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Abstract

Given a (possibly directed) graph with costs on the edges, the power of a node is the
maximum cost of an edge leaving it, and the power of the graph is the sum of the powers
of its nodes. Motivated by applications in wireless networks, we consider several net-
work design problems under the power minimization criteria. Given a graph G = (V, E)
with costs on the edges and requirements r(v) for each v ∈ V , the Min-Power Edge-
Multi-Cover problem (MPEMC) is to find a min-power subgraph so that the degree
(indegree, in the case of directed graphs) of every node v is at least r(v); the Power
Budgeted Maximum Edge-Multi-Coverage (PBMEMC) is to find a subgraph of total
power budget at most P to satisfy the maximum amount of requirements. Our main
result is an O(log n)-approximation algorithms for MPEMC on both directed and undi-
rected graphs. For directed graphs our ratio is tight, since the problem generalizes the
min-cost Set-Multicover problem. For undirected graphs our result improves the previ-
ously best known O(log4 n)-approximation, and implies an O(log n+α)-approximation
algorithm for the undirected Min-Power k-Connected Subgraph (MPk-CS) problem,
where α is the best known approximation for the min-cost variant of the problem.
(Currently, α = O(ln k) for n ≥ 2k2 and α = O(ln2 k ·min{ n

n−k ,
√

k
ln n}) otherwise.) We

also give a (1 − 1/e)-approximation algorithm for the directed PBMEMC, and show
that the undirected PBMEMC is at least as hard to approximate as the k-Densest Sub-
graph problem. Finally, we give a 4rmax-approximation algorithm for the undirected
min-power Steiner Network problem: find a min-power subgraph that contains r(u, v)
pairwise edge-disjoint paths for every pair of nodes u, v.
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1 Introduction

Wireless networks are an important subject of study due to their extensive applications. A

large research effort focused on designing fault-tolerant networks while minimizing the power

consumption of the radio transmitters of the network. In wired networks, one wants to find

a subgraph of the minimum cost instead of the minimum power. This is the main difference

between the optimization problems for wired versus wireless networks. In wireless networks,

a range assignment to radio transmitters means to assign a set of powers to the nodes of the

network. We consider finding a range assignment for the nodes of a network such that the

resulting communication network satisfies some prescribed connectivity or degree properties,

and such that the total power is minimized. The motivation for wireless networks of these

problems is the same as of their min-cost variant for wired networks.

An important network property is fault-tolerance, which is usually measured by node-

connectivity or the minimum degree/indegree of the network. These variants of fault-tolerant

power-minimization problems were already extensively studied [1, 2, 5, 3, 4, 13, 14, 19]. The

simplest undirected connectivity problem is when we require the network to be connected.

In this case, the min-cost variant is just the min-cost spanning tree problem, while the min-

power variant is APX-hard [14]. A 5/3-approximation algorithm for the min-power spanning

tree problem is given in [1]. For recent results on undirected and directed graphs see [23]

and [24], respectively.

This work is organized as follows: Section 2 defines the problems under consideration,

highlights the relationships between them, reviews previously published results and shows

that Min-Power k-Connected Subgraph Problem admits an O(α + log n)-approximation,

where α is the approximation ratio for the undirected Min-Cost k-Connected Subgraph

Problem. Section 3 presents a (1 − 1/e)-approximation algorithm for directed Power Bud-

geted Maximum Edge-Multi-Coverage Problem. Section 4 presents an H(∆)-approximation

algorithm for directed Min-Power Edge-Multi-Cover Problem, where ∆ is the maximum

outdegree of a node in G, and H(k) denotes the kth Harmonic number. Section 5 presents

an O(log n)-approximation algorithm for undirected Min-Power Edge-Multi-Cover Problem.

Finally, in Section 6 we discuss the Min-Power Steiner Network Problem and present a

4rmax-approximation algorithm fot it.
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2 Problems considered in this research

We start by defining some necessary notation. Let G = (V, E) be a (possibly directed) graph

with cost {c(e) : e ∈ E} on the edges. For v ∈ V , the power p(v) = pc(v) of v in G (w.r.t.

c) is the maximum cost of an edge in G leaving v. The power of the graph is the sum of

powers of its nodes. Given an integral requirement function r on V , we say that G (or E) is

an r-edge cover if for every v ∈ V : dG(v) ≥ r(v) if G is undirected, and d+
G(v) ≥ r(v) if G is

directed, where dG(v) = dE(v) is the degree of v in G if G is undirected, and d+
G(v) = d+

E(v)

is the indegree of v in G if G is directed.

2.1 Min-Power Edge-Multi-Cover and Power Budgeted Maximum

Edge-Multi-Coverage

We start by considering the following two related problems:

Min-Power Edge-Multi-Cover (MPEMC):

Instance: A (possibly directed) graph G = (V, E) with cots on the edges and a requirement

r(v) for every v ∈ V .

Objective: Find a min-power subgraph G = (V, E) of G so that G is an r-edge cover.

Power Budgeted Maximum Edge-Multi-Coverage (PBMEMC):

Instance: A graph G = (V, E) with costs {c(e) : e ∈ E} on the edges, weights w(v) and

requirements r(v) for each v ∈ V , and budget P .

Objective: Find E ⊆ E with p(E) ≤ P and maximum val(E) =
∑

v∈V min{d+
E(v), r(v)}·w(v).

For practical applications of MPEMC or PBMEMC consider the following scenario. Given

a set A of ”transmitters” and a set B of ”clients”, set the power of transmitters so that every

client can receive a message. To ensure reliability of communication (fault-tolerance), we

require that each b ∈ B will be able to receive the message from at least r(b) transmitters.

The directed MPEMC was mentioned in [14], but it seems that it was not studied before,

although it is a fundamental problem that generalizes the classic Min-Cost Set-Multicover

problem; the later is a particular case when for every node v ∈ V the costs of the edges

leaving v are the same. Thus by the hardness result of [25] the directed MPEMC has an

Ω(log n)-approximation threshold, that is, it cannot be approximated within C ln n for some

universal constant C. In the same way directed PBMEMC generalizes the Cost-Budgeted

Maximum Coverage problem, that admits a (1 − 1/e)-approximation algorithm [18], which

is tight unless P=NP. For the generalization considered here we prove:
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Theorem 2.1 Directed PBMEMC admits a (1− 1/e)-approximation algorithm.

Theorem 2.2 The directed MPEMC admits an H(∆)-approximation algorithm, where ∆ is

the maximum outdegree of a node in G, and H(k) denotes the kth Harmonic number.

We note that Theorem 2.1 easily implies an H(R)-approximation algorithm for directed

MPEMC, where R =
∑

v∈V r(v). However, the result proved in Theorem 2.2 is sharper: the

approximation ratio is better and the algorithm is faster. Furthermore, we show a way to

formulate the directed MPEMC as an integer program, and using the dual fitting method show

that the solution computed is within an H(∆) factor from a solution to the corresponding

LP-relaxation, see Section 4.

Our result for undirected MPEMC, Theorem 2.3 to follow, was obtained in a joint research

with G. Kortsarz. It is easy to see that the greedy algorithm which for every v ∈ V picks the

lightest r(v) edges entering v is an rmax-approximation algorithm for undirected MPEMC,

where rmax = maxv∈V r(v). In [14] it is proved that the undirected MPEMC is APX-hard,

and that it admits an O(log4 n)-approximation algorithm. We prove:

Theorem 2.3 The undirected MPEMC admits an O(log n)-approximation algorithm.

Our algorithm for the undirected MPEMC uses as a subroutine our algorithm for the

directed PBMEMC, but this is not straightforward, and for power problems we do not see an

easy way to deduce the undirected case (Theorem 2.3) from the directed one (Theorem 2.2).

For example, for min-cost problems a standard reduction to reduce the undirected variant

to the directed one is: replace every undirected edge uv by two anti-parallel directed edges

uv, vu of the same cost as e, find a solution G to the directed variant and take the underlying

graph of G. This reduction does not work for min-power problems, e.g., for MPEMC, since

the power of the underlying graph of G can be much larger than that of G, e.g., if G is a

star. The approximation algorithm for the directed case might select only one of the two

anti-parallel edges, and this does not correspond to a solution for the undirected case.

The following statement shows that for undirected PBMEMC a good approximation algo-

rithm (e.g., with a constant or a polylogarithmic approximation ratio) might not exist even

for unit costs and unit weights. The Densest k-Subgraph problem is given a graph G = (V, E)
to find a subgraph of G with k nodes and maximum number of edges. The best known

approximation ratio for the Densest k-subgraph problem is roughly n−1/3 [10], and in spite

of numerous attempts to improve it, this ratio holds for almost 10 years.

Proposition 2.4 If there exists a ρ-approximation algorithm for undirected PBMEMC with

unit costs and unit weights, then there exist a ρ-approximation algorithm for the Densest

k-Subgraph problem.
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Proof: Given an instance G = (V, E) of the Densest k-Subgraph problem, define an instance

G, r, P with unit costs and unit weights for PBMEMC as follows: r(v) = k − 1 for all v ∈ V

and the power budget is P = k. Then the problem is to find a node subset U ⊆ V with

|U | = k so that the number of edges in the subgraph induced by U in G is maximum. The

later is the Densest k-Subgraph problem. 2

2.2 Min-Power k-Connected Subgraph

A (simple) graph is k-connected if it contains k internally disjoint uv-paths between every

pair u, v of its nodes. We also consider is the min-power variant of the undirected Min-Cost

k-Connected Subgraph (MCk-CS) problem, namely (for results on directed graphs see [24]):

Min-Power k-Connected Subgraph (MPk-CS):

Instance: A graph G = (V, E) with costs on the edges, and an integer k.

Objective: Find a min-power k-connected spanning subgraph G of G.

Min-cost connectivity problems were extensively studied, see surveys in [17] and [21]. The

best known approximation ratios for MCk-CS is O(ln2 k · min{ n
n−k

,
√

k
ln k
}) for both directed

and undirected graphs [20], and O(ln k) for undirected graphs with n ≥ 2k2 [7]. It turns out

that approximating MPk-CS is closely related to approximating MCk-CS and MPEMC, as

shows the following theorem from [14] (for its proof see the Appendix).

Theorem 2.5 ([14]) (i) If there exists an α-approximation algorithm for the undirected

Min-Cost k-Connected Subgraph problem and a β-approximation algorithm for undi-

rected MPEMC then there exists a (2α + β)-approximation algorithm for MPk-CS.

(ii) If there exists a ρ-approximation for undirected MPk-CS then there exists a (2ρ + 1)-

approximation for the Min-Cost k-Connected Subgraph problem.

In [14] is given an O(log4 n)-approximation algorithm for undirected MPEMC. Thus, an

O(α+log4 n)-approximation algorithm for undirected MPk-CS is derived from Theorem 2.5.

We use our result for undirected MPEMC (Theorem 2.3) to conclude:

Corollary 2.6 An α-approximation algorithm for the undirected Min-Cost k-Connected Sub-

graph problem implies an O(α + log n)-approximation algorithm for the undirected MPk-CS.

Combined with part (ii) of Theorem 2.5, we get that for undirected graphs, MPk-CS

and MCk-CS are equivalent with respect to approximation (up to constants), unless MCk-

CS admits better than O(log n) approximation ratio. For most values of k the best known

approximation ratio for MCk-CS is Θ(log2 n) [20], for k ≤
√

n/2 in undirected graphs an

O(log n) ratio is known [7], while for k > log n a better than O(log n) ratio is not known.
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2.3 Min-Power Steiner Network

The last problem we study is:

Min-Power Steiner Network (MPSN):

Instance: A graph G = (V, E) with costs on the edges and requirement r(u, v) for every node

pair u, v ∈ V .

Objective: Find a min-power subgraph G of G so that G contains r(u, v) pairwise edge-disjoint

uv-paths for every u, v ∈ V .

Williamson et. al. [26] gave a 2rmax-approximation algorithm for the min-cost Steiner

Network problem, and then this was improved to 2H(rmax) in [12]. The currently best known

approximation ratio for the min-cost Steiner Network problem is 2 due to Jain [16]. We show

that the algorithm of [26, 12] for the min-cost case, has approximation ratio 4rmax for the

min-power variant MPSN.

Theorem 2.7 Undirected MPSN admits a 4rmax-approximation algorithm.

If rmax is a constant, say rmax ∈ {0, 1, 2}, then the approximation ratio in Theorem 2.7 is

a constant. The approximation ratio may seem weak if rmax is large. However, it might be

that a polylogarithmic approximation algorithm does not exist: in [14] it was shown that the

directed min-power variant cannot be approximated within O(2log1−ε n) for any fixed ε > 0,

unless NP ⊆ DTIME(npolylog(n)). This hardness result is valid even when there is one pair

u, v with r(u, v) > 0, a case that can be solved optimally in the min-cost variant, c.f., [8].

2.4 Notation and Preliminaries

In the rest of this section we give some notation and preliminaries used in the work. Let

G = (V, E) be a graph. For disjoint X,Y ⊆ V let δG(X, Y ) = δE(X,Y ) be the set of edges

from X to Y in E, and let d(X,Y ) = |δG(X, Y )| be the number of edges in G going from

X to Y . We sometimes omit the subscripts G, E if they are clear from the context. For

brevity, δE(X) = δE(X, V − X), and dE(X) = |δE(X)| is the degree of X. Let ΓG(X) =

{u ∈ V −X : v ∈ X, vu ∈ E} be the set of neighbors of X. Given edge costs {ce : e ∈ E},
the power pG(v) = pE(v) of a node v in G is the maximum cost of an edge incident to v in

E, that is, p(v) = maxe∈δE(v) c(e). Note that in the undirected case p(v) is the maximum

cost of an edge touching v while in the directed case it is the maximum cost of an edge

leaving v. The power of G is p(G) = pE(V ) =
∑

v∈V p(v). Note that p(G) differs from the

ordinary cost c(G) =
∑

e∈E c(e) of G even for unit costs. In this case, if G has no isolated

nodes then c(G) = |E| and p(G) = |V |. For example, if E is a perfect matching on V then
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p(G) = 2c(G). If G is a clique then p(G) is roughly c(G)/
√

m/2. The following statement

shows that these are the extremal cases also for general edge costs.

Proposition 2.8 ([14]) For any graph G = (V, E) holds: c(G)/
√
|E|/2 ≤ p(G) ≤ 2c(G).

For a forest T , c(T ) ≤ p(T ) ≤ 2c(T ).

Proposition 2.8 and the Theorem 2.5 were proved in [14]. For completeness of exposition,

we restate the proofs in the Appendix.

Throughout the work, let G = (V, E) denote the input graph with nonnegative costs on

the edges. Let n = |V | and m = |E|. Given G, our goal is to find a minimum power spanning

subgraph G = (V, E) of G that satisfies some prescribed property. We assume that a feasible

solution exists; otherwise our algorithms can be easily modified to return an error message.

Let opt denote the optimal solution value of an instance at hand.
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3 A (1− 1/e)-approximation for directed Power Budge-

ted Maximum Edge-MultiCoverage

In this section we prove Theorem 2.1.

Given an instance of directed PBMEMC, apply the following transformation. For each

node v with r(v) > 0 add to G a copy v′ of v and redirect all the edges entering v to enter

v′, keeping their costs. Furthermore, for every v ∈ V do the following. Let {e1, . . . , ek}
be the edges in δE(v) sorted by increasing costs. For every ei add a node ai of cost c(ei)

and for every edge vu′ of cost ≤ c(ei) add an edge aiu
′. Finally, consider the corresponding

underlying graph. Thus our problem can be reformulated as follows:

Instance: A bipartite graph G = (A + B, E), costs {c(a) : a ∈ A}, budget P , requirements

{r(b) : b ∈ B}, weights {w(b) : b ∈ B}, and a partition A of A satisfying

(*) for every Ai ∈ A there exists an ordering a1, a2, . . . of Ai so that Γ(aj−1) ⊆ Γ(aj).

Objective: Find S ⊆ A with c(S) ≤ P and maximum val(S) =
∑

b∈B min{d(S, b), r(b)} ·w(b)

so that

(**) |S ∩ Ai| ≤ 1 for every Ai ∈ A.

Remark: The same problem with unit requirements but without Property (*) is well known,

and a 2-approximation algorithm for it was given by Chekuri and Kumar [6]. We do not know

whether without property (*) one can achieve a constant approximation ratio for arbitrary

requirements. In the special case when Property (∗) holds, we give a (1−1/e)-approximation

algorithm for arbitrary requirements, and, in particular, improve the 2-approximation of [6]

for unit requirements.

Our algorithm and the proof of the approximation ratio is similar to the ones in [18] where

the ordinary (Cost) Budgeted Maximum Coverage was considered. There is a difference in

that our algorithm is a local search (replacement) algorithm, while [18] only adds elements.

But taking the analysis of [18] with replacing the costs of element added by their costs minus

costs of elements deleted, the analysis carries through. For completeness of exposition, we

give a full proof.

Note that in each part the costs defined by the ordering in (*) are strictly increasing.

Clearly, we may assume that c(a) ≤ P for every a ∈ A. For S ⊆ A and b ∈ B let

rS(b) = max{r(b) − d(S, b), 0} be the residual requirement of b w.r.t. S (so r(b) = r∅(b)).

S ⊆ A is a feasible solution if c(S) ≤ P and (**) holds for S.
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Let S satisfy (**), and set si = Ai ∩ S (possibly si = ∅). Let BS = {b ∈ B : rS(b) > 0}
be the set of deficient nodes w.r.t. S. For a ∈ Ai with c(a) > c(si) the density of a w.r.t. S

is:

σc,w(S, a) =
val(S − si + a)− val(S)

c(a)− c(si)
=

w((Γ(a)− Γ(si)) ∩BS|)
c(a)− c(si)

.

The algorithm uses the following procedure, which receives a feasible solution S0 ⊆ A and

returns a feasible solution S ⊆ A that contains S0.

Procedure GREEDY(S0)

Initialization: S ← S0, r ← rS0 , and remove from A the parts corresponding to S0.

While A 6= ∅ do:

1. Find a ∈ A of maximum density, and let Ai be the part with a ∈ Ai.

2. If c(S − si + a) ≤ P then S ← S − si + a, where si = Ai ∩ S (possibly si = ∅).

3. A← A− a.

End While

The algorithm for directed PBMEMC is as follows. Let k > e be some fixed integer.

Algorithm for PBMEMC

1. For every feasible S0 ⊆ A with |S0| ≤ k do GREEDY(S0).

2. Among the sets S returned, output one with maximum val(S).

Clearly, the algorithm can be implemented in polynomial time for any fixed integer k (we

set k = 3). We now prove that the approximation ratio is (1− 1/e).

Remark: It may seem futile to start with some “best” triplet of elements going over all

possible triplets. The goal of these three elements is to overcome a “knapsack type” difficulty

the algorithm encounters. The fact that the elements have costs and the budget bound P

creates a problem with the last element GREEDY tries to add. Thus, if we are able to add

this element (say at exactly cost P ) there would be no need for “guessing” the “correct” first
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three elements. However, since the last element may create a budget overflow, it can not be

taken. The selection of the “correct” three first elements compensate for the last element

not being added. We remark that with the choice of k = 0 the ratio is unbounded, with

k = 1 the ratio is 1
2
(1− 1/e) and with k = 2 the ratio is 1/2.

Let OPT be an optimal solution. Clearly, if |OPT| ≤ k the algorithm returns an optimal

solution. Henceforth assume |OPT| > k. Let s1, s2, . . . be an ordering of nodes of OPT such

that the total weight of uncovered elements, covered by the nodes is not increased.

Consider the computation at Step 1 of the algorithm when S0 = {s1, s2, . . . , sk} was

considered. Let OPT′ = OPT−S0 and P ′ = P − c(S0). Let ` be the number of nodes added

by GREEDY to S0 until first node from OPT′ is considered but not added to S because

its addition would violate the budget P ; let a ∈ Ai be this node. Let Sj be the set of

the first j nodes added to S0 by GREEDY, where we set S`+1 = S` − si + a. Note that

c(S`+1) = c(S`− si + a) > P ′, since a was not added. Let ∆ival(S) = val(Si)− val(Si−1) and

∆ic(S) = c(Si) − c(Si−1), i = 1, . . . , ` + 1. The following two statements are similar to the

ones used in [18].

Lemma 3.1 For each j = 1, . . . , ` + 1,

∆jval(S)

∆jc(S)
≥ val(OPT′)− val(Sj−1)

P ′ .

Proof: At least val(OPT′) − val(Sj−1) worth of elements not covered by nodes of Sj−1 are

covered by nodes of OPT′. For each node in OPT′ − Sj−1 the ratio of weight to cost is at

most ∆jval(S)

∆jc(S)
, since the node that the algorithm picks in each iteration maximizes this ratio.

Since the total cost of the nodes in OPT′ − Sj−1 is bounded by the residual budget P ′, we

get

val(OPT′)− val(Sj−1) ≤ P ′ · ∆jval(S)

∆jc(S)
.

2

Lemma 3.2 For every j = 1, . . . , ` + 1

val(Sj) ≥

1− j∏
i=1

(
1− ∆ic(S)

P ′

) · val(OPT′).

Proof: The proof is by induction on j. For j = 1 the statement holds by Lemma 3.1.

Suppose the statement holds for 1, . . . , j − 1 and we prove it for j. Note that val(Sj) =

val(Sj−1) + ∆jval(S). Thus by Lemma 3.1 we get:

val(Sj) = val(Sj−1) + ∆jval(S) ≥ val(Sj−1) +
∆jc(S)

P ′ · (val(OPT′)− val(Sj−1))
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≥
(

1− ∆jc(S)

P ′

)
· val(Sj−1) +

∆jc(S)

P ′ · val(OPT′).

Consequently, by the induction hypothesis

val(Sj) ≥
(

1− ∆jc(S)

P ′

)
· val(Sj−1) +

∆jc(S)

P ′ · val(OPT′)

≥
(

1− ∆jc(S)

P ′

)
·

1− j−1∏
i=1

(
1− ∆ic(S)

P ′

) · val(OPT′) +
∆jc(S)

P ′ · val(OPT′)

=

1− j∏
i=1

(
1− ∆ic(S)

P ′

) · val(OPT′).

2

Applying Lemma 3.2 with j = ` + 1 we get:

val(S`+1) ≥
[
1−

`+1∏
i=1

(
1− ∆ic(S)

P ′

)]
· val(OPT′) ≥

[
1−

`+1∏
i=1

(
1− ∆ic(S)

c(S`+1)

)]
· val(OPT′)

Since for a1, ...an ∈ R+ such that
∑n

i=1 ai = A, the function 1 − ∏n
i=1(1 − ai

A
) achieves its

minimum when a1 = a2 = ... = an = A
n

we get:

val(S`+1) ≥
[
1−

(
1− 1

` + 1

)`+1
]
· val(OPT′) ≥

(
1− 1

e

)
· val(OPT′).

Let S be the set returned by GREEDY(S0), and let S ′ = S − S0. Then

val(S ′) + ∆`+1val(S) ≥ val(S`+1) ≥
(
1− 1

e

)
· val(OPT′).

In addition ∆`+1val(S) ≤ 1
k
val(S0) by the way the nodes in OPT were ordered. Thus:

val(S) = val(S0) + val(S ′) ≥ val(S0) +
(
1− 1

e

)
· val(OPT′)−∆`+1val(S)

≥ val(S0) +
(
1− 1

e

)
· val(OPT′)− 1

k
val(S0)

≥
(
1− 1

k

)
· val(S0) +

(
1− 1

e

)
· val(OPT′)

≥
(
1− 1

e

)
· (val(S0) + val(OPT′))

=
(
1− 1

e

)
· (val(S0) + val(OPT− S0))

=
(
1− 1

e

)
· val(OPT)

The last inequality follows from the fact that k > e.

The proof of Theorem 2.1 is complete.
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4 An H(∆)-approximation for directed Min-Power Edge-

Multicover

In this section we prove Theorem 2.2.

Its not hard to see that the natural LP for MPEMC has Ω(
√

∆) integrality gap or worse

(see [13] for similar integrality gap for MPk-CS). The significance of our proof is showing a

simple reduction to an equivalent problem that admits a logarithmic integrality gap. The

analysis is similar to the standard dual fitting algorithm for the min-cost Set-Multicover

problem (see [15]). However, as far as we can see, Theorem 2.2 cannot be deduced from

the logarithmic approximation for the min-cost Set-Multicover problem, and thus our result

seems to be a strict generalization of the later. Furthermore, the analysis carries extra terms

that are required to guarantee Property (**).

By a similar transformation as for the directed PBMEMC in the previous section, the

directed MPEMC can be formulated as follows:

Instance: A bipartite graph G = (A+B, E), costs {c(a) : a ∈ A}, requirements {r(b) : b ∈ B},
and a partition A of A satisfying (*).

Objective: Find min-cost S ⊆ A so that dE(S, b) ≥ r(b) for every b ∈ B and (**) holds.

Remark: Without property (*), even the feasibility version of the problem is NP-complete,

e.g., see [9].

Similarly to the previous section, for S satisfying (**) let BS = {b ∈ B : rS(b) > 0}
be the set of deficient nodes w.r.t. S, let si = Ai ∩ S (possibly si = ∅). For a ∈ Ai with

c(a) > c(si) the density of a w.r.t. S is:

σc(S, a) =
|(Γ(a)− Γ(si)) ∩BS|

c(a)− c(si)

and cost-effectiveness of a w.r.t. S

cS(a) =
1

σc(S, a)
=

c(a)− c(si)

|(Γ(a)− Γ(si)) ∩BS|
.

The following algorithm starts with S = ∅ and generalizes the greedy algorithm for the

Min-Cost Set Multicover problem. In the algorithm, we keep variables πi
b for each b ∈ B,

initially set to zero, that indicate the amount paid by part Ai for covering b.

14



While BS 6= ∅ do:

1. Find a ∈ A with σc(S, a) maximal, and let Ai be the part with a ∈ Ai;

2. πi
b ← cS(a) for every b ∈ (Γ(a)− Γ(si)) ∩BS;

3. S ← S − si + a.

End While

For the analysis, we use the corresponding LP-relaxation and its dual:

min
∑

a∈A caxa (1)

s.t.
∑

a∈Γ(b) xa ≥ rb ∀b ∈ B∑
a∈Ai

xa ≤ 1 ∀Ai ∈ A

xa ≥ 0 ∀a ∈ A

max
∑

b∈B rbyb −
∑

Ai∈A zAi (2)

s.t.
∑

b∈Γ(a) yb − zAi
≤ ca ∀a ∈ A, a ∈ Ai

yb, zAi
≥ 0 ∀b ∈ B, Ai ∈ A

Claim 4.1 The sequence of cost effectiveness of nodes picked by the algorithm is nondecreas-

ing, that is: if a′′ was added to S = S ′′ after a′ was added to S = S ′ then cS′′(a
′′) ≥ cS′(a

′).

Henceforth, let Bi = {b ∈ B : πi
b 6= 0} be the set of nodes covered by Ai. At the end of

the algorithm set:

αb = max
i

πi
b ∀b ∈ B βAi =

∑
b∈Bi

(αb − πi
b) ∀Ai ∈ A .

Note that αb is the maximum amount (which is the last amount) paid for covering b. It is

easy to see that αb, βAi ≥ 0.

Lemma 4.2 ∑
b∈B

rbαb −
∑

Ai∈A

βAi = c(S).

Proof: The total cost of the solution is∑
b∈B

rbαb −
∑

Ai∈A

βAi =
∑
b∈B

rbαb −
∑

Ai∈A

∑
b∈Bi

(αb − πi
b) =

∑
Ai∈A

∑
b∈Bi

πi
b = c(S).

2

Let ∆ ≤ |B| be the maximal degree of a node in A. The dual variables are set as follows:

yb =
αb

H(∆)
∀b ∈ B zAi =

βAi

H(∆)
∀Ai ∈ A.

Theorem 2.2 now follows from the following lemma:
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Lemma 4.3 The pair (y, z) is a feasible solution for the dual problem (2).

Proof: We need to prove that for every a ∈ Ai ∈ A:

∑
b∈Γ(a)

αb − βAi =
∑

b∈Γ(a)

αb −
∑
b∈Bi

(αb − πi
b) ≤ c(a)H(∆) .

Let k = |Γ(a)| and let b1, b2, ..., bk be an ordering of Γ(a) in which these nodes left BS.

Suppose that Ai ∩S = ∅. Then when the algorithm is about to r-cover bj, |Γ(a)∩BS| ≥
k − j + 1, so αbj

≤ c(a)
k−j+1

. Since βAi = 0, in this case:

∑
b∈Γ(a)

αb − βAi =
∑

b∈Γ(a)

αb ≤ c(a)(
1

k
+

1

k − 1
+ · · ·+ 1) ≤ c(a)H(∆) .

Henceforth assume that Ai ∩ S 6= ∅. Note that:

∑
b∈Γ(a)

αb −
∑
b∈Bi

(αb − πi
b) =

∑
b∈Γ(a)−Bi

αb +
∑

b∈Γ(a)∩Bi

πi
b −

∑
b∈Bi−Γ(a)

(αb − πi
b) .

By the definition of αb, we have:

∑
b∈Bi−Γ(a)

(αb − πi
b) ≥ 0 .

Thus, it would be sufficient to prove that:

∑
b∈Γ(a)−Bi

αb +
∑

b∈Γ(a)∩Bi

πi
b ≤ c(a)H(∆) . (3)

Number the nodes in Γ(a) − Bi in the order they left BS, say b1, b2, ..., bt. Consider some

bj ∈ Γ(a)− Bi. Then bj had requirement zero when si was picked, since bj /∈ Bi. Let aj be

the last node of Ai that was chosen when bj had positive requirement, if such aj exists, or

aj = ∅ otherwise. Note that bj ∈ Γ(a)−Γ(aj) since aj does not cover bj. If aj does not exist,

then c(aj) = 0. Let Cj = Γ(aj) ∩Bi. Since after choice of aj, Γ(a)− Γ(aj) contains at least

k − |Cj| − j + 1 deficient nodes we have:

αbj
≤ c(a)− c(aj)

k − |Cj| − j + 1
≤ c(a)

k − |Cj| − j + 1
.

For each bj the denominator values are different and decrease with increase of j, so

∑
b∈Γ(a)−Bi

αb ≤
t−1∑
j=1

c(a)

k − |Cj| − j + 1
+

c(a)− c(at)

k − |Ct| − t + 1
. (4)
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If k − |Ct| − t + 1 > 1 then

∑
b∈Γ(a)−Bi

αb ≤
t∑

j=1

c(a)

k − |Cj| − j + 1
≤ H(∆) · c(a)− c(a),

and ∑
b∈Γ(a)∩Bi

πi
b ≤ c(a) .

Thus ∑
b∈Γ(a)−Bi

αb +
∑

b∈Γ(a)∩Bi

πi
b ≤ (H(∆) · c(a)− c(a)) + c(a) = c(a)H(∆) .

Assume therefore that k − |Ct| − t + 1 = 1. Then all nodes in Γ(a) ∩ Bi are covered by

at, thus ∑
b∈Γ(a)∩Bi

πi
b = c(at)

and together with (4) this implies

∑
b∈Γ(a)−Bi

αb +
∑

b∈Γ(a)∩Bi

πi
b ≤

t−1∑
j=1

c(a)

k − |Cj| − j + 1
+ (c(a)− c(at)) + c(at) ≤ c(a)H(∆) .

2

From Lemmas 4.2 and 4.3 we conclude:

c(S) =
∑
b∈B

rbαb −
∑

Ai∈A

βAi = H(∆)

∑
b∈B

rbyb −
∑

Ai∈A

zAi

 ≤ H(∆) · opt.

The proof of Theorem 2.2 is complete.
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5 An O(log n)-approximation for undirected Min-Power

Edge-Multicover

In this section we prove Theorem 2.3.

We show an O(log n)-approximation algorithm for (undirected) bipartite MPEMC where

G = (A + B, E) is bipartite and r(a) = 0 for every a ∈ A.

Lemma 5.1 If there exists a ρ-approximation algorithm for bipartite MPEMC then there

exists a 2ρ-approximation algorithm for general MPEMC.

Proof: Given an instance G = (V, E), c, r of MPEMC, construct an instance G ′ = (V ′ =

A + B, E ′), c′, r′ of bipartite MPEMC as follows. Let A = {av : v ∈ V } and B = {bv : v ∈ V }
(so each of A, B is a copy of V ) and for every uv ∈ E add two edges: auav and avau each with

cost c(uv). Also, set r′(bv) = r(v) for every bv ∈ B and r′(av) = 0 for every av ∈ A. Given

F ′ ⊆ E ′ let F = {uv ∈ E : aubv ∈ F ′ or avbu ∈ F ′} be the edge set in E that corresponds to

F ′. Now compute an r′-edge cover E ′ in G ′ using the ρ-approximation algorithm and output

the edge set E ⊆ E that corresponds to E ′, namely E = {uv ∈ E : aubv ∈ E ′ or avbu ∈ E ′}.

It is easy to see that if F ′ is an r′-edge cover then F is an r-edge cover. Furthermore, if

for every edge in F correspond two edges in F ′ (|F ′| = 2|F |), then F is an r-edge cover if,

and only if, F ′ is an r′-edge cover. The later implies that opt′ ≤ 2opt, where opt and opt′ is

the optimal solution value to G, c, r and G ′, c′, r′, respectively. Consequently, E is an r-edge

cover, and pE(V ) ≤ pE′(V ′) ≤ ρopt′ ≤ 2ρopt. 2

We henceforth prove that bipartite MPEMC admits an O(log n)-approximation algorithm.

The residual requirement of v ∈ V w.r.t. an edge set E is

rE(v) = max{r(v)− dE(v), 0} .

Lemma 5.2 For bipartite MPEMC there exists a polynomial time algorithm that given an

integer τ and α > 1 either establishes that τ < opt or returns an edge set I ⊆ E such that

pI(V ) ≤ (α + 1)τ (5)

rI(B) ≤ (1− β)r(B) , (6)

where β = (1− 1/e)(1− 1/α).

Note that if τ < opt the algorithm may return a edge set I that satisfies (5) and (6); if

the algorithm declares ”τ < opt” then this is correct. An O(log n)-approximation algorithm

for the bipartite MPEMC easily follows from Lemma 5.2:
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While r(B) > 0 do

Find the least integer τ so that the algorithm in Lemma 5.2 returns an edge set I

so that (5) and (6) holds.

E ← E + I, E ← E − I, r ← rI .

End While

We note that the least integer τ as in the main loop can be found in polynomial time

using binary search. For any constant α > 1, say α = 2, the number of iterations is

O(log r(B)), and at every iteration an edge set of power at most (1 + α)opt is added. Thus

the algorithm can be implemented to run in polynomial time, and has approximation ratio

O(log r(B)) = O(log(n2)) = O(log n).

In the rest of this section we prove Lemma 5.2. Let τ be an integer and let R = r(B) =∑
b∈B r(b). An edge ab ∈ E with b ∈ B is dangerous if c(ab) ≥ ατ · r(b)/R. Let I be the set

of non-dangerous edges in E .

Lemma 5.3 Let F be a set of dangerous edges with pF (B) ≤ τ . Then rF (B) ≥ R(1− 1/α).

Thus if τ ≥ opt then rI(B) ≤ R/α.

Proof: Let D = {b ∈ B : dF (b) > 0}. We show that r(D) ≤ R/α, implying rF (V ) ≥
R − r(D) ≥ R(1 − 1/α). Since all the edges in F are dangerous, pF (b) ≥ ατ · r(b)/R for

every b ∈ D. Thus

τ ≥
∑
b∈D

pF (b) ≥
∑
b∈D

(ατ · r(b)/R) =
ατ

R

∑
b∈D

r(b) =
ατ

R
r(D) .

For the second statement, note that if τ ≥ opt then there exists E ⊆ E with pE(V ) ≤ τ

so that rE(B) = 0. Thus for the set I of non-dangerous edges in E we have rI(B) ≤ R/α.

Since I ⊆ I, the statement follows. 2

Lemma 5.4 pI(B) ≤ ατ .

Proof: Note that pI(b) ≤ ατ · r(b)/R for every b ∈ B. Thus:

pI(B) =
∑
b∈B

pI(b) ≤
∑
b∈B

(ατ · r(b)/R) =
ατ

R

∑
b∈B

r(b) = ατ .

2

The algorithm is as follows:

1. With budget τ , compute an edge set I ⊆ I using the (1− 1/e)-approximation algorithm

for directed PBMEMC (see Theorem 2.1).

2. If rI(B) ≤ (1− β)R (recall that β = (1− 1/e)(1− 1/α)) then output I;

Else declare ”τ < opt”.
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We show that if τ ≥ opt then the algorithm outputs an edge set I that satisfies (5) and (6).

By Lemma 5.3, if the algorithm returns an edge set I then (5) holds for I, and if the algorithm

declares ”τ < opt” then this is correct. All the edges in I are not dangerous, thus pI(B) ≤ ατ

by Lemma 5.4. As we used budget τ , pI(A) ≤ τ . Thus pI(V ) = pI(A) + pI(B) ≤ (1 + α)τ .

The proof of Theorem 2.3 is complete.
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6 A 4rmax-approximation for undirected Min-Power Steiner

Network

In this section we prove Theorem 2.7.

We need some definitions and a description of certain results from [26, 12].

Min-cost/power Steiner Network problem can be formulated as a set-function edge-cover

problem. Let p : 2V → Z+ be a set-function defined on a groundset V . An edge set E

on V is a p-cover, if dE(X) ≥ p(X) for every X ⊆ V . For Steiner Network problems, an

appropriate choice of p is as follows. By Menger’s Theorem, E is a feasible solution to

min-cost/power Steiner network problem if, and only if, dE(X) ≥ R(X) for all ∅ ⊂ X ⊂ V ,

where R(X) = max{r(u, v) : u ∈ X, v ∈ V −X} (and R(∅) = R(V ) = 0). That is

dE(X) ≥ p(X) ≡ max{0, R(X)} ∀ ∅ ⊆ X ⊆ V. (7)

The function p defined above is skew-supermodular, that is p(∅) = 0 and for every X, Y ⊆ V

with p(X) > 0, p(Y ) > 0 at least one of the following holds:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (8)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X) (9)

Note that p is also symmetric, that is, p(X) = p(V −X) for all X ⊆ V .

Several connectivity problems can be formulated as (min-cost/power) edge cover prob-

lems of a skew-supermodular function, see [21]. A seminal paper of Jain [16] gives a 2-

approximation algorithm for finding a min-cost edge-cover of an arbitrary skew-supermodular

set function p, provided certain queries related to p can be answered in polynomial time (note

that p is usually not given explicitly). For p defined in (7) these queries can be realized via

max-flows, which implies a 2-approximation algorithm for the min-cost Steiner network prob-

lem. Earlier, Williamson et. al [26] gave an algorithm with approximation ratio 2pmax, which

was improved later to 2H(pmax) by Goemans et. al [11].

Given a set function q, let q̂(X) = 1 if q(X) = qmax and hq(X) = 0 otherwise, where

qmax = maxX⊆V q(X). It is easy to see that any inclusion minimal edge-cover of a {0, 1}-
valued set function is a forest. For an edge set E, let pE be defined as follows: pE(X) =

max{p(X)−dE(X), 0}. It is well known that if p is skew supermodular, so is pE (for any edge

set E), see [16]. Consider the following algorithm that applies on an arbitrary set-function

p, and begins with E = ∅.
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While there is X ⊆ V with pE(X) > 0 do:

1. Find a p̂E-cover F ⊆ E − E;

2. E ← E + F .

End While

The approximation ratio of the algorithm depends on step 1. A set function is called

uncrossable if it is {0, 1}-valued skew supermodular. It is easy to see that if q is skew

supermodular, so is q̂, that is q̂ is uncrossable. Williamson et. al [26] gave an algorithm that

finds an edge cover of an uncrossable function q̂ of cost at most twice the optimum of the

following LP-relaxation:

min{
∑

e∈E−E

c(e)xe :
∑

e∈δ(X)

xe ≥ q̂(X) ∀X ⊆ V, xe ≥ 0} . (10)

Williamson et. al [26] proved:

Theorem 6.1 ([26]) For p defined by (7) the above algorithm can be implemented in poly-

nomial time, so that at any iteration for q = pE the forest F found has cost at most twice

the optimal value of (10).

Note that the number of iterations of the algorithm is at most pmax. Thus Theorem 6.1

implies that for the min-cost Steiner network problem the algorithm has approximation ratio

2pmax ≤ 2rmax. Later, Goemans et. al [12] used linear programming scaling techniques to

show that the approximation ratio is in fact 2H(rmax). This scaling method does not work

for the min-power variant.

We can show that for the min-power variant, the algorithm of [26] has approximation

ratio 4rmax. This follows from Theorem 6.1 and the second part of Proposition 2.8. Indeed,

the algorithm of [26] constructs the solution from at most rmax forests, where each forest

has cost at most 2optc, where optc is the optimal solution value to the min-cost variant. By

Proposition 2.8, each forest has power at most 2 · 2optp = 4optp, where optp is the otimal

solution value to the min-power variant.

The proof of Theorem 2.7 is complete.
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7 Conclusions

One of the main results in this work is an O(log n)-approximation algorithm for the undi-

rected Min-Power Edge-Multicover (MPEMC) problem, improving the previosely best known

O(log4 n)-approximation. This implies an O(α + log n)-approximation for the Min-Power k-

Connected Subgraph (MPk-CS) problem, where α is the best known approximation ratio

for the Min-Cost k-Connected Subgraph (MCk-CS) problem. Consequently, for undirected

graphs, MPk-CS and MCk-CS are equivalent with respect to approximation (up to con-

stants), unless MCk-CS admits a better than O(log n) approximation ratio. We note that for

k = n− o(n) the best known approximation ratio for MCk-CS is O(
√

n log n), while the best

known lower bound on approximation is APX-hardness. We believe that the established

equivalence between MPk-CS and MCk-CS will enable to reduce the gap.

We also gave an H(∆)-approximation algorithm for the directed Min-Power Edge-Multi-

Cover MPEMC problem; the approximation ratio is proved using the dual fitting method

applied on an appropriately defined LP-relaxation. This result seems a strict extension of

the classic results for the min-cost case. We believe that the ”node duplicating technique”

used can be useful to other min-power problems. For example, we used the same method

to extend the (1 − 1/e)-approximation algorithm of Khuller, Moss, and Naor [18] for the

Cost-Budgeted Maximum Coverage problem to its min-power ”multi” variant PBMEMC.

Finally, we gave a 4rmax-approximation algorithm for (undirected) Min-Power Steiner

Network MPSN problem. We note that even for rmax = 1, the best known approximation

ratio for MPSN is 4, which follows immediately from the 2-approximation for the min-cost

case and Propositin 2.8. Our result is an extension to arbitrary requirements.

Some open problems that arise from this research are as follows.

• Improving the 4-approximation for MPSN with rmax = 1.

• Approximation status of undirected MPEMC: the problem is APX-hard [14], and in

this work we gave an O(log n)-approximation algorithm. Can this gap be closed?

• Approximation status of undirected PBMEMC. The best known approximation ratio

for the Densest k-subgraph problem is roughly n−1/3 [10], and in spite of numerous

attempts to improve it, this ratio holds for almost 10 years. We showed that for

rmax = k undirected PBMEMC is at least as hard as the Densest k-Subgraph Problem.

We leave an open question whether for small rmax a constant approximation ratio is

possible for the undirected PBMEMC.
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8 Appendix

Here we restate the proofs of Proposition 2.8 and Theorem 2.5 from [14].

8.1 Proof of Proposition 2.8

The inequality p(G) ≤ 2c(G) follows from

p(G) =
∑
v∈V

p(v) ≤
∑
v∈V

∑
e∈δ(v)

c(e) = 2
∑
e∈E

c(e) = 2c(G).

If T is a tree, root it at an arbitrary node r. Then c(T ) ≤ p(T ) since for each v 6= r, p(v) is

at least the cost of the parent edge of v.

We now show that c(G) ≤
√
|E|/2p(G) It is sufficient to prove that

∑
xy∈E

min{p(x), p(y)} ≤
√
|E|/2

∑
v∈V

p(v) (11)

for any graph G = (V, E) with nonnegative weights p(v) on the nodes. Suppose to the

contrary that the statement is false, and let G = (V, E) with p be a counterexample to (11) so

that maxv∈V p(v)−minv∈V p(v) is minimal. Let µ = minv∈V p(v), let U = {v ∈ V : p(v) = µ},
and let EU be the set of edges in E with at least one endpoint in U . If |EU | ≤

√
|E|/2|U | then

the statement is also false for G′ = (V ′, E ′) = (V − U,E − EU) and p′ being the restriction

of p to V ′ since

∑
xy∈E′

min{p′(x), p′(y)} ≥
∑

xy∈E

min{p(x), p(y)} −
√
|E|/2|U |µ >

>
√
|E|/2

∑
v∈V

p(v)−
√
|E|/2|U |µ =

√
|E|/2

∑
v∈V ′

p′(v) >

>
√
|E ′|/2

∑
v∈V ′

p′(v).

In particular, this implies a contradiction if U = V . Else, let µ′ = min{p(v) : v ∈ V −U} be

the second minimum value of p. Then by setting p(v) ← p(v) + µ′ − µ for every v ∈ U we

obtain again a counterexample to (11). This contradicts our choice of G, p.

8.2 Proof of Theorem 2.5

To prove Theorem 2.5 we use the following fundamental statement due to Mader.
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Theorem 8.1 ([22]) In a k-connected graph G, any cycle in which every edge is critical

contains a node whose degree in G is k.

Here an edge e of a k-connected graph G is critical (w.r.t. k-connectivity) if G − e is not

k-connected.

The following corollary (e.g., see [22]) is used to get a relation between (k−1)-edge covers

and k-connected spanning subgraphs.

Corollary 8.2 If degJ(v) ≥ k − 1 for every node v of a graph J , and if F is an inclusion

minimal edge set such that J ∪ F is k-connected, then F is a forest.

Proof: If not, then F contains a cycle C of critical edges, but every node of this cycle is

incident to 2 edges of C and to at least k− 1 edges of G, contradicting Mader’s Theorem. 2

Proof of Theorem 2.5: By the assumption, we can find a subgraph J with degJ(v) ≥ k−1

of power at most p(J) ≤ βopt. We reset the costs of edges in J to zero, and apply an

α-approximation algorithm for the Min-Cost k-Connected Spanning Subgraph problem to

compute an (inclusion) minimal edge set F so that J + F is k-connected. By Corollary 8.2,

F is a forest. Thus p(F ) ≤ 2c(F ) ≤ 2αopt, by Lemma 2.8. Combining, we get the desired

statement.

The proof of the other direction is similar. We find a min-cost (k − 1)-edge cover J in

polynomial time, and reset the costs of its edges to zero. Then we use the ρ-approximation

algorithm for MPk-CS with the new cost function. The edges with nonzero cost in this

new graph form a forest F , by Corollary 8.2. Then clearly c(J) is at most the minimum

cost of a k-connected spanning subgraph, and c(F ) is at most 2ρ times the minimum cost

of a k-connected spanning subgraph, by Lemma 2.8. This gives a (2ρ + 1)-approximation

algorithm for the Min-Cost k-Connected Spanning Subgraph problem. 2
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