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Abstract— We provide a novel achievability proof of the
Slepian-Wolf theorem for i.i.d. sources over finite alphabets. We
demonstrate that random codes that are linear over the real
field achieve the classical Slepian-Wolf rate region. For finite
alphabets we show that decoding is equivalent to solving an
integer program. The techniques used may be of independent
interest for code design for a wide class of information theory
problems, and for the field of compressed sensing.

I. I

A well-known result by Slepian and Wolf in [1] character-
izes the rate region for lossless source coding of distributed
sources. The result demonstrated that if two (or more) sources
possess correlated data, even independent encoding of the
sources’ data can still achieve essentially the same perfor-
mance as when the sources encode jointly. This result has
important implications for information theory problems as di-
verse as sensor networks [2], secrecy [3], and low-complexity
video encoding [4]. Unfortunately for the distributed source
coding problem, codes that are provably both rate optimal and
computationally efficient to implement are hard to come by.
Section II gives a partial history of results for the Slepian-Wolf
(SW) problem.

In this work we provide novel codes that asymptotically
achieve the SW rate region with vanishing probability of
error. Our encoding procedure comprises of random linear
operations over the real field

�
, and are hence called Real

Slepian-Wolf Codes or RSWCs. In contrast most other codes in
the literature operate over appropriate finite fields � q . We then
demonstrate that RSWCs can be used in a way that enables
the receiver to decode by solving a set of integer programs.
Besides being interesting in their own right as a new class
of codes achieving the SW rate-region, the relation between
RSWCs and IPs has some intriguing implications.

In general IPs are computationally intractable to solve.
However, our code design gives us a great amount of flexibility
in choosing the particular IPs corresponding to our codes.
That is, we show that “almost all” RSWCs result in IPs that
have “good” performance for the SW problem. But there are
well-studied classes of IPs that are known to be computation-
ally tractable to solve (for e.g., IPs corresponding to Totally
Unimodular matrices [5]). It is thus conceivable that suitably
chosen RSWCs may be decodable with low computational
complexity.
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At a high level, since RSWCs are linear over
�

, they allow
code designers to use the large toolkit of techniques available
from the field of convex optimization. In contrast, since most
other linear codes for the SW problem are over some finite
field � q , decoding is usually equivalent to finding a vertex of
a hypercube satisfying some combinatorial properties. Such
problems are usually computationally intractable.

Also, our work has direct implications for the new field
of Compressed Sensing (CS). In the CS setup, N sources
each generate a single real number in a manner such that
the length-N sequence is k-sparse, i.e., can be written with
at most k � N non-zero coefficients in a predefined basis.
A typical result in this setup shows that if a receiver gets
O(k log(N)) random linear combinations over

�
of the sources’

sequence, it can, with high probability, reconstruct the source
sequence exactly in a computationally efficient manner by
solving a linear program. The CS setup is quite similar to that
of RSWCs – the source sequence contains a large amount of
redundancy, and a random

�
-linear mixture of the sequence

suffices for exact reconstruction via optimization techniques.
There are, however, two major differences. First, RSWCs
operate at information-theoretically optimal rates whereas CS
codes are bounded away from such performance. Second, CS
codes are computationally tractable, whereas we are currently
not aware of efficient decoding techniques for RSWCs. We
think this tradeoff between computational efficiency and rate-
optimality is interesting and worthy of further investigation.

II. B

Shannon’s seminal source coding theorem [6] demonstrated
that a sequence of discrete random variables can essentially be
compressed down to the entropy of the underlying probability
distribution generating the sequence. Of the many extensions
sparked by this work, the Slepian-Wolf theorem [1] is the one
this work builds on.

A. Slepian Wolf Theorem for i.i.d. sources [1]

Problem Statement: Two sources named Xavier and Yvonne
generate two sequences of discrete random variables, X

4
=

X1, X2, . . . , Xn over the alphabet X, and Y
4
= Y1, Y2, . . . , Yn over

the alphabet Y, respectively. The sequence (X,Y) is assumed
to be i.i.d. with a joint distribution pX,Y(x, y) that is known
in advance to both Xavier and Yvonne. The corresponding
marginals are denoted by pX(x) and pY (y). Xavier and Yvonne
wish to communicate (X,Y) to a receiver Zorba. To this end
Xavier uses his encoder to transmit a message that is a function
only of X and pX,Y (x, y) to Zorba. Similarly, Yvonne uses her
encoder to transmit a message that is a function only of Y
and pX,Y(x, y) to Zorba. Zorba uses his decoder to attempt to



reconstruct (X,Y). Xavier and Yvonne’s encoders and Zorba’s
decoder comprise a SW code C. The SW code C is said to
be near-lossless if Zorba’s reconstruction of (X,Y) is correct
with a probability of error over pXY(x, y) that is exponentially
small in the block-length n. The rate-pair (RX,RY) is said to be
achievable for the SW problem if for every ε > 0 there exists
a code C that is near-lossless, and the average (over pX,Y(x, y))
number of bits that C requires Xavier and Yvonne to transmit
to Zorba are at most n(RX + ε) and n(RY + ε) respectively. The
set of all rate-pairs that are achievable is called the rate-region.
The rate region: Slepian and Wolf’s characterization of the
rate-region is remarkably clean.

Theorem 1: [1] The rate region for the Slepian-Wolf prob-
lem is given by the intersection of

RX ≥ H(X|Y), RY ≥ H(Y |X), RX + RY ≥ H(X, Y). (1)
Here H(X|Y) and H(Y |X) denote the conditional entropy and
H(X, Y) denotes the joint entropy of (X, Y) (implicitly, over
the joint distribution pX,Y (x, y)).

B. Linear SW codes over finite fields

The SW codes in [1] have computational complexity that is
exponential for both encoding and decoding. An improvement
was made by [7], who showed that random linear encoders
suffice. We briefly restate that result here, restricting ourselves
to the case when X = Y = {0, 1} for simplicity.

Let DX and DY be respectively n(RX + ε) × n and n(RY +

ε)×n matrices over the finite field � 2 , with each entry of both
matrices chosen i.i.d. as either 0 or 1 with probability 1/2.
Here ε is an arbitrary positive constant. Abusing notation, let
X and Y also denote length-n column vectors over � 2 . Xavier
and Yvonne’s encoders are then defined respectively via the
matrix multiplications DXX and DYY, and their messages to
Zorba are respectively the resulting column vectors.

We now define Zorba’s decoder. For an arbitrary distribution
pX,Y (x, y) over finite alphabets, let the strongly ε-jointly typical
set An

ε,pX,Y
[8] be the set of all length-n sequences (X,Y)

such that the empirical distribution induced by (X,Y) differs
component-wise from pX,Y(x, y) by at most ε/(|X||Y|). For
simplicity of notation we denote An

ε,pX,Y
as Aε . Zorba checks to

see if there exists a unique length-n sequence (X̂, Ŷ) satisfying
two conditions. First, that DXX̂ and DYŶ respectively match
the messages transmitted by Xavier and Yvonne. Second,
whether (X̂, Ŷ) lie within Aε . If both conditions are satisfied
for exactly one sequence (X̂, Ŷ), Zorba outputs (X̂, Ŷ), else he
declares a decoding error.

Then [7] shows the following result.
Theorem 2: [7] For each rate pair (RX,RY) in the region

defined by (1) and sufficiently large n, with high probability
over choices of DX and DY, the corresponding SW code is
near-lossless.

Many of the SW codes in the literature build on such
encoders that are linear over a finite field. Some such codes
use iteratively decodable channel codes to attain performance
that is empirically “good”, but performance guarantees have
not been proven (e.g. [9]). Other codes use recent theoretical

advances in channel codes to produce near-lossless codes that
achieve any point in the SW rate-region, but cannot give
guarantees on computational complexity (e.g. [10]).

C. Linear codes over real fields

As mentioned in the introduction, Compressed Sensing
codes operate over real (and complex) fields, and are struc-
turally similar to the codes proposed in this work. The primary
difference between the two sets of results is that our focus is
on achieving information-theoretically optimal performance,
whereas CS codes trade rate for lower computational com-
plexity. Some intriguing results on CS codes can be found
in [11], [12].

Concurrently, codes over reals also seem to have appli-
cations for the channel coding problem. Using significantly
different techniques, Tao et al. [13] obtained channel codes that
can be decoded solving a linear program (LP). Also, lattice
codes have been shown to achieve capacity for the AWGN
channel [14].

III. RSWC M

As is usual in the SW literature [8], we focus on just the
point (H(X),H(Y |X)) in the SW rate region. Time-sharing
between this and the symmetric point (H(X|Y),H(Y)) enables
us to achieve all points in the rate region. Thus Xavier
encodes his data X using a classical lossless source code and
Zorba decodes it losslessly. We thus discuss only Yvonne’s
RSWC encoder for Y and Zorba’s corresponding decoder. In
Section VI we show how to generalize our proof techniques to
get codes that achieve any points in the SW rate-region without
time-sharing. We consider only X and Y that are ordered finite
subsets of

�
.

RSWC Encoder: We define an
� m×n encoding matrix D. Here

m is a code-design parameter to be specified later, and D
is chosen as follows. Each component Di j of D is chosen
randomly from a finite set D. More precisely, each element
of D is chosen i.i.d. from D according to a distribution pD.
The set D can be any arbitrary finite subset of

�
, and the

distribution pD can be chosen arbitrarily on D, as long as
the probability of at least two elements of D is non-zero. For
ease of proof, we assume that pD is zero-mean – the more
general case requires only small changes in the proof details.
The particular values of D and pD can be chosen according
to the application.

For a fixed block-length n, Yvonne’s data is arranged as
a column vector Y

4
= (Y1, Y2, · · · , Yn)T . To encode, Y is

multiplied by D to get a length-m real vector U
4
= DY. We

denote the real interval (−n0.5+ε, n0.5+ε) by Iq. Each component
Ui of U is uniformly quantized by dividing Iq into steps of
size ∆n = 2n−ε. Thus d(0.5 + 2ε) log ne bits suffice for this
quantization. Here and throughout the paper log(.) denotes the
binary logarithm, and ε is a code-design parameter that can
be used to trade off between the probability of error and the
rate of the RSWC. It can be chosen as any arbitrarily small
positive real number. The quantized value of Ui is denoted
by Ûi and the corresponding length-m quantized vector is



denoted by Û. We take m = d(n(H(Y |X) + 3ε))/(0.5 logn)e.
Thus the total number of bits Yvonne transmits to Zorba equals
md(0.5+2ε) log ne, which for all sufficiently large n is at most
nH(Y |X) + ρεn for a universal constant ρ.
RSWC Decoder: Zorba first decodes X = x. Suppose he
received Û = û from Y. He finds a vector y which is strongly
ε-jointly typical with x, for which Dy ∈ Im

q , and for which
D̂y = û. If there is no such y or there are more than one such
y then he declares a decoding error.

The ensemble of RSWC encoder-decoder pairs described
above is denoted by C(ε, n, pX,Y , pD). The probability of error
of C(ε, n, pX,Y , pD) is defined as the probability over pX,Y and
pD that Zorba makes or declares a decoding error. The rate of
C(ε, n, pX,Y , pD) is defined as the number of bits that Yvonne
transmits to Zorba.

We are now in a position to state and prove our main results.
Theorem 3: For all sufficiently large n there are universal

positive constants c, ρ, such that the probability of error and
rate of C(ε, n, pX,Y , pD) are at most 2−cn2ε

and H(Y |X) + ρε
respectively.

Theorem 4: For any finite alphabet Y, the real SW encod-
ing can done using |Y|−1 RSWC encoders so that the decoder
can be implemented by solving |Y| − 1 IPs.

In the rest of the paper, many different constants, inde-
pendent of n, will be denoted by the same symbol ‘c’ for
simplicity.

IV. P  T 3

Clearly, the probability of decoding error is given by

Pn
e ≤ P1 + P2 + P3 (2)

where P1 is the probability that DY < Im
q , P2 is the probability

that Y is not strongly ε-jointly typical with X, and P3 is the
probability that DY ∈ Im

q , (X,Y) ∈ Aε , but there is another y′

so that Dy′ ∈ Im
q , (X, y′) ∈ Aε , and D̂Y = D̂y′.

The structure of the proof is as follows. Lemma 5 provides
a concentration result on the value of each Diy, which is used
to get a bound on P1. For y , y′, Lemma 6 provides an
upper bound on the probability that D̂iy = D̂iy′. Lemma 7
uses Lemmas 6 to get an upper bound on P3.

Let us define DY 4
= {dy|d ∈ D, y ∈ Y}. Then the following

lemma gives an upper bound on the probability Pr{|Ui| >
n0.5+ε}.

Lemma 5: If Di and Y are as defined above, then

P′1
4
= Pr

{
|DiY| > n0.5+ε

}
≤ 2(n + 1)|DY|2−n2ε/2a2 ln 2.

Proof: Let us define P11
4
= Pr

{
DiY > n0.5+ε

}
and P12

4
=

Pr
{
DiY < −n0.5+ε

}
. Then clearly P′1 = P11 + P12. Let us

also define Ei
4
= {(di1y1, di2y2, · · · , dinyn)|∑n

j=1 di jy j > n0.5+ε}.
The elements di jy j take values from DY. Let pyd denote the
probability mass distribution of Di jY j. Then,

P11 = Pr {Ei} = Pr
{
pn|µpn > nε−0.5

}

Here pn denotes the type of (di1y1, di2y2, · · · , dinyn) and µpn

denotes the mean of pn. By Sanov’s Theorem [8],

P11 = pn
yd(Ei) ≤ (n + 1)|DY|2−nD(p∗n ||pyd)

where p∗n = arg minpn:µpn>nε−0.5 D(pn||pyd). Now, if a =

max{|yd| : d ∈ D, y ∈ Y}, then µp∗n > nε−0.5 implies
|p∗n − p|1 > nε−0.5/a⇒ |p∗n − pyd |21 > n2ε−1/a2. So, D(p∗n||pyd) ≥

1
2 ln 2 |p∗n − p|21 >

n2ε−1

2a2 ln 2 (Lemma 12.6.1, [8]). So,

P11 ≤ (n + 1)|DY|2−n.n2ε−1/2a2 ln 2

= (n + 1)|DY|2−n2ε/2a2 ln 2

Similarly, P12 ≤ (n + 1)|DY|2−n2ε/2a2 ln 2 and thus the result
follows. �

Now, P1
4
= {|DiY| > n0.5+ε for at least one i} ≤ dn(H(Y |X +

3ε)/0.5 logneP′1 by union bound. Using Lemma 5, for some
constant c, we have

P1 ≤ 2−cn2ε
. (3)

For P2, note that for any non-typical sequence (x, y), its type
p(x,y) satisfies |pX,Y − p(x,y)|1 ≥ ε

|X||Y| . So, using D(pX,Y ||p(x,y)) ≥
1

2 ln 2 |pX,Y − p(x,y)|21 (Lemma 12.6.1, [8]) and Sanov’s theorem
(Theorem 12.4.1, [8]), we have

P2 ≤ (n + 1)|X||Y| exp

(
− nε2

2|X|2|Y|2

)
≤ 2−cn. (4)

for some positive constant c.
The following lemma gives, for two different y, y′ ∈ Yn, an

upper bound on the probability that D̂iy = D̂iy′. Suppose t is
the number of nonzero components in y−y′. Note that, for an
i.i.d. sequence of zero mean random variables V1,V2, . . . ,Vt,
the Berry-Esseen theorem [15] gives a uniform upper bound
on the deviation of Wt

4
=

∑t
i=1 Vi/

√
tσ′ from a zero-mean unit-

variance normal distribution N(0, 1) as

|Pr{Wt < w} −Φ(w)| ≤ a
√

t
, (5)

where σ′ is the standard deviation of V1, Φ(w) is the cumula-
tive distribution function of N(0, 1), and a is a constant which
depends on the distribution of V1.

Let p± denote the minimum of Pr{Di j > 0} and Pr{Di j <

0}. Since Di j has zero mean, p± , 0. Let by be the smallest
difference in Y, i.e., by

4
= miny1,y2∈Y,y1,y2 |y1 − y2|.

Lemma 6: If y, y′ ∈ Yn differ in t components,

Pr{|Di(y − y′)| < ∆n} ≤ min

(
1 − p±,

c
√

t

)

for some fixed constant c ∈ �
.

Proof: Let us denote (y j − y′j) by α j. Then there are t nonzero
α j, and w.l.o.g., assume that α1, α2, . . . , αt , 0. Let us define
l
4
= |{y − y′|y, y′ ∈ Y, y , y′}|. Then there are at least τ

4
= t/l

elements among α1, α2, . . . , αt which are the same. Let us
assume, w.l.o.g., that α1 = α2 = · · · = ατ. Then the Berry-
Esseen theorem can be used on α1Di1, α2Di2, . . . , ατDiτ as



follows.

Pr{|Di(y − y′)| < ∆n}
= Pr{−∆n < Di(y − y′) < ∆n}

= Pr

{
− ∆n

|α1|σ
√
τ
<

Di(y − y′)

|α1|σ
√
τ
<

∆n

|α1|σ
√
τ

}

≤ Pr

{
− ∆n

σby
√
τ
<

Di(y − y′)

|α1|σ
√
τ
<
∆n

σby
√
τ

}

= Pr

−
∑n

j=τ+1 Di j(y j − y′j)

|α1|σ
√
τ

− ∆n

σby
√
τ

<

∑τ
j=1 Di j(y j − y′j)

|α1|σ
√
τ

< −
∑n

j=τ+1 Di j(y j − y′j)

|α1|σ
√
τ

+
∆n

σby
√
τ

 (6)

≤ 2∆n

σby
√
τ
√

2π
+

2a
√
τ

=
c
√

t
(7)

Here σ2 is the variance of di j. Equation (7) follows by using
the Berry-Esseen bound (Eq. (5)) on the normalized sum in
the centre of the inequality in (6). The first term in Eq. (7) is
an upper bound on the probability of N(0, 1) lying in the same
range, and the second term is an upper bound on the deviation
obtained by using the Berry-Esseen bound two times.

Now for t > 0, there is at least one j such that y j , y′j.
Let us assume, w.l.o.g., that y1 , y′1. For large enough n,
∆n < by × mind∈D,d,0 |d|. So, Pr{|Di(y − y′)| < ∆n} ≤ 1 − p±.
This can be easily checked by considering the change in the
value from

∑n
j=2 Di j(y j − y′j) to Di(y − y′). �

The following lemma gives an upper bound on P3.
Lemma 7: For constant c and large enough n, P3 ≤

2−cn/ log n.
Proof:

P3 =
∑

(x, y) ∈ Aε
Dy ∈ Im

q

pX,Y(x, y)Pr
{
∃y′ , y s. t. Dy′ ∈ Im

q ,

D̂y′ = D̂y, (x, y′) ∈ Aε
}

≤
∑

(x, y) ∈ Aε
Dy ∈ Im

q

pX,Y (x, y)
∑

y′ , y
(x, y′) ∈ Aε

Pr
{
Dy′ ∈ Im

q , D̂y′ = D̂y
}

≤
∑

(x,y)∈Aε
pX,Y (x, y)

∑

t>0

∑

(x, y′) ∈ Aε
dH(y, y′) = t

(
Pr{|D1(y′ − y)| < ∆n}

)m

≤
∑

(x,y)∈Aε
pX,Y (x, y)

∑

t>0

∑

(x, y′) ∈ Aε
dH(y, y′) = t

(
min

(
(1 − p±),

c
√

t

))m

≤
∑

(x,y)∈Aε
pX,Y (x, y)

∑

t>0

Nx,y(t)

(
min

(
(1 − p±),

c
√

t

))m

where Nx,y(t)
4
= |{y′ ∈ Yn|(x, y′) ∈ Aε , dH(y, y′) = t}|. Now,

let us define N(t)
4
= maxx,y Nx,y(t) for t > 0, and tn

4
=

arg maxt>0

(
N(t)

(
min

(
(1 − p±), c√

t

))m)
. The subscript in tn is

to emphasize that it is a function of n. Then clearly,

P3 ≤ nN(tn)

(
min

(
(1 − p±),

c
√

tn

))m

.

Now for any δ ≤ ε
2(H(Y |X)+3ε) , we consider two regimes: (1)

tn > n1−δ and (2) tn ≤ n1−δ. In the first regime, we use the
bound N(tn) ≤ 2n(H(Y |X)+2ε) and Pr{|Di(y− y′)| < ∆n} ≤ c√

t
, and

get, for large enough n,

log(P3) ≤ log n + log N(tn)

−n(H(Y |X) + 3ε)
0.5 log n

((0.5 − 0.5δ) log n − log c)

= n(H(Y |X) + 2ε) − n(H(Y |X) + 3ε)(1 − δ)

+n
(H(Y |X) + 3ε)

0.5 log n
c + log n

= −n (ε − δ(H(Y |X) + 3ε))

+n

(
(H(Y |X) + 3ε)

0.5 log n
c +

log n
n

)
.

Now, using δ ≤ ε
2(H(Y |X)+3ε) and

(
(H(Y |X)+3ε)

0.5 log n c + log n
n

)
< ε/4 for

sufficiently large n, we get log(P3) ≤ −nε/2+nε/4 = −nε/4. In
the regime tn < n1−δ, we use the bounds N(tn) < (|Y|−1)tn

(
n
t

)
<

(|Y|n)tn, and Pr{|Di(y − y′)| < ∆n} ≤ 1 − p± to get

log(P3) ≤ log n + tn log n + tn log |Y| − cn(H(Y |X) + 3ε)
log n

≤ log n + n1−δ log n + n1−δ log |Y| − cn
log n

,

where c in the above two lines are two different constants..
Now, for large enough n, (log n)2 < c

3 nδ ⇒ log n < cnδ

3 log n .
Also, for large enough n, n−δ log |Y| < c

3 log n for some constant
c. So, log(P3) ≤ log n − cn

3 log n ≤ −
cn

log n for large enough n and
for some constant c.

Since cn
log n < nε/4 for large enough n, the result follows. �

From Equations (2), (3), (4), and Lemma 7, we have, for
large enough n, Pn

e ≤ 3.P1 ≤ 2−cn2ε
, for a constant c, thus

completing the proof of Theorem 3. �

V. P  T 4

We first show that forY = {0, 1} the decoding of our scheme
can be done via the solution of an IP (rather than by typicality
decoding as in Section IV). For typical x = x1, . . . , xn decoded
by Zorba and x ∈ X, let Ix = {i|xi = x}. The constraint (x, y) ∈
Aε can be phrased as the linear constraints

p(1, x) − ε

|X||Y| ≤
1
|Ix|

∑

i∈Ix

yi ≤ p(1, x) +
ε

|X||Y| , ∀x ∈ X

Also, the constraints D̂y = û = û1, . . . , ûn can be written as

ûi − ∆/2 ≤ Diy ≤ ûi + ∆/2, ∀i = 1, . . .m

Finally we add the ‘integrality’ constraints, i.e., y ∈ Yn.
For arbitrary finite alphabets Y, Yvonne and Zorba perform
|Y| − 1 encoding and decoding stages, each of which involves
IP decoding of a binary vector. A sketch follows.



Let y(1), . . . , y(|Y|) denote the distinct values of Y. In
the first stage, instead of encoding y directly, Yvonne uses
C(ε, n, p1

X,Y , pD) to encode the vector f 1(y). Here the vector
f 1(y) equals 1 in the locations that y equals y(1) and equals 0
otherwise, and p1

X,Y is the corresponding induced distribution
pX, f 1(Y) defined on X × 2. Since f 1(y) is a binary vector,
Zorba can use the IP decoding described above, and therefore
can retrieve the locations where y equals y(1). Inductively,
in the ith stage, Yvonne uses C(ε, n(i), pi

X,Y, pD) to encode
the vector f i(Y). Here n(i) equals the number of locations
whose values are still undetermined before the ith stage, i.e.,
n(i) equals |{ j|y j ≥ y(i)}|. The length-n(i) vector f i(y) is
obtained by first throwing away the locations in f i−1(y) that
equalled 1, and then marking the remaining locations 1 iff the
corresponding locations in y equals y(i). The distribution pi

X,Y
is the corresponding induced distribution pX, f i(y) defined on
X×2. At each stage, Zorba can use the IP decoding described
above, and therefore can retrieve the locations where y equals
y(i).

The overall probability of error is at most the sum of
the probabilities of error of each stage, and is therefore still
exponentially small in n. Since there is a bijection between
Y and the set of random vectors { f i(Y)}|Y|−1

i=1 , the conditional
entropy of Y equals the conditional entropy of { f i(Y)}|Y|−1

i=1 .
Repeatedly applying Theorem 3 implies that the overall rate
of this multistage RSWC differs from H(Y |X) by at most C′ε,
where C′ is a universal constant. �

VI. R SW   

Any rate pair in the SW rate-region (1) can also be di-
rectly achieved by real codes without timesharing between
the schemes achieving the rate pairs (H(X|Y),H(Y)) and
(H(X),H(Y |X)). Let (R1,R2) be a rate pair in the SW rate
region. Let m1 = d(n(R1 + 3ε))/(0.5 logn)e and m2 = d(n(R2 +

3ε))/(0.5 logn)e. Xavier choses a random m1 × n encoder
matrix D1 overD and Yvonne choses a random m2×n encoder
matrix D2 over D. Though the matrices could be chosen over
different finite subsets of

�
, we take the same subset for

simplicity. Xavier’s encoder encodes the n length vector X
by quantizing U1

4
= D1X in the range Im1

q with per dimension
step size ∆n = 2n−ε. Similarly Yvonne’s encoder encodes the n
length vector Y by quantizing U2

4
= D2Y in the range Im2

q with
per dimension step size ∆n = 2n−ε . Suppose Û1 and Û2 are
respectively the quantized vectors. The decoder finds a unique
strongly ε-jointly typical pair (x, y) so that D̂1x = Û1 and
D̂2y = Û2. If there are no or multiple such pairs the decoder
declares error. Analogously to Theorem 3, the probability of
error and the total rate R1 + R2 can be bounded from above
by 2−cn2ε

and H(X, Y) + ρε respectively. Details omitted here
can be found in [16].

VII. C

The RSWCs analyzed here provide a novel achievability
proof of the SW theorem. Perhaps just as importantly, they

demonstrate the intriguing possibility of design of information-
theoretic codes via convex optimization techniques. For in-
stance, since decoding RSWCs is equivalent to solving an
optimization problem, it is natural to consider similar “real”
codes for problems where some function of the code simulta-
neously needs to be optimized. We are currently investigating
the performance of RSWCs under more structured choices of
encoding matrices, with the hope of obtaining codes for which
IP decoding is equivalent to LP decoding, and is therefore
computationally tractable.

VIII. A

The authors gratefully acknowledge support from the
CUHK direct grant, the CU-MS-JL grant, and a grant from
the Bharti Center for Communication. We would also like to
thank D. Manjunath for fruitful discussions, and the reviewers
for valuable comments.

R

[1] D. Slepian and J. K. Wolf. Noiseless coding of correlated information
sources. IEEE Transactions on Information Theory, 19:471–480, July
1973.

[2] J. Kusuma S. Pradhan and K. Ramchandran. Distributed compression
in a dense microsensor network. IEEE Signal Processing Magazine,
19:51–60, March 2002.

[3] I. Csiszár and P. Narayan. Common randomness and secret key
generation with a helper. IEEE Transactions on Information Theory,
46(2):344–366, March 2000.

[4] R. Puri and K. Ramchandran. Prism: a new robust video coding archi-
tecture based on distributed compression principles. In Proceedings of
the Allerton Conference on Communications, Control, and Computing,
October 2002.

[5] A. J. Hoffmann. The role of unimodularity in applying linear inequalities
to combinatorial theorems. Annals of Discrete Mathematics, 4:73–84,
1979.

[6] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423,623–656, 1948.

[7] I. Csiszar. Linear codes for sources and source networks: error
exponents, universal coding. IEEE Transactions on Information Theory,
28(4):585–592, 1982.

[8] T. Cover and J. Thomas. Elements of Information Theory. John Wiley
and Sons, 1991.

[9] J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources
using turbo codes. IEEE Communication Letters, pages 417–419,
October 2001.

[10] M. Médard M. Effros T. P. Coleman, A. H. Lee. On some new
approaches to practical slepian-wolf compression inspired by channel
coding. In Proceedings of the Conference on Data Compression, page
282, March 2004.

[11] D. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, April 2006.

[12] J. Romberg E. Candès and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, February
2006.

[13] E. Candès and T. Tao. Decoding by linear programming. IEEE Trans-
actions on Information Theory, 51(12):4203–4215, December 2005.

[14] R. Urbanke and B. Rimoldi. Lattice codes can achieve capacity on the
awgn channel. IEEE Transactions on Information Theory, 44(1):273–
278, 1998.

[15] W. Feller. An Introduction to Probability Theory and Its Applications,
Volume II (2nd ed.). John Wiley & Sons, New York, 1972.

[16] S. Shenvi, B. K. Dey, S. Jaggi, and M. Langberg.
“real” slepian-wolf codes. Technical report, Available at
http://www.ee.iitb.ac.in/wiki/faculty/bikash.


