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Abstract—The Index Coding problem has recently attracted
a significant attention from the research community. In this
problem, a server needs to deliver data to a set of wireless clients
over the broadcast channel. Each client requires one or more
packets, but it might have access to the packets requested by other
clients as side information. The goal is to deliver the required
data to each client with minimum number of transmissions.

In this paper, we focus on finding sparse solutions to the Index
Coding problem. In a sparse solution each transmitted packet is
a linear combination of at most two original packets. We focus
both on scalar and fractional versions of the problem. For the
scalar case, we present a polynomial time algorithm that achieves
an approximation ratio of 2 − 1√

n
. For the fractional case, we

present a polynomial time algorithm that identifies the optimal
solution to the problem. Our simulation studies demonstrate that
our algorithms achieve good performance in practical scenarios.

I. INTRODUCTION

The Index Coding problem [1], [2] is one of the basic
problems in wireless network coding. Recently, it has attracted
significant attention from the research community (see e.g.,
[3]–[6] and references therein).

An instance of the Index Coding problem comprises of a
server, a set X = {c1, . . . , cn} of n wireless clients, and a
set P = {p1, . . . , pk} of k packets that need to be delivered
to the clients. Each client is interested in a certain subset of
packets available at the server (wants set), and has a (different)
subset of packets as side information (has set). The server can
transmit the packets to clients via a noiseless wireless channel.
The goal is to find a transmission scheme that requires the
minimum number µ of transmissions to satisfy the requests of
all clients.

A simple instance of the Index Coding problem is shown in
Figure 1(a), with a server and five clients. The server needs to
deliver five packets p1, . . . , p5 to five clients, each client wants
a unique packet and has access to some side information. It
can be verified that all clients can be satisfied by broadcasting
three packets, p1 + p2 and p3 + p4 and p5 (all additions are
over GF (2)). Note that with the traditional approach, all the
five packets p1, . . . , p5 need to be transmitted.

The research on the Index Coding problem can be classified
into two major directions. The first direction of research fo-
cuses on achievable rate bounds, as well as on the connections
between the Index Coding problem and the Network Coding
problem [7]–[9]. The second direction focuses on analyzing
the computational complexity of the Index Coding problem as
well as developing heuristic approaches to this problem [3]–
[6], [10]. In particular, finding the scalar linear solution for the

Fig. 1. (a) An instance of the Index Coding problem. (b) Corresponding
dependency graph.

Index Coding problem (in the scalar linear setting) has been
shown to be NP-hard. Moreover, finding an approximation
solution for the Index Coding problem was also proven to
be hard under a widely held complexity assumption [10].

The previous works on the Index Coding problem con-
sidered the general setup where the server can encode as
many packets as necessary. In this paper, we are focusing on
a practically important special case, in which a server can
mix at most two packets in any single transmission. We refer
to this problem as the Sparse Index Coding (SIC) problem.
With sparse Index Coding, the encoders and decoders can
be implemented very efficiently which makes it attractive for
practical applications. Furthermore, sparse Index Coding can
be implemented over a small field (GF (2)), which allows to
significantly reduce the size of the packet headers and the
associated overhead.

Related work. In [11] we presented the concept of the
Complementary Index Coding (CIC) problem. In the CIC
problem, instead of minimizing the number µ of transmissions,
the goal is to maximize the number of “saved” transmissions,
i.e., n− µ, where n is the number of packets that need to be
delivered to the clients. The CIC problem seeks to maximize
the benefit obtained by employing the coding technique, e.g.,
for the instance shown in the Figure 1(a), the number of
transmissions saved is 2. Note that, if OPTIC is the optimum
of the Index Coding problem and OPTCIC is the optimum
of the Complementary Index Coding problem, then it holds
that |OPTCIC | = n− |OPTIC |. This implies that finding the
scalar-linear solution for the CIC problem is also NP-hard.
However, as shown in [11] the CIC problem can be success-
fully approximated in many cases of practical importance as



compared to the Index Coding problem problem which has
been proven to be hard to approximate. More specifically,
[11] presents algorithms with the approximation ratios of
Ω(
√
n · log n · log log n) and Ω(log n · log log n), for the scalar

and vector linear solutions for the CIC problem, respectively.
In [12] authors presented a sparse network coding scheme for
robust communication in wireless body area networks. In the
proposed scheme, each transmitted packet is a combination
of at most two original packets. However, [12] assumes a
different setting and the proposed techniques are not applicable
to the Index Coding problem.

Contributions. In this paper we investigate the Sparse
Index Coding problem, and consider scalar and vector linear
solutions. In the scalar-linear solution, the packets cannot be
split. In a vector-linear solution, each packet can be split into
a smaller sub-packets, such that the sub-packets originated
from different packets can be combined together. First, we
establish a connection between the sparse scalar Index Coding
problem and the problem of finding the maximum number of
vertex-disjoint cycles (i.e., the cycle packing problem). Thus
connection implies that the sparse Index Coding problem is
NP-hard. Second, for we present an algorithm that achieves
an approximation ratio of 2 − 1√

n
for the scalar linear case,

i.e., with our algorithm the number of transmissions is at
most 2− 1√

n
times the optimum. We note that for the sparse

Index Coding, the approximation ratio of 2 can be achieved by
using the standard approach (which does not include network
coding). However, our solution allows to avoid (“save”) at
least 1√

n
transmissions compared to the standard solution.

Next, we present an algorithm that identifies an optimal vector-
linear solution in polynomial time. Finally, we present an
experimental study showing the advantage of the proposed
algorithms.

II. MODEL

An instance of the Index Coding (IC) problem includes a
server s, a set of n wireless clients X = {c1, . . . , cn}, and
a noiseless broadcast channel. The server holds a set of n
packets, P = {p1, . . . , pn}, that need to be transmitted to the
clients. We are focusing on the multiple-unicast case, i.e., the
case in which each packet is required by exactly one client.
Each client has a prior knowledge about a subset of packets
in P . We denote the subset of P held by client ci by H(ci).
Without loss of generality, we assume that each client requires
exactly one packet. Indeed, a client that requires more than
one packet can be represented by multiple clients that have
the same side information set, but require different packets.
We denote the packet requested by client ci by wi.

In a scalar-linear solution, each packet is considered to
be an element of the Galois field of order q, i.e., pi ∈
GF (q). A scalar linear solution includes µ transmissions such
that the packet pi =

∑n
j=1 g

j
i · pj transmitted at iteration

i, 1 ≤ i ≤ µ is a linear combination of packets in P , where
gi = {gji } ∈ GF (q)n is the encoding vector for transmission i.
To decode packet wi, client ci uses a linear decoding function
ri, such that wi = ri(p

1, . . . , pµ, H(ci)). The goal of the Index
Coding (IC) problem is to find the minimum value of µ such
that there exists a set of µ encoding vectors g1, g2, . . . , gµ and

Fig. 2. A dependency graph with a cycle and corresponding optimal set of
transmissions.

a set of n decoding functions r1, . . . , rn that allow each client
to decode the packet it needs.

In a vector-linear solution, each packet pi can be subdivided
into k smaller size subpackets p1i , · · · , pki . Now, each trans-
mitted packet is a linear combination of the subpackets, rather
than the original packets. Here, our goal is to find encoding and
decoding schemes that minimize the ratio of µ

k , where µ is the
number of times a combination of subpackets is transmitted.

In this paper, we focus on the Sparse Index Coding (SIC)
problem. In this problem each transmitted packet must be a
linear combination of at most two packets in P . We denote
the minimum value of the scalar and vector linear solutions
to Problem SIC by OPT s and OPT f , respectively.

III. FINDING EFFICIENT SCALAR-LINEAR SOLUTION

In this section, we focus on scalar-linear solutions of the
SIC problem. The key idea is to establish a connection between
Problem SIC and the problem of finding the maximum number
of vertex-disjoint cycles in the corresponding dependency
graph G(V,E). The dependency graph is defined as follows.

Definition 1 (Dependency Graph G(V,E)): Given an in-
stance of the SIC problem we define a graph G(V,E) as
follows:
• For each client ci ∈ X there is a corresponding vertex vi

in V ,
• For any two clients, ci and cj such that wi ∈ H(cj),

there is a directed arc (vi, vj) ∈ E.
Figure 1(b) depicts the dependency graph that corresponds

to an instance of the CIC problem shown in Figure 1(a).
Problem Vertex Cycle Packing (VCP) asks for the largest

set of vertex-disjoint cycles in the graph G(V,E). We denote
the optimal solution to Problem VCP by OPTV CP .

The main idea is to show that for each vertex-disjoint cycle
in the dependency graph we can save at least one transmission.
To see this, consider the example depicted in Figure 2. In this
example, we have a cycle that involves five clients, such that
client ci requires packet pi. For i = 2, . . . , 5 it holds that the
client ci has the packet required by client ci−1. It is easy to
verify that all clients can be satisfied by four transmissions:
p1 + p2, p2 + p3, p3 + p4, and p4 + p5. Indeed, the client c2
will be satisfied by the transmission p1 +p2, the client c3 will
be satisfied by transmission p2 + p3, and so on. The client c1
will add all the transmissions to obtain p1 + p5, which will
allow it to decode packet p1.

Our algorithm, referred to as Algorithm sSIC, performs the
following steps. First, the algorithm constructs the dependency
graph G(V,E) for the problem at hand. Next, the vertex split
graph G′(V ′, E′) of G(V,E) is constructed. The vertex-split



graph G′(V ′, E′) is formed from G(V,E) by substituting
each vertex vi ∈ V by two vertices v′i and v′′i with an edge
(v′i, v

′′
i ) that connects v′i and v′′i ; and by substituting each

edge (vi, vj) ∈ E by an edge (v′′i , v
′
j). Finally, we apply the

approximation algorithm due to Krivelevich et al. [13] to find
an approximate cycle packing in G′(V ′, E′). Next, we identify
the set of vertex-disjoint cycles in G′(V ′, E′) that correspond
to edge-disjoint cycles in G(V,E). Finally, for each cycle in
the dependency graph we identify the set of encoding vectors
such that one transmissions is saved per cycle. Note, that
Algorithm sSIC has a running time of O(n3).

The formal description of Algorithm sSIC is presented in
Figure 3.

We proceed to analyze the correctness of Algorithm sSIC.
In the following two lemmas we prove that n − OPT s =
OPTV CP .

Lemma 1: n−OPT s ≥ OPTV CP .
Proof: Let S = {s1, s2, . . . , sm} be a packing of

vertex-disjoint cycles in G(V,E). Then, we construct an
solution to Problem SIC that includes, for each cycle si =
{vi1 , vi2 , . . . , vil , vi1} packets pij +pij+1

for j = 1, . . . , l−1,
where l is the size of the cycle. It is easy to verify that the
total number of transmitted packets is equal to n−m, i.e., for
each cycle, one transmission is “saved.” Also, it is easy to see
that this is a valid solution to Problem SIC. Indeed, each client
cij , 2 ≤ j ≤ l can recover its required packets wij directly
from transmitted packet pij−1

+ pij . We note that
l−1∑
j=1

pij + pij+1
= pil + pi1 .

Thus, client ci1 can also recover the packet it requires.
Next, we show that OPTV CP ≥ n−OPT s.
Lemma 2: n−OPT s ≤ OPTV CP .

Proof: Let Γ = {γ1, γ2, . . . , γOPT s} be an optimal solu-
tion to Problem SIC. Note that each γi ∈ Γ is a combination
of at most two packets in P , these packets are referred to as
the support of γi. First, we define a set P1 ⊆ P that includes
all packets pi ∈ P for which it holds that pi belong to the
span of Γ. We define P2 = P \ P1. We say that two packets
pi ∈ P2 and pj ∈ P2 are connected if a linear combination of
pi and pj belongs to the span of Γ. Note that the connectivity
is a transitive property, hence P2 can be divided to equivalence
classes P 1

2 , P
2
2 , . . . , such that each equivalence class includes

connected packets. Note that the number of equivalence classes
is equal to n−OPT s.

Let V 1
2 , V

2
2 , . . . be subsets of vertices of V that correspond

to equivalence classes P 1
2 , P

2
2 , . . . . We show that for each V i2

it holds that the subgraph of G induced by V i2 contains at least
one cycle. Since the subsets V 1

2 , V
2
2 , . . . are disjoint, this will

be sufficient to show that G(V,E) contains at least n−OPT s
disjoint cycles.

Let V i2 be a subset that includes two or more nodes and
let Gi be a subgraph of G induced by V i2 . We show that the
in-degree of each node vj ∈ Gi is at least one. Indeed, let vj
be a node in V i2 and let cj be the client that corresponds to
vj . Let γ̂ be a vector in span of Γ used by cj to decode packet
wj in its wants set. It is easy to see that γ̂ includes at least
one packet, say vl in P i2. Then, there exists an edge (vl, vj)
in Gi and the lemma follows.

For example, consider an instance of the IC problem as
shown in the Figure 1. The optimal solution to the Problem
SIC is given by: Γ = {p1 + p2, p3 + p4, p5}. In this example:
P1 = {p5}, and P2 = {p1, p2, p3, p4}. The correspond-
ing equivalence classes are as follows: P 1

2 = {p1, p2} and
P 2
2 = {p3, p4}, with V 1

2 = {v1, v2} and V 2
2 = {v3, v4}

respectively. The subgraph corresponding to V 1
2 consists of

two arcs (v1, v2) and (v2, v1), and hence corresponds to a cycle
between v1 and v2. Similarly the subgraph corresponding to
V 2
2 contains a cycle between v3 and v4.
Lemma 3: Sparse Index Coding (SIC) problem is an NP-

Complete problem. Furthermore, it is quasi-NP-hard to ap-
proximate the number of transmissions “saved ”, i.e., n −
OPT s, within a factor of O(log1−ε n) for any constant ε > 0.

Proof: By combining lemmas 1 and 2 we get n−OPT s =
OPTV CP . Then, by using the inapproximability result of the
VCP problem [13], the lemma follows.

We conclude with the following theorem:
Theorem 1: Algorithm sSIC finds a scalar-linear solution to

the Sparse Index Coding problem with approximation ratio of
2− 1√

n
. The algorithm also allows to “save” at least a factor

of 1√
n

times the optimum saving.
Proof: Let OPT s be the optimal solution for Prob-

lem SIC. By lemmas 1 and 2, the maximum number of vertex-
disjoint cycles that can be packed in G(V,E) is OPTV CP =
n− OPT s. Then, by using the approximation algorithm due
to Krivelevich et al. [13] we can identify at at least OPTV CP√

n
cycles. Thus, our algorithm requires at most

n− OPTV CP√
n

= n− n−OPT s√
n

(1)

transmissions. This implies that the algorithm achieves an
approximation ratio of

1√
n

+
n−
√
n

OPT s
. (2)

Note that OPT s ≥ n
2 since each transmission is a com-

bination of at most two packets. Hence, by Equation (2) the
approximation ratio is bounded by 2− 1√

n
.

By Equation (1), the algorithm “saves” at least n−OPT s
√
n

transmissions compared the standard solution that does not
use coding. Since the optimal solution to Problem SIC saves
n−OPT s transmissions, that algorithm allows to save at least
a factor of 1√

n
times the optimum saving.

IV. FINDING EFFICIENT VECTOR-LINEAR SOLUTION

In this section, we present an algorithm, referred to as
Algorithm vSIC, that finds an optimum vector-linear solution
to Problem SIC. The algorithm exploits the connection be-
tween Problem SIC and the problem of finding an optimal
fractional solution for the cycle packing problem, defined as
follows. Let C be a set that includes all cycles in the graph
G(V,E) and let ψ,C → R be a function that maps each cycle
c ∈ C to a real number. Our goal is to find a function ψ that
maximizes

∑
c∈C ψ(c) such that for each v ∈ V , it holds

that
∑
c∈C ψ(c) ≤ 1. We denote by OPT fV CP the optimum

fractional solution to the vertex-disjoint cycle packing.
The algorithm includes the following steps. Given an in-

stance of Problem IC, we first construct the dependency graph



Algorithm sSIC ():
1 From the given instance of the IC problem, construct the dependency graph G(V,E);
2 From the given dependency graph construct the Vertex Split Graph G′(V ′, E′)
3 C′ = ∅
4 While there exists a directed cycle in G′(V ′, E′) do:
5 Find a cycle c′ of minimum length
6 Add c′ to C′

7 Delete all the edges of c′ from G′(V ′, E′)
8 For each cycle c′ ∈ C′ do:
9 Identify the corresponding cycle c in G(V,E);

10 Transmit a set of |c| − 1 transmissions that satisfy all clients in c
11 For each vi ∈ G(V,E) not included in any cycle c, transmit the packet required by the corresponding client ci

Fig. 3. Algorithm sSIC

G(V,E). Then, we apply the algorithm due to Yuster and
Nutov [14] to find an optimal vertex-disjoint cycle packing
ψ : C → R in G(V,E).1 Then, we find the minimum integer
number k for which it holds that kψ(c) is an integer for any
c ∈ C. Such number exists because for each c ∈ C, ψ(c) is a
rational number. Next, we divide each packet pi ∈ P into k
smaller size subpackets p1i , . . . , p

k
i .

Next, we create a fractional dependency graph Ĝ(V̂ , Ê).
This graph is constructed similarly to the dependency graph
for the scalar case, with the difference that the nodes in V̂
correspond to subpackets, and not to the original packets.
Specifically, graph Ĝ(V̂ , Ê) is defined as follows:
• For each subpacket pji of a packet pi ∈ P there is a

corresponding vertex vji in V̂
• There is a directed edge from vji and vhl if and only

if it holds that pi ∈ H(cl), where ci are cl are clients
requesting packets pi and pl, respectively.

Graph Ĝ(V̂ , Ê) has the following property. For each frac-
tional cycle packing ψ of graph G(V,E) of size α, exists a
set of vertex-disjoint cycles Ĉ in Ĝ(V̂ , Ê) of size αk. Given
a fractional cycle packing ψ in G(V,E), the integer cycle
packing Ĉ in Ĝ(V̂ , Ê) can be identified through the following
procedure. For each cycle c ∈ C for which it holds that
ψ(c) > 0 we can identify k · ψ(c) vertex-disjoint cycles in
Ĝ such that for each node vi ∈ C, each of the corresponding
cycles use one of the nodes in {v1i , . . . , vki }. We then remove
k ·ψ(c) vertex-disjoint cycles from Ĝ and repeat the procedure
for the next cycle in C.

Now, for each cycle ĉ ∈ Ĉ we generate |ĉ| − 1 linear com-
binations of the subpackets {pji} that correspond to vertices
in ĉ. Each such cycle will save one subpacket, that is for a
cycle that includes l vertices in Ĝ(V̂ , Ê) (that correspond to
l clients), we transmit l − 1 packets that satisfy all l clients.
In total, αk subpackets will be saved, i.e., the total number of
transmission is equal to (n−α)k. This corresponds to saving
α original packets. For each vji ∈ V̂ not included in any cycle
in Ĉ, transmit the corresponding subpacket pji .

We proceed to establish the correctness of Algorithm vSIC.
Lemma 4: n−OPT f = OPT fV CP .

Proof: First, we show that n − OPT f ≤ OPT fV CP .
Consider an optimal vector-linear solution to Problem SIC.

1The algorithm due to [14] finds an optimal fractional edge-dijoint cycle
packing, however, it is possible use this algorithm to find optimal vertex-
disjoint cycle packing by applying it to the vertex-split graph (as explained
in Section III).

Let k be the number of subpackets in each packet with this
solution. We note that the vector-linear solution with respect to
the original packets is equivalent to the scalar-linear solution
with respect to the subpackets. Then, by Lemma 2, it holds that
k(n−OPT f ) is less or equal to the maximum size of integer
cycle packing in the fractional dependency graph described
above. This, in turn implies that k(n−OPT f ) ≤ k(OPT fV CP )

or n−OPT f ≤ OPT fV CP .
We proceed to show that n−OPT f ≥ OPT fV CP . Consider

an optimal fractional cycle packing ψ(c) in the dependency
graph (as defined in Definition 1, Section III). Let k be the
minimum integer number for which it holds that kψ(c) is an
integer for any c ∈ C. As we discussed above, this implies
that there exists a integer cycle packing of size k ·OPT fV CP
in the fractional dependency graph. By Lemma 1 this implies
that k(n−OPT f ) ≥ k ·OPT fV CP or n−OPT f ≥ OPT fV CP
and lemma follows.

Theorem 2: Algorithm vSIC finds, in polynomial time, an
optimal vector-linear solution to Problem SIC.

Proof: By Lemma 4 it holds that OPT f = n−OPT fV CP .
Then, the theorem follows from the fact that the algorithm due
to [14] finds an optimal solution to fractional cycle packing
problem.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
scalar-linear solution for the Sparse Index Coding problem.
More specifically, we evaluate the performance of the Algo-
rithm sSIC and compare it with the optimal linear solution
to the scalar Index Coding problem. Throughout this section
the optimal solution refers to the SAT-based time-efficient
scalar-linear optimal solution over GF (2) for the Index Coding
problem as presented in [6].

The experimental setup is as follows. We consider n clients,
where each client ci requires packet pi. The has set H(ci) for
each client ci is chosen randomly. More specifically, first, the
cardinality `i of the has set H(ci) for each client ci is selected
from a uniform random distribution on integers 1, . . . , n −
1. Then we randomly choose `i packets for H(ci) out of n
packets {p1, · · · , pn}. Throughout this section each value in
the simulation plots represents an average over 100 runs.

Figure 4 shows the comparison of Algorithm sSIC and the
optimal solution for the average coding gain, where the coding
gain is defined as the ratio between the minimum number of
transmissions needed to satisfy all clients without encoding
and the minimum number of transmissions required when



Fig. 4. Average Coding Gain versus number of clients for both the optimal
solution and the solution using algorithm sSIC.

Fig. 5. Average Coding Gain versus number of clients for the solution using
algorithm sSIC.

scalar-linear coding is used. For example for the instance of
the IC problem shown in Figure 1, the coding gain is 5

3 . The
results show that on average the ratio of the average coding
gains given by the optimal solution and Algorithm sSIC differ
by a factor less than 1.5. Table I shows the comparison of
the running time for Algorithm sSIC and the time required
by the algorithm due to [6] to find an optimal solution. The
comparison was performed over a Pentium 4 machine with 2.8
GHz processor. The results show that computing the optimal
solution takes considerably more time than the proposed algo-
rithm. Note that while finding the optimal solution requires
significant running time even for nine clients, the solution
using the algorithm sSIC can be efficiently computed even
for hundred clients. Figure 5 shows the plot of the average
coding gain versus number of clients for the solution computed
using the algorithm sSIC. The plot shows that even for a
large number of clients the proposed solution on average saves
49% of the transmissions compared to the solution without
encoding.

VI. CONCLUSION

In this paper, we consider the Sparse Index Coding (SIC)
problem. In this problem, each transmitted packet is a linear
combination of at most two packets over a small field (GF (2)).
This problem is important in practical settings due to low
complexity of encoding and decoding.

We present both scalar and vector linear solutions for Prob-
lem SIC with provable performance guarantees. In particular,

No. of Clients Optimal Solution Algorithm sSIC
3 0.91 0.0026
4 0.7341 0.0034
5 0.9391 0.0042
6 0.9622 0.0049
7 3.579 0.0061
8 11.93 0.0071
9 82.97 0.0078

TABLE I
AVERAGE CPU TIME (IN SECONDS) REQUIRED BY THE OPTIMAL

SOLUTION, AND THE ALGORITHM sSIC.

our algorithm yields a scalar linear solution which has at most
2 − 1√

n
more transmissions than the optimal. For the vector-

linear case, we present an algorithm that yields an optimal
solution. In addition, we show that finding an optimal solution
for the scalar-linear case is an NP-complete problem. We also
present an extensive simulation study that demonstrate the
advantages of the proposed solution in practical settings.

As a future work, we would like to focus on the multiple
multicast case in which a packet can be requested by multiple
clients. We would also like to address the practical setting of
noisy broadcast channel.
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