and equals
MRz(G(z, z) —{x, z}) +MRz(G(z,y) — {z,y}) (the subgraph&(zx, z) andG(z, y) excluding the nodes, z, y are
disjoint graphs because of the outerplanarity constraint, see, e.g.eBigur

We consider two cases: MRz (G — {z,y, 2z}) = MRz(G) — 2, we claim thatRz (G + e¢) = MRz(G) — 1. This
follows since, given a matri¥ that fitsG' — {x, y, z} one can construct one that fits+ e by expanding4 in a
natural way (adding rows/columns corresponding: g, z), in which the only new entries that are non-zero are
those corresponding to a pair{m, y, z} (which can be setto equal 1). Thi&z(G + (x,y)) = MRz(G) — 1 (the
M nRank is decreased by 1 after adding the edge (x,y)).

For the second case, MRx(G — {z,y,z}) = MRz(G) — 1, we now show that adding the edge, y) can’t
decrease th®l nRank, thusMRz(G + (z,y)) = MRz(G).

Claim 4.4. If MRz (G — {z,y, z}) = MRz(G) — 1, thenMRz(G + (z,y)) = MRx(G).
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Proof. We start by noting that the removal of the three vertitesy, z} in G disconnectg into 2 disjoint com-
ponents. See, e.g., Figure 1. We denote these componerits dnyd A>. As G + e is outerplanar, and the edge
(z,y) is on the outer face off + e, we can assume w.l.0.g. that verticesAp are not connected by an edge to
vertices ind,. Moreover, vertices il; are not connected by an edgetavhile vertices ind, are not connected
by an edge ta.

Define M as a matrix which fit€s + (z, y), and has the minimumank among all such matrices. By definition,
MRz (G+(x,y)) = min{rank (M) | M fits (G+(x, y))}. Assume in contradiction that after adding the e@igey),
MRz (G) is decreased by, meaning thatank (M) = MRz (G + (z,y)) = MRz(G) — 1. We will see that by changing
a few entries inV/ we obtain a new matri®/’, with the sameank asM, which fitsG (the original graph without
(x,y)), implying thatMRz(G) < rank(M’) = rank (M) = MRs(G) — 1, a contradiction. We will thus conclude
thatMRz(G + (z,y)) = MRz(G). Consider the matrid/:

| A |z |y [=] 4

Ay Ay 0 0

T ] 1 |z, |* 0

Y 0 Yo |1 |7 Yr
z 2 o 1 Zr
Ag 0 0 Ag,

In the above description we use the following notatigh.represents the subgraph corresponding to the face
vertex (z, z) in G. As represents the subgraph corresponding to the face vertgx in G. An entry m,,, in
M corresponds to the vertices labeledbyndv in G. Each row of M corresponds to a vertexin G. For
the row vector(v; ... v,) corresponding t@ we denote its entries corresponding4e by v;. s or vy, its entries
corresponding tols by v,;45; O v, and its entries corresponding to a verteky v,,. For example, for the vertex
x we have thatr, = 1. Also for a vertexv € A, we have that; = 0 as there are no edges betweénand A;.
Finally, for any vertexo we abuse notation and refer to the row vector correspondindtothe same notation:.
Similarly for a set of vertices! we refer to the row vectors corresponding4dn M by A.

In the description of\/ above we have specified entries that musOpentries that must bé, and some
entries of interest that can be eittieor 1 (denoted by *). For each matrix which fits the gra@hthe graph that
doesn’t include the edger, v)), it is known thatz, = 0 andy, = 0, because there is no edge betweemndy.
Consider the matrix\/ above which fitsG + (z,y). If z, = 0 andy, = 0, thenM also fitsG, implying that
MRz(G) < rank (M) = MRy(G) — 1, a contradiction. Thus, one of the valuggsor y,, must equal. Recall that we
are assuming thaRyz (G—{x, y, z}) = MRz(G)—1, meaning thatank (A/) = MRz(G)—1 = MRg(G—{x,y, 2}) =
MRs(A; U As). Consider the rows af/ corresponding tol; and As. We now claim that these rows span a vector
space of dimensioMRs(G) — 1 and thus spad/. Indeed, if the rows of4; and A, spanned a vector space of
lower dimension, then one could construct a matrix that fits the subgrapbeddwy A; U A5 with rank lower
thanMRz(G) — 1. However, as stated abow®z(A; U A3) = MRz(G) — 1, a contradiction.

We conclude that the row vector(corresponding to the vertey is in span(A; U A,). The same holds for the
vectorsy andz. Consider the sub vectay. Potentially,z; could be spanned by the left coordinates in the vectors
of A; (denoted asly;) and the left coordinates in the vectorsAf (denoted asi,;). However, Ay is all zero (as
there are no edges between verticesigfand those ofd;). Thus,z; € span(Ay;). Moreover, it also holds that
the vector(z;, z,) (i.e, the entries of corresponding to vertices; U x)) is spanned by the coordinates 4f
corresponding to the verticésl; U x).

We now suggest to change the vectoio =’ such thatz’ € span(4;). This can be done by zeroing out the
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Figure 4: The partition of7 into 4 graphs in the proof of Claim 4.4 (case 2).

values ofz in the coordinatey and by changing the value ofin coordinate: to according to the following rule. By
the discussion above, let the coefficiefits} satisfy : (v;, z2) = >_, c 4, @i(air, aiz). Nowset' =37 4 aja;.
Notice thatxfy = 0. In a similar (and symmetric) way we can change the vegttwr ' € span(As) such that
yr. = 0. The resulting matriX/’ still has rank at moRz(G) —1 = rank (4; U As), as all new and old row vectors
are spanned byl; U A,. Moreover, M’ fits G. Thus,MRz(G) < rank (M') = MRz(G) — 1, a contradiction. [J

Case 2: There is no nodéz’ such thatz,y, z closes a triangle. In Figure[4 we present a decomposition of
G into 4 graphs: Ay, Ay, Z, {z,y,m,n}. As described previously, the gragh (denoted byG(z,y) earlier)
corresponds to the subgraph of the face vertex which is lalieled in the tree construction of Baker. We denote
by m the neighbor of: (on the corresponding face) which is furthest away ftom a counterclockwise direction.
We denote byn the neighbor ofy which is furthest away frony (on the corresponding face) in a clockwise
direction. Removing the vertices y, m andn from G, we get the4 disconnected components that appear in
Figure[4.

Define M as a matrix which fit€s + (z, y), and has the minimumank among all such matrices. By definition,
MRz (G+(x,y)) = min{rank (M) | M fits (G+(x, y))}. Assume in contradiction that after adding the e@igey),
MRz (G) is decreased by, meaning thatank (M) = MRz(G + (z,y)) = MRz(G) — 1. We will see that by changing
a few entries inV/ we obtain a new matri®/’, with the sameank asM, which fitsG (the original graph without
(z,y)), implying thatMRz(G) < rank(M’) = rank (M) = MRz(G) — 1, a contradiction. We will thus conclude
thatMRx(G + (z,y)) = MRz(G). Consider the matrix}/ (we use a similar representation to that given in the
analysis of the previous case).

L A Je|m|[Z[n]y | 4
Aq 0|00 0
T ) 1 |{* 10 0]z, 0
m my * 1 0 0
Z 0 0 0 0
n 0 0 11|* e
Y 0 Yy 10 |0 | * |1 Y
Ao 0 0 |0 |0

For each matrix which fits the gragh (the graph that doesn’t include the edgey)), it is known thate, = 0
andy, = 0, because there is no edge betweesndy. Consider the matriX/ above which fitsG + (z,y). If
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z, = 0 andy, = 0, thenM also fitsG, implying thatMRz(G) < rank (M) = MRz(G) — 1, a contradiction. Thus,
one of the values,, or y, must equal. Recall that we are asuuming that; (G — {x,y}) = MRz(G) — 1, meaning
thatMRy(G) — 1 = rank (M) = rank (G — {z,y}) = MRz(41 U Ay U Z UmUn) (here, "4 UAsUZUmUn”
refers to the subgraph induced on these vertices)ofConsider the rows o/ corresponding td; , As, Z, m,
n. We now claim that these rows span a vector space of dimem8igidz) — 1 and thus spad/. Indeed, if the
rows of Ay , Ao, Z, m, n spanned a vector space of lower dimension, then one could construdtia tmat fits
the subgraph induced by U A, U Z U m U n with rank lower thanMRy(G) — 1. However, as stated above,
MRr(A; U A2 UZ UmUn) =MRg(G) — 1, a contradiction.

As before, for a vertex we abuse notation and refer:tas the corresponding row vectorid. Similarly for
a set of verticesd we refer to the row vectors corresponding4dn M by A. We conclude that the row vector
(corresponding to the verte® is in span(A; U A, U Z Um Un). The same holds for the vectgr

The following cases must be considered:

e Bothm andn are inspan(4; U A2 U Z), meaning thatank (4; U Ay U Z) = MRz(G) — 1. In this case, the
row vectorz is in span(A; U As U Z). Consider the sub vectay;. Potentially,z; could be spanned by the
left coordinates in the vectors of; (denoted asiy;), the left coordinates in the vectors df (denoted as
Ay;), and the left coordinates in the vectorsf{denoted a%/;). However,A,; is all zero (as there are no
edges between vertices df, and those ofd,), andZ; is all zero (as there are no edges between vertices of
Z and those ofd;). Thus,z; € span(A4;;). Moreover, it also holds that the vector;, =) (i.e, the entries
of z corresponding to verticgsd; U z)) is spanned by the coordinates 4f corresponding to the vertices
(Al U l’)

We now suggest to change the vectdo 2’ such thate’ € span(4;). This can be done by zeroing out the
values ofz in the coordinate; and by changing the value afin coordinaten according to the following

rule. By the discussion above, let the coefficiefits} satisfy : (v1,2,) = >_, c 4, @i(ai, aiz). Now set

A -
r = ZaieAl Qg

Similarly, we change the vectarto y/ € span(A;y) with ¢/, = 0. The resulting matrix/’ still has rank
at mostMRs(G) — 1 = rank(A; U Ay U Z), as all new and old row vectors are spanneddgyJ A, U Z.
Moreover, M’ fits G. Thus,MRz(G) < rank (M') = MRz(G) — 1, a contradiction.

e nisinspan(4; U A, U Z), andm not. We first suggest to change the vectoto m' by zeroing out the
values ofm in the coordinatesZ andn. Now consider the vectar, or more specifically the sub vector
x;. Potentially,z; could be spanned by the left coordinates in the vectord,ofdenoted asiy;), the left
coordinates in the vectors of; (denoted asdy;), the left coordinates in the vectors &f(denoted as;),
and the left coordinates in the vecter (denoted asn;). However, Ay is all zero (as there are no edges
between vertices ofl; and those ofd;), andZ; is all zero (as there are no edges between vertices of
and those ofd;). Thus,z; € span(A; Um;) = span(Ay; U m;). Moreover, it also holds that the vector
(x1, ) (i.€, the entries of corresponding to verticgsd; U x)) is spanned by the coordinatesAf andm/’
corresponding to the verticésl; U x).

We now suggest to change the vectdp 2’ such that’ € span(4; Um'). This can be done by zeroing out
the values of: in the coordinate and by changing the value ofin coordinaten according to the following
rule. By the discussion above, let the coefficiefits} satisty : (z, z2) = > ;e a,u(m/y @i(@it; @iz). Now
sete’ =3, ca,ugm} @iai- Notice that asn’ is 0 is coordinates correspondingZon, y and A, the same
holds for so ist’.

We now address the vectgras we did in the former case (recall thais in span(A; U A; U Z)). Namely,
we change the vectarto 3y’ € span(As) with y, = 0. The matrixM’ with the new rows»/, 2’ andy’
still has rank at mostank (4; U Ao U Z U {m’}) < rank(4; U A2 U Z U {m}) = MRz(G) — 1. This
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follows as all new and old row vectors are spanneddhyJ A> U Z U {m’}. Moreover,M’ fits G. Thus,
MRz (G) < rank(M’) = MRz(G) — 1, a contradiction.

e nisinspan(A4; U Az U Z) andm not. Similar to the former case.

e bothm andn are not inspan(A; U A; U Z). We need to consider the following cases:

— misnotinspan(A; U As U Z Un) andn is not inspan(4; U A2 U Z U m). We suggest to change
the vectorm to m’ by zeroing out the values of: in the coordinates? andn. We also suggest to
change the vector to n’ by zeroing out the values of in the coordinates” andm. Now we can
change the vector to 2’ such thatz’ € span(A; Um/). This can be done by zeroing out the values
of = in the coordinate; and by changing the value afin coordinaterm as done before. Similarly,
we change the vectarto 3y’ € span(A; U n’). The resulting matrixd/’ (with m’, n’, 2’ andy’) has
rank at mostank (4; U A, U Z U {m/} U{n’}) < MRz(G) — 1, as all new and old row vectors are
spanned byl; U Ao U Z Um’ Un'. Moreover,M’ fits G. Thus,MRs(G) < rank (M') = MRs(G) — 1,

a contradiction.

—nisinspanA; U A2 U Z Um). Asn ¢ span(4; U Ay U Z) it follows thatn = «a,,m +
Y aie A uAuz Yili, Wherea,, # 0. Consider the sub vector, = ammu + 3, c 4,004,027 Qiil-
Aoy andZ; are all zero, meaning that = «;,,m; + EaieAl a;a;. Moreover,n; must equal as there
are no edges between verticesAf andn. Thus,0 = a,,m; + ZaieAl a;a;; wherea,, # 0. This
implies thatm; is in span(Ay;). Consider the sub vectay. Potentially,z; could be spanned hyt;;,
Agy, Zy, my andny. Agy , Z;, andn; are all zero, meaning that € span(Ay; U m;). As we know that
my € span(Ay;), we conclude that; € span(A;;). Now we can change the vecterto =’ such that
x’ € span(A;) exactly as done before.

To addresg, notice that in this case we have ttiat, v, ) is spanned by the corresponding coordinates
of A;. Thus as done before we change the vegtto iy € span(A;) with ¢y, = 0. The resulting
matrix M’ (with 2" andy’) still has rank at mostRz(G) — 1 = rank (A; U A, U ZUm), as all new and
old row vectors are spanned by U Ay U Z Um. Moreover,M’ fits G. ThusMRs(G) < rank (M) =

MRy (G) — 1, a contradiction.

— misinspan(A; U A, U Z Un).Similar to the former case.

5 The cligue cover objective function

As in Sectior ¥ one may prove properties for the clique cover objectiveerotitines “merge” and "adjust” in
the algorithm of([2]. The claims corresponding to the clique cover objetiinetion are exactly those presented
in Sectiori# when the objectiid nRank (or MRz (G)) is replaced by the term “clique cover” (0€(G)). We note
that the first and second claims we discuss for the clique cover objeotige/ frelatively straightforwardly from
the basic properties of clique covers in undirected graphs, while the fhird ¢analogous to Claiin4.3) is more
challenging to prove.

Claim 5.1. Let G; and G5 be induced subgraphs @f that have a single vertex in common. IfcC(G;) =
CC(Gy1 — {z}) or CC(G2) = CC(G2 — {z}), thenCC(G1 U G2) = CC(G1 — {z}) + CC(G2 — {x}). Otherwise,
CC(G1UG2) = CC(Gy — {x}) +CC(G2 — {z}) + 1. Moreover, in both cases the optimal clique cove6Gofu G,
can be obtained efficiently from those@f — {z} andGs — {z}.

Proof. G; andGs, intersect at a single node, thus, using Progerily 2.3, we can find the cigaeofG; UG,. [
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Claim 5.2. LetG be an outerplanar graph that includes verticeandy but does not include the edge= (z, y)

that sits on the outer face 6f. Then the value dfC(G + e) is determined by the following table which expresses
the possible input values 0E(G — {z,y}), CC(G — {z}), andCC(G — {y}) as a function ol = CC(G); and the
resulting value of£C(G + e) as a function of\ = CC(G):

CC(G — {x,y}) | CC(G —{z}) | cC(G —{y}) || CC(G +e€)
A A
A—2 A—1
A—1 A A—1 A
A—1 A—1 A A

Moreover, the optimal clique cover 6f + e can be computed in linear time using the optimal clique covers of
the subgraphs above.

Proof. We consider the following cases of the assertion:

1. CC(G —A{z,y}) equalstaCC(G). Ase = (z,y), it holds thatcC(G + e¢) > CC(G — {x,y}) (as any clique
cover forG + e is one forG — {z, y}).

2. CC(G — {z,y}) = CC(G) — 2. Adding the nodeqz,y} plus the edgdz,y) increasesCC(G) by 1,
because the new clique cover consists of the cliqueS@{G — {z,y}) with the addition of the clique
(x,y). The new clique cover iSCC(G) — 2) + 1 = CC(G) — 1. The new clique cover (after adding the
edge(z,y)) can’t be less than or equal ©C(G) — 2 because of Properfy 2.2 (adding an edge to a graph
can decrease the clique-cover by 1 at most).

3. CC(G —{z}) = CC(G). As in the first case, it holds that (G + e¢) > CC(G — {«x}) (as any clique cover
for G + e is one forG — {xz}).

4. Same as 3.

O]

Claim 5.3. Let G be an outerplanar graph that includes verticeandy but does not include the edge= (z, y)
that sits on the outer face @f. Then ifcC(G — {z,y}) = CC(G — {z}) = CC(G — {y}) = CC(G) — 1 the
optimal clique cover ofr + e is determined by the following cases. (a) If there are no verticesG + e such
that z, y, z from a triangle (a clique) inG + e thenCC(G + e) = CC(G). (b) If there exists a vertexin G + e
such thatz, y, z from a triangle (a clique) inG + e thenCC(G + ¢) depends oeC(G — {z,y, z}). Namely, if
CC(G — {z,y,z}) = CC(G) — 2 thenCC(G + e) = CC(G) — 1, otherwiseCC(G + e¢) = CC(G). Moreover, the
optimal clique cover o7 + e can be computed in linear time using the optimal clique covers of the sutgrap
above.

In the claim above we use the fact that in case (b), when the algorithmkefr 8 computes the clique cover
of CC(G) the optimal clique covers & — {z, z}, G — {y, z} and thus alsér — {x, y, z} are known. We note that
the clique cover ot after adding the edger, y) can be equal t6C(G) or CC(G) — 1, for example:

e If z — z — y is a path, then adding the ed@e y) closes a triangle and the clique cover is decreased by 1.
e If z — 2z —u — v — yis a path, then adding the ed@e y) doesn’t decrease the clique cover.

Proof. We consider the following cases:

Case 1: There is no nodéz’ such thatz, y, z close a clique.Consider the clique cover @ of sizeCC(G).
Assume that adding the edge, y) decreasesC(G) by 1. The minimum clique cover @¥ + e must use the edge
e and contain the cliquéz, y}, otherwise, the new edde, y) doesn’t have any influence and it can’t change the
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value ofCC. Here we use the fact that any clique containfngy} must be of size 2 at most. Thus, the new graph
without the clique{x, y} containsCC(G) — 2 cliques, in contradiction to the assumption thatG — {z,y}) =
CC(G) — 1.

Case 2: There is a nodéz’ such thatx, y, z close a triangle.According to Baker’s methody, z) and(z, y)
are childs of the nodéz, y), meaning that before finding the value @f(G(z,y)) the procedure "merge” was
performed with(z, z) and(z,y). The following values were known in this proces€(G(z, z)) , CC(G(x, z) —
{z,z}), CC(G(z,y)) , CC(G(z,y) — {z,y}). We conclude that the clique cover 6f without nodesr, y, z is
known and equalsC(G(x, z) — {x, z}) + CC(G(z,y) — {z,y}) (the subgraph&(z, z) andG(y, z) excluding the
nodesz, z, y are disjoint graphs because of the outerplanarity constraint). If thiseciquer equals§C(G) — 2,
then adding the cliqué¢x, y, z} causes the clique cover ¢f + e to be of sizeCC(G) — 1 (the clique cover is
decreased by 1). If this clique cover equet$G) — 1, then adding the edde, y) can’t decrease the clique cover
size. This follows as the new clique cover must contain a clique including tHe:sg} (otherwise the added edge
e doesn’'t have any influence), and can be assumed without loss aBgjgnt® contain{x, y, z}. Thus, the clique
cover of the remaining graph (witho{it, y, z}) equalsCC(G) — 2 in contradiction to our assumption. O

6 Proof of Theorem[1.1

We now prove Theorein 1.1 given in the Introduction and showMRat? = CC(G) in outerplanar graphs (and
that both objective functions can be computed efficiently). In order totfied/l nRank or the clique cover for
outerplanar graphs, we processed a tig@efined in Sectiofl3) that represents the structur@.ofVe then used
Baker’s algorithm[[2] to calculate for each tree vertex and correspgrelibgraphz; of G the solution to the
corresponding objective function. These computations were base@ éménge” and "adjust” operations studied
in Sectiong ¥ anfd]5. As the analysis for fdenRank and minimum clique cover given in Sectidds 4 &mhd 5 are
analogous, it follows by induction on the execution of Baker’s algorithroftitaany intermediate vertex in the tree
G corresponding to a subgragh it holds thatMRs(G4) = CC(G1). In particular, this also holds faf itself.

For the base case, considdesel 1vertex in the tree, i.e. a leafrepresenting an edde, y). The table ofv
specifies that the size of tid nRank or the clique cover is 1 if exactly one endpoint(af, y), or both of them
are in the corresponding subgraph, and O if neithaor y are in the subgraph. Thus, for a leafits table values
are equal for both the clique cover alinRank problems. Assume that the statement is true for lgvel k
vertices in the tre&;. The table for a levek vertex is calculated according to tables of leyelertices, using
the procedures “merge” and “adjust” analyzed in Sectidns 4 and 5. Asldhms states in Sectioh$ 4 and 5 are
completely equivalent (given the change in the objective function), thectivet assertion follows. All in all, for
any levelk vertex, the calculation of table depends only on the tables of levek k vertices. By assumption,
these tables are equal ft nRank and clique cover and thus procedures “merge” and “adjust” give thie sa
results for the same input. We conclude thlehRank and clique cover are equal for a levelertex as well. This
suffices to conclude our proof. The efficiency of our calculations fotiarectly from our constructive proofs.

7 Conclusions

The results of this work focus on information graghksvhich are undirected and on the case in which the encoding
functions are (scalar) linear. The problem of efficiently computing thexiiedding round complexity for encoding
functions which are not scalar linear but ratlkiector linearor non-linear is left open in this work. The connection
between the clique cover @f and the scalar linear index coding round complexity holds also for direaded s
information graphs as well. However, in the directed case it is not hardd@fiamples in which these two differ
(e.g., any directed cycle). Finally, the side information graph model daesuffce to represent the index coding
problem in which clientsg; require not a single message but multiple ones. In this case one shouldiggrad
hypergraph side information model (e.@., [1]), which does not fit into thméwork discussed in this work.
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