
Approximating minimum-cost connectivity

problems via uncrossable bifamilies

Zeev Nutov

The Open University of Israel

We give approximation algorithms for the Survivable Network problem. The input consists of a

graph G = (V,E) with edge/node-costs, a node subset S ⊆ V , and connectivity requirements
{r(s, t) : s, t ∈ T ⊆ V }. The goal is to find a minimum cost subgraph H of G that for all s, t ∈ T

contains r(s, t) pairwise edge-disjoint st-paths such that no two of them have a node in S \ {s, t}
in common. Three extensively studied particular cases are: Edge-Connectivity Survivable Network

(S = ∅), Node-Connectivity Survivable Network (S = V ), and Element-Connectivity Survivable Net-

work (r(s, t) = 0 whenever s ∈ S or t ∈ S). Let k = maxs,t∈T r(s, t). In Rooted Survivable Network

there is s ∈ T such that r(u, t) = 0 for all u 6= s, and in the Subset k-Connected Subgraph problem

r(s, t) = k for all s, t ∈ T .
For edge-costs, our ratios are O(k log k) for Rooted Survivable Network and O(k2 log k) for Subset

k-Connected Subgraph. This improves the previous ratio O(k2 logn), and for constant values of k
settles the approximability of these problems to a constant.

For node-costs, our ratios are:

—O(k log |T |) for Element-Connectivity Survivable Network, matching the best known ratio for
Edge-Connectivity Survivable Network.

—O(k2 log |T |) for Rooted Survivable Network and O(k3 log |T |) for Subset k-Connected Subgraph,
improving the ratio O(k8 log2 |T |).

—O(k4 log2 |T |) for Survivable Network; this is the first non-trivial approximation algorithm for
the node-costs version of the problem.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Approximation Algorithms, Graph Connectivity, Rooted Connectivity, Node-

Costs

1. INTRODUCTION

1.1 Survivable Network problems

In network design connectivity problems the goal is to find a low cost subgraph that
satisfies prescribed connectivity requirements. When only connectedness is required
between certain pairs of nodes, some classic examples are: Shortest Path, Minimum
Spanning Tree, Steiner Tree, and Steiner Forest. Corresponding examples that al-
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low high connectivity requirements are: Min-Cost k-Flow, k-Edge/Node-Connected
Subgraph, Subset k-Edge/Node-Connected Subgraph, and Edge/Node-Connectivity
Survivable Network, respectively.
For an edge set I on node set V let V (I) =

⋃

uv∈I{u, v} denote the set of end-
nodes of the edges in I. Given node-costs {c(v) : v ∈ V }, let c(I) = c(V (I)) be
the node-cost of I. For a subset S of nodes in a graph H, let λS

H(s, t) denote the
S-connectivity between s and t in H, namely, the maximum number of pairwise
edge-disjoint st-paths in H so that no two of them have a node in S \ {s, t} in
common. We consider the following fundamental problem on undirected graphs,
that includes as a special case the problems mentioned above.

Survivable Network
Instance: A graph G = (V,E) with edge/node-costs, S ⊆ V , and S-connectivity

requirements {r(s, t) : s, t ∈ T ⊆ V }.
Objective: Find a minimum cost subgraph H of G such that λS

H(s, t) ≥ r(s, t)
for all s, t ∈ T .

Extensively studied particular cases of Survivable Network are: Edge-Connectivity
Survivable Network (S = ∅), Node-Connectivity Survivable Network (S = V ), and
Element-Connectivity Survivable Network (r(s, t) = 0 whenever s ∈ S or t ∈ S).
Edge-Connectivity Survivable Network is also called Steiner Network in the literature,
c.f. [Jain 2001], and various variants of Survivable Network are also referred to as the
Survivable Network Design Problem (SNDP) in the literature, c.f. [Goemans et al.
1994; Ravi and Williamson 1997]. Element-Connectivity Survivable Network is essen-
tially the edge-connectivity version of the problem on hypergraphs, studied in the
90s by Frank, Benczur, and many others; see e.g. [Nutov 2009a] and the references
therein. We note that Survivable Network can be reduced to its node-connectivity
variant by elementary constructions. Thus all our results for the node-connectivity
variant extend to the S-connectivity one, and we simply write Survivable Network
to mean Node-Connectivity Survivable Network. In Rooted Survivable Network there
is s ∈ T such that r(u, t) = 0 for all u 6= s and in Subset k-Connected Subgraph
r(s, t) = k for all s, t ∈ T . The latter problem generalizes the k-Connected Sub-
graph problem; see [Nutov 2009c; Fackharoenphol and Laekhanukit 2008] and the
references therein.

1.2 Previous and related work

We refer the reader to a survey [Kortsarz and Nutov 2007] on Survivable Network
problems with various edge-costs and connectivity requirements, and here mention
some literature relevant to this paper. For an instance of Survivable Network let
k = maxs,t∈T r(s, t) denote the maximum requirement. The first approximation
algorithms for the problem appeared in the 90s for the Steiner Forest problem – the
case k = 1. Agrawal, Klein, and Ravi [Agrawal et al. 1995] gave a 2-approximation
for edge-costs (see also [Goemans and Williamson 1995; Goemans et al. 1994] for
a more general result and a simpler analysis), and [Klein and Ravi 1995] gave
an O(log n)-approximation for node-costs. The latter ratio is essentially (up to
constants) the best possible, as the node-costs version is Set-Cover hard [Klein and
Ravi 1995].
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For k ≥ 2, a line of research initiated by Frank, Goemans and Williamson, and
others, was to study a more general setting of edge-covering the “set-function” ari-
sing from the Survivable Network variant. For example, Edge-Connectivity Survivable
Network can be formulated as a Set-Function Edge-Cover problem as follows. An
edge e covers a set X if it has exactly one endnode in X. Let δH(X) denote the set
of edges in a graph H that cover X. By Menger’s Theorem a subgraph H of G is a
feasible solution to an Edge-Connectivity Survivable Network instance if, and only if
|δH(X)| ≥ f(X) for all X ⊆ V , where f(X) = max{r(s, t) : |X ∩ {s, t}| = 1}. This
set-function f is weakly supermodular, namely,

f(X)+f(Y ) ≤ max{f(X ∩Y )+f(X ∪Y ), f(X \Y )+f(Y \X)} for all X,Y ⊆ V .

A set-family F is uncrossable if for any X,Y ∈ F we have X ∩ Y,X ∪ Y ∈ F
or X \ Y, Y \ X ∈ F . It is known (c.f. [Goemans et al. 1994]) that the problem
of edge-covering a weakly supermodular set-function f can be decomposed into
fmax = max

X⊆V
f(X) problems of edge-covering an uncrossable set-family.

The seminal paper [Jain 2001], and numerous papers preceding it, considered
Edge-Connectivity Survivable Network with edge-costs, and developed novel tools
for approximating minimum cost edge-covers of several types of set-functions and
families. [Jain 2001] gave a 2-approximation algorithm for edge-covering a weakly-
supermodular set-function using the iterative rounding method. Earlier, [Goemans
et al. 1994] gave a combinatorial (primal-dual/local-ratio) 2-approximation algo-
rithm for the special case of uncrossable set-families. The 2-approximation of [Jain
2001] for Edge-Connectivity Survivable Network was extended to element-connectivity
by Fleischer, Jain, and Williamson [Fleischer et al. 2006] and by Cheriyan, Vempala,
and Vetta [Cheriyan et al. 2006].
Recently, progress has also been made for node-costs. Generalizing the algo-

rithm of [Klein and Ravi 1995] for Survivable Network with k = 1, [Nutov 2010b]
developed an O(log |V |)-approximation algorithm for edge-covering an uncrossable
set-family by a minimum node-cost edge set. For node-costs, this algorithm implies
an O(k log |T |)-approximation algorithm for Edge-Connectivity Survivable Network,
and also for Node-Connectivity Survivable Network with k ≤ 2. In [Nutov 2010b]
is given an evidence that for large values of k, even the simplest version of Edge-
Connectivity Survivable Network with node-costs when r(s, t) 6= 0 for only one pair
s, t, the so called Node-Weighted k-Flow problem, may not admit a polylogarith-
mic approximation ratio. Specifically, the reduction in [Nutov 2010b] shows that a
ratio ρ for the Node-Weighted k-Flow problem implies ratio 1/2ρ2 for the Densest
k-Subgraph problem: given a graph G and an integer k, find a k-node subgraph
of G with maximum number of edges. This problem has been studied extensively,
and the currently best known ratio for it is O

(

n1/4+ε
)

[Bhaskara et al. 2010].
We survey some results for Survivable Network with edge-costs. A hardness result

of [Kortsarz et al. 2004] suggests that Subset k-Connected Subgraph is unlikely to
admit a polylogarithmic approximation; this is so even when the input graph is
complete and the costs are in {0, 1} [Nutov 2009a]. Chakraborty, Chuzhoy, and
Khanna [Chakraborty et al. 2008] extended this to Ω(kε)-hardness for any k ≥ k0,
where k0 and ε > 0 are universal constants. [Lando and Nutov 2009] proved that for
k = n/2+k′ the approximability of the undirected Survivable Network variant is the
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same (up to a factor of 2) as that of the directed one with maximum requirement
k′. This is so also for Rooted Survivable Network. The directed variant of Rooted
Survivable Network includes as a special case, when k′ = 1, the Directed Steiner
Tree problem. The latter is not known to admit a polylogarithmic approximation,
but admits an O(nε)-approximation scheme [Charikar et al. 1999]; for k′ = 2 no
sublinear approximation for the directed rooted variant is known. On the positive
side, the best known ratios for Survivable Network problems were: O(k3 log n) for
Survivable Network [Chuzhoy and Khanna 2009], O(k2 log n) for Subset k-Connected
Subgraph by [Chuzhoy and Khanna 2008], and O(k2 log n) for Rooted Survivable
Network [Chuzhoy and Khanna 2008] and [Nutov 2009d]. Survivable Network also
admits an O(log k)-approximation for metric edge-costs [Cheriyan and Vetta 2007].
In contrast, for node-costs, non-trivial approximation ratios were known only for
rooted requirements; O(k8 log2 n) by [Chuzhoy and Khanna 2008].

1.3 Uncrossable bifamilies and Survivable Network Augmentation problems

As was mentioned, Edge-Connectivity Survivable Network can be formulated as a
Set-Function Edge-Cover problem with weakly supermodular set function f . For
other Survivable Network problems, a similar formulation can be given in terms of
setpairs instead of sets [Frank and Jordán 1995; Fleischer et al. 2006; Cheriyan
and Vempala 2001]. Following [Frank 2009], we will use the following equivalent
formulation.

Definition 1.1. An ordered pair X̂ = (X,X+) of subsets of a groundset V is
called a biset if X ⊆ X+; X is the inner part and X+ is the outer part of X̂. Let
Γ(X̂) = X+ \X. The intersection and the union of bisets X̂, Ŷ is naturally defined
by X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +). The biset X̂ \ Ŷ
is defined by X̂ \ Ŷ = (X \ Y +, X+ \ Y ) = X̂ ∩ (V \ Y +, V \ Y ).

An edge e covers a biset X̂ if it has one endnode in X and the other in V \X+.
For an edge-set or a graph H and a biset X̂ on a node set V let δH(X̂) denote the
set of edges in H covering X̂. Given an instance of Survivable Network let

r(X̂) = max{r(s, t) : |X ∩ {s, t}| = |X+ ∩ {s, t}| = 1} .

By the S-connectivity version of Menger’s Theorem, a subgraph H of G is a feasible
solution to a Survivable Network instance if, and only if |δH(X̂)| ≥ f(X̂) for all bisets
X̂ on V , where here f is a biset-function defined by

f(X̂) = r(X̂)− |Γ(X̂)| if Γ(X̂) ⊆ S

and f(X̂) = 0 otherwise.
We study biset-families arising from Rooted Survivable Network and Element-

Connectivity Survivable Network instances. For applications considered in this paper
it suffices to consider biset-families F that are:

• bijective – X = Y implies X+ = Y + for any X̂, Ŷ ∈ F .

• monotone – X ⊆ Y implies X+ ⊆ Y + for any X̂, Ŷ ∈ F .

A biset-family F is called a bifamily if it is bijective, monotone, and X,V \X+ are
both nonempty for every X̂ ∈ F .
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Definition 1.2. Given a bifamily F on V and a set T ⊆ V of terminals, we
say that X̂, Ŷ ∈ F are T -dependent if X ∩T ⊆ Γ(Ŷ ) or if Y ∩T ⊆ Γ(X̂), and X̂, Ŷ
are T -independent otherwise. We say that F is T -uncrossable if X ∩ T 6= ∅ for
all X̂ ∈ F , and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F or X̂ \ Ŷ , Ŷ \ X̂ ∈ F for any T -independent
X̂, Ŷ ∈ F . We say that F is uncrossable if it is V -uncrossable and any X̂, Ŷ ∈ F
are V -independent (equivalently, a bifamily F is uncrossable if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F
or X̂ \ Ŷ , Ŷ \ X̂ ∈ F for any X̂, Ŷ ∈ F).

Let Survivable Network Augmentation be the restriction of Survivable Network to
instances where the input graph G contains a subgraph J of cost 0 such that
λS
J (s, t) ≥ max{r(s, t) − 1, 0} for all s, t ∈ T . Namely, we seek to increase the

connectivity by 1 between certain pairs. Formally, this version is as follows.

Survivable Network Augmentation
Instance: A graph G = (V,E) with edge/node-costs, a graph J = (V,EJ ), S ⊆ V ,

and a set T of node pairs from a set T ⊆ V of terminals.
Objective: Find a minimum cost edge-set I ⊆ E\EJ so that λS

J∪I(s, t) ≥ λS
J (s, t)+1

for all {s, t} ∈ T .

Given an instance of Survivable Network Augmentation we assume that E∩EJ = ∅,
by setting E ← E \ EJ . Menger’s Theorem for S-connectivity (c.f. [Kortsarz and
Nutov 2007, Theorem 3.1]) states that for any s, t ∈ V

λS
J (s, t) = min{C : C ⊆ EJ ∪ S \ {s, t}, J \ C has no uv-path} .

Namely, λS
J (s, t) equals the minimum size of a “mixed cut” C of edges and nodes in

S whose deletion separates between s and t. Let us say that a biset X̂ = (X,X+) is
tight if there exists {s, t} ∈ T such that |X ∩ {s, t}| = |X+ ∩ {s, t}| = 1, Γ(X̂) ⊆ S,
and |Γ(X̂)| + |δJ (X̂)| = λS

J (s, t). By Menger’s Theorem, I is a feasible solution
to Survivable Network Augmentation if, and only if, I covers the family F(J, S, T )
of tight bisets; see [Kortsarz and Nutov 2007]. It is not hard to verify that if X̂
is tight then Γ(X̂) must be the set of neighbors in S \ {s, t} of X in the graph
J . This implies that F(J, S, T ) is a bifamily. This bifamily is uncrossable for
Element-Connectivity Survivable Network, by [Fleischer et al. 2006; Cheriyan et al.
2006]. In the case of rooted requirements, it is sufficient to cover the bifamily
{X̂ ∈ F(J, S, T ) : s /∈ X+}, where s is the root. This bifamily is T -uncrossable for
Rooted Survivable Network by [Nutov 2009d]. We therefore consider the following
generic problem which includes Survivable Network Augmentation problems.

Bifamily Edge-Cover
Instance: A graph G = (V,E) with edge/node-costs and a bifamily F on V .
Objective: Find a minimum cost edge-cover I ⊆ E of F .

A polynomial time implementation of our algorithms requires two assumptions,
that certain queries related to F can be answered in polynomial time. We need
some definitions to describe these assumptions.
Given an edge set I on V (I is a partial edge-cover of F), the residual bifamily
FI of F (w.r.t. I) consists of all members of F that are not covered by the edges of
I. It is easy to verify that if F is T -uncrossable, so is FI , for any I, c.f. [Fleischer
et al. 2006] for the particular case of uncrossable bifamilies.
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Definition 1.3. A set C ∈ {X : X̂ ∈ F} is a core of a bifamily F , or C is an
F-core, if C does not contain two distinct inclusion-minimal members of the set-
family {X : X̂ ∈ F}. An inclusion-minimal (inclusion-maximal) core is a min-core
(max-core). Let CF (MF) denote the set-family of min-cores (max-cores) of F .

Assumption 1. Given the inner part X of a biset X̂ ∈ F , the outer part X+ of
X̂ can be computed in polynomial time.

Assumption 2. For any edge set I on V , the families CFI
of min-cores and

MFI
of max-cores of FI can be computed in polynomial time.

Using standard max-flow min-cut methods, it is easy to see that Assumptions 1
and 2 hold for the family F of tight bisets, c.f. [Nutov 2009d; 2012a]. Summarizing,
we have the following.

Corollary 1.1. Element-Connectivity Survivable Network Augmentation is a par-
ticular case of Bifamily Edge-Cover with uncrossable F , and Rooted Survivable Net-
work Augmentation is a particular case of Bifamily Edge-Cover with T -uncrossable
F . Furthermore, in both cases, Assumptions 1 and 2 hold for F .

1.4 Our results

Our first result is the following decomposition, which is obtained by an improved
analysis of the algorithm from [Nutov 2009d].

Theorem 1.2. There exists a polynomial time algorithm that, given a T -uncros-
sable bifamily F , sequentially finds 4γ + ⌈lg(⌊γ/2⌋+ 1)⌉ = O(γ) uncrossable sub-
bifamilies of F such that the union of their edge-covers is an edge-cover of F , where
γ = γ(F , T ) = max

X̂,Ŷ ∈F
|Γ(X̂)∩Y ∩T | ≥ 1. In particular, if Bifamily Edge-Cover with

uncrossable F admits a ρ-approximation algorithm, then Bifamily Edge-Cover with
T -uncrossable F admits an O(ργ)-approximation algorithm.

Let τ(F) denote the optimal value of a standard LP-relaxation for Bifamily Edge-
Cover, namely

τ(F) = min







∑

e∈E

cexe :
∑

e∈δE(Û)

xe ≥ 1 ∀Û ∈ F , xe ≥ 0 ∀e ∈ E







.

For edge-costs, Bifamily Edge-Cover with uncrossable F admits a polynomial time
algorithm that computes an edge-cover of F of cost ≤ 2τ(F). In [Fleischer et al.
2006; Cheriyan et al. 2006] such an algorithm uses the iterative rounding method,
and applies to a more general biset-function edge-cover problem. A combinatorial
algorithm that relies on Assumptions 1, 2 only can be found in [Nutov 2009d].

For node-costs, Bifamily Edge-Cover with uncrossable F includes the Set-Cover
problem, and thus is Ω(log n)-hard to approximate. The only approximation algo-
rithm known was for set-families; [Nutov 2010b] gives an O(log |CF |)-approximation
algorithm. In this paper we prove the following generalization:

Theorem 1.3. For node-costs, Bifamily Edge-Cover with uncrossable F admits
an O(log |CF |)-approximation algorithm.

From Theorems 1.2 and 1.3 we obtain the main result of this paper.
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Theorem 1.4. Bifamily Edge-Cover with T -uncrossable bifamily F admits the
following approximation algorithms.

—For edge-costs, an algorithm that computes a solution of cost O(γ) · τ(F).

—For node-costs, an O(γ log |T |)-approximation algorithm.

We now consider some applications of Theorem 1.4. For Rooted Survivable Net-
work, two different O(k2 log n)-approximation algorithms were suggested indepen-
dently in [Chuzhoy and Khanna 2008] and [Nutov 2009d]. A particularly elegant
and simple approach was suggested recently by [Chuzhoy and Khanna 2009]. They
showed that Rooted Survivable Network can be decomposed into p instances of
Element-Connectivity Survivable Network, where p = p(|T |, k) is the minimum num-
ber of subsets T1, . . . , Tp of T , such that for every pair (t, Q) with Q ⊂ T , |Q| = k,
t ∈ V \Q, there exists Ti with t ∈ Ti and Q∩Ti = ∅. Chuzhoy and Khanna proved
that p = O(k2 log |T |). A factor of log |T | is unavoidable here even for k = 1. How-
ever, for k ≤ 2 Survivable Network admits a constant ratio approximation algorithm
[Ravi and Williamson 1997; Fleischer et al. 2006; Cheriyan et al. 2006]. Hence it
seems reasonable that Survivable Network with edge-costs admits an approximation
ratio that depends on k only. This was proved recently in [Nutov 2012a] for the
special case when the input graph G is complete and the costs are in {0, 1}. Here
we prove this for Rooted Survivable Network and Subset k-Connected Subgraph with
arbitrary costs, by deducing it from Theorem 1.4.
The following statement will be proved later in Section 4.

Proposition 1.5. Suppose that for edge-costs, Bifamily Edge-Cover with T -un-
crossable F admits a polynomial time algorithm that computes a solution of cost ≤
ρ(γ)·τ(F), where ρ is a monotone non-decreasing function. Then Rooted Survivable
Network admits a polynomial time algorithm that computes a solution of cost ≤

opt ·
∑k

ℓ=1
ρ(ℓ)

k−ℓ+1 ≤ ρ(k) ·H(k) ·opt, where opt denotes the optimal solution cost for
Rooted Survivable Network.

Combining Theorem 1.4 with Proposition 1.5 we prove in Section 4 the following
result.

Theorem 1.6. Survivable Network problems admit the following approximation
ratios:

—For edge-costs, O(k log k) for Rooted Survivable Network and O(k2 log k) for Sub-
set k-Connected Subgraph.

—For node-costs, O(k log |T |) for Element-Connectivity Survivable Network, O(k2 log |T |)
for Rooted Survivable Network, O(k3 log |T |) for Subset k-Connected Subgraph,
and O(k4 log2 |T |) for Survivable Network.

For constant values of k, this settles the approximability of Rooted Survivable
Network and of Subset k-Connected Subgraph with edge-costs to a constant, and
of Element-Connectivity Survivable Network, Rooted Survivable Network, and Subset
k-Connected Subgraph with node-costs to O(log |T |).
Theorems 1.2, 1.3, and 1.6, are proved in Sections 2, 3, and 4, respectively.

Conclusions, recent developments, and open problems are given in Section 5.
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2. PROOF OF THEOREM 1.2

Let us say that a bifamily F is simple if the inner part of every member of F
is a core. Note that the sub-bifamily {X̂ ∈ F : X is an F-core} of any bifamily
F is always simple, and we will prove that it is T -uncrossable if F is. To prove
Theorem 1.2, we will show how to decompose any simple T -uncrossable bifamily
into a small number of uncrossable bifamilies, see Lemma 2.3 to follow. We start
with the following useful property of min-cores.

Lemma 2.1. Let C ∈ CF be a min-core of a T -uncrossable bifamily F . If Ĉ
and X̂ ∈ F are T -independent, then C ⊆ X or C ∩ X+ = ∅. In particular, the
min-cores of F are pairwise disjoint on T .

Proof. Since Ĉ and X̂ are T -independent, Ĉ ∩ X̂ ∈ F or Ĉ \ X̂ ∈ F . Thus one
of the sets C ∩X or C \X+ is an inner part of a biset in F . If the statement in the
lemma does not hold, then these sets are strictly contained in C. This contradicts
the minimality of C.

For a bifamily F on V and C ⊆ V let

F(C) = {X̂ ∈ F : X ⊇ C,X is an F-core} .

Definition 2.1. Let us say that a bifamily F is a ring-bifamily if F has a unique
min-core and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F holds for any X̂, Ŷ ∈ F .

Note that any ring-bifamily also has a unique max-core. We need the following
fundamental property of cores.

Lemma 2.2. Let F be a T -uncrossable bifamily and let X,Y be F-cores.

(i) If X,Y contain the same min-core C ∈ CF (namely, if X̂, Ŷ ∈ F(C)) then X̂, Ŷ
are T -independent and X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F(C).

(ii) If X,Y contains distinct min-cores CX , CY ∈ CF , respectively, and if X̂, Ŷ are
T -independent, then X̂ \ Ŷ ∈ F(CX) and Ŷ \ X̂ ∈ F(CY ).

Consequently, the bifamily {X̂ ∈ F : X is an F-core} is also T -uncrossable, and
for every min-core C ∈ CF of F the following holds: F(C) is a ring-bifamily, there
is a unique max-core M containing C, and F(C) = {X̂ ∈ F : X ⊆M}.

Proof. We prove (i). Let X̂, Ŷ ∈ F(C). As X ∩ Y ∩ T ⊇ C ∩ T 6= ∅, X̂, Ŷ
are T -independent. We cannot have X̂ \ Ŷ , Ŷ \ X̂ ∈ F , as then X will contain two
disjoint sets C,X \ Y + that are inner parts of bisets in F , contradicting that X is
a core. Hence X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F . Clearly, X ∩ Y is a core. It remains to show
that X ∪ Y is a core. Otherwise, there is a min-core C ′ ⊆ X ∪ Y , C ′ 6= C. Then
X ∩ T or Y ∩ T contains a node from C ′ ∩ T , say X ∩ C ′ ∩ T 6= ∅. Thus X̂, Ĉ ′

are T -independent, and hence C ′ ⊆ X, by Lemma 2.1. But then X contains two
distinct cores C,C ′. This contradicts that X is a core.
We prove (ii). If (ii) does not hold, then X̂∩ Ŷ , X̂∪ Ŷ ∈ F , hence X∩Y contains

some C ∈ CF . If C 6= CX then X contains two distinct min-cores C,CX , and if
C 6= CY then Y contains two distinct min-cores C,CY . In both cases we obtain a
contradiction.
The last statement of the lemma easily follows from (i) and (ii).
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Later, we will prove the following decomposition lemma.

Lemma 2.3. Let F be a T -uncrossable bifamily with |C ∩T | ≥ q for all C ∈ CF .
If q ≥ γ + 1 then any X̂, Ŷ ∈ F are T -independent and thus F is uncrossable.
If F is simple, then CF can be partitioned into at most 2⌊γ/q⌋+ 1 parts such that
for every part C, the bifamily

⋃

C∈C F(C) is uncrossable. Furthermore, given the
families CF and MF of min-cores and max-cores of F , such a partition can be
found in polynomial time.

The following lemma enables us to estimate a progress made towards covering
F , if we cover the sub-bifamily {X̂ ∈ F : X is an F-core} of F .

Lemma 2.4. Suppose that the min-cores of a bifamily F are pairwise disjoint on
a subset T of V , and that |C ∩ T | ≥ q for all C ∈ CF . If an edge-set I covers the
bifamily {X̂ ∈ F : X is an F-core} then |C ′∩T | ≥ 2q for every min-core C ′ of FI .

Proof. Let C ′ be an FI -core. As I covers {X̂ ∈ F : X is an F-core}, C ′

contains at least two min-cores of F . These two min-cores have no node of T in
common, and each of them contains at least q nodes from T , by the assumption.
The statement follows.

Now we deduce Theorem 1.2 from Lemmas 2.1, 2.3, and 2.4. The algorithm
starts with I = ∅, and while q = min{|C ∩T | : C ∈ CFI

} ≤ ⌈(γ+1)/2⌉ = ⌊γ/2⌋+1,
it adds to I a cover of the bifamily {X̂ ∈ FI : X is an FI -core}. Then, at the last
iteration, the algorithm adds to I a cover of the entire residual bifamily FI . Note
that at the beginning of an iteration, the bifamily {X̂ ∈ FI : X is an FI -core} is
simple and T -uncrossable, by Lemma 2.1, and thus can be partitioned into at most
2⌊γ/q⌋+ 1 uncrossable bifamilies, by Lemma 2.3. Initially, q ≥ 1, and q is at least
doubled during each iteration, by Lemmas 2.1 and 2.4. At the beginning of the
last iteration, we have q ≥ γ + 1, and then the residual bifamily FI is uncrossable,
by Lemma 2.3. Consequently, the total number of uncrossable bifamies we cover is
bounded by

⌈lg(⌊γ/2⌋+1)⌉
∑

p=0

(2⌊γ/2p⌋+ 1) + 1 ≤ 2 + ⌈lg(⌊γ/2⌋+ 1)⌉+ 2γ

⌈lg(⌊γ/2⌋+1)⌉
∑

p=0

(1/2)
p

≤ 2 + ⌈lg(⌊γ/2⌋+ 1)⌉+ 2γ
1− 1/2

lg(⌊γ/2⌋+1)+1

1− 1/2

≤ 2 + ⌈lg(⌊γ/2⌋+ 1)⌉+ 4γ

(

1−
1

2(⌊γ/2⌋+ 1)

)

≤ 4γ + ⌈lg(⌊γ/2⌋+ 1)⌉ = O(γ) .

In the rest of this section we prove Lemma 2.3. Let F be a T -uncrossable bifamily
on V . If q ≥ γ + 1 then F is uncrossable, since any X̂, Ŷ ∈ F are T -independent;
otherwise, there are X̂, Ŷ ∈ F such that |X ∩ Γ(Ŷ )∩ T | ≥ γ + 1, contradicting the
definition of γ.
Now assume that F is simple. Let CF = {C1, . . . , Cν} be the family of min-cores

of F and let Mi be the (unique, by Lemma 2.2) max-core containing Ci.
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Definition 2.2. We say that Ci, Cj ∈ CF are strongly T -independent if both

M̂i, Ĉj are T -independent and M̂j , Ĉi are T -independent.

Note that F(Ci) = {X̂ ∈ F : X ⊆ Mi} for every i, by Lemma 2.2. Hence if
Ci, Cj are strongly T -independent then any X̂, Ŷ ∈ F with X ⊆ Mi and Y ⊆ Mj

are T -independent, by the monotonicity of F . Thus we have the following.

Corollary 2.5. Let Ci, Cj ∈ CF be strongly T -independent. Then for any

X̂, Ŷ ∈ F with X ⊆ Mi and Y ⊆ Mj we have X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F if i = j, and

X̂ \ Ŷ , Ŷ \ X̂ ∈ F if i 6= j. Thus for any C ⊆ CF , if the members of C are pairwise
strongly T -independent, then the bifamily

⋃

C∈C F(C) = {X̂ ∈ F : X ⊆Mi, Ci ∈ C}
is uncrossable.

Consequently, the following lemma finishes the proof of Lemma 2.3.

Lemma 2.6. If |Ci ∩ T | ≥ q for all i, then CF admits a partition into at most
2⌊γ/q⌋+1 parts such that the members of each part are pairwise strongly T -indepen-
dent, and given the families CF ,MF such a partition can be found in polynomial
time.

Proof. Construct an auxiliary directed graph J as follows. The node set of J is
CF . Add an arc CiCj if T ∩Ci ⊆ Γ(M̂j). The indegree of every node in J is at most
⌊γ/q⌋, by Lemma 2.2(i). This implies that every subgraph of the underlying graph
of J has a node of degree ≤ 2⌊γ/q⌋. A graph is d-degenerate if every subgraph
of it has a node of degree ≤ d. It is known that any d-degenerate graph can be
colored in polynomial time with (d+ 1) colors. Hence J is (2⌊γ/q⌋+ 1)-colorable,
and such a coloring can be computed in polynomial time. Consequently, CF can be
partitioned in polynomial time into 2⌊γ/q⌋+ 1 independent sets, as required.

The proof of Lemma 2.3, and thus also of Theorem 1.2, is complete.

3. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is along the lines of the proofs of [Nutov 2010a, Theo-
rem 1.3] and [Nutov 2010b, Theorem 1.4], where set-families are considered. The
latter two theorems rely on [Nutov 2010a, Theorem 2.3] and [Nutov 2010b, Theo-
rem 2.3], respectively, that established a certain “spider-decomposition” of covers
of set-families. We present a full proof only of an analogous “spider-decomposition”
theorem for bifamilies (Theorems 3.1 and 3.5 to follow); the other parts of the proof
of Theorem 1.3 are essentially identical to the ones in [Nutov 2010a; 2010b].

We start by extending the concept of “spider-covers”, introduced in [Nutov 2010a;
2010b], from set-families to bifamilies. For s ∈ V and C ∈ CF let

F(s, C) = {X̂ ∈ F(C) : s /∈ X+} .

Note that by Lemma 2.2(i), F(C), and thus also F(s, C), is a ring-bifamily if F is
an uncrossable (or even a T -uncrossable) bifamily.

Definition 3.1. Let F be a bifamily on V and let C ⊆ CF . We say that an
edge-set S on V is an F(s, C)-spider-cover (for illustration see Fig. 1) if s ∈ V (S)
and if S can be partitioned into F(s, C)-covers {PC : C ∈ C} such that the node sets
{V (PC)\{s} : C ∈ C} are pairwise disjoint. We say that S is an F(C)-spider-cover
(or simply a spider-cover, if C is clear from the context) if the following holds:
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(a) (b)

s

Fig. 1. Examples of F(s, C)-spider-covers. The inner parts of the bisets are shown by darker gray
circles, min-cores in C are shown by darkest gray circles.

—If |C| ≥ 2 then there exists s ∈ V (a center of the spider-cover) such that S is an
F(s, C)-spider-cover.

—If |C| = 1, say C = {C}, then S covers F(C).

Equivalently, for |C| ≥ 2, an F(C)-spider-cover S with a chosen center s ∈ V (S)
is a union of F(s, C)-covers {PC : C ∈ C} so that only s can be a common end-node
of two of them. Note that there might be C ∈ C such that PC does not cover Ĉ.
This may happen if |C| ≥ 2 and s ∈ C+ for some C ∈ C; then F(s, C) = ∅ and
PC = ∅ is an F(s, C)-cover, although no edge in PC covers Ĉ itself (see Fig. 1(b)).

Definition 3.2. Let F be a bifamily on V and let C ⊆ CF . We say that a
collection S = {S1, . . . , Sh} of edge-sets spider-covers C if the following holds:

—The node-sets V (S1), . . . , V (Sh) are pairwise disjoint.

—C admits a partition {C1, . . . , Ch} such that each St is an F(Ct)-spider-cover.

In [Nutov 2010a] directed covers of intersecting set-families are considered, when
X,Y ∈ F andX∩Y 6= ∅ impliesX∩Y,X∪Y ∈ F , and for everyX ∈ F there should
be an edge in I entering X. For this case, [Nutov 2010a, Theorem 2.3] states that
any cover I of F admits a ”tail-disjoint” subpartition that spider-covers a subfamily
C ⊆ CF of size at least |C| ≥ ⌈2|CF |/3⌉; in the setting of [Nutov 2010a] this bound
is the best possible. [Nutov 2010b, Theorem 2.3] states that any (undirected) cover
I of an uncrossable set-family F admits a subpartition that spider-covers the entire
family CF of F-cores. In the case of bifamilies, the situation is more involved, and
by extending the method from [Nutov 2010a] we prove the following.

Theorem 3.1. Let F be a simple bifamily such that the F-cores are pairwise
disjoint and such that F(C) is a ring-bifamily for every C ∈ CF . Then any cover
I of F admits a subpartition that spider-covers a subfamily C ⊆ CF of F-cores of
size at least |C| ≥ ⌈2|CF |/3⌉.

We now prove Theorem 3.1, and at the end of this section briefly describe how
Theorem 3.1 implies Theorem 1.3.
The proofs of the next two statements, Claim 3.2 and Lemma 3.3, are similar to

the proofs of Lemma 2.6 and Corollary 2.5 from [Nutov 2010a], respectively, where
directed covers of ring-set-families were considered.
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Fig. 2. (a) Illustration to Lemma 3.3. (b) Construction of the path PC .

Claim 3.2. Let I be an inclusion-minimal cover of a ring-bifamily F and let C
be the min-core of F . Then |δI(Ĉ)| = 1.

Proof. Clearly, |δI(Ĉ)| ≥ 1 since I covers F and since Ĉ ∈ F . Suppose to
the contrary that there are distinct e, f ∈ δI(Ĉ). By the minimality of I, there
are Ŵe, Ŵf ∈ F such that δI(Ŵe) = {e} and δI(Ŵf ) = {f}. There is an edge

in I covering Ŵe ∪ Ŵf , because Ŵe ∪ Ŵf ∈ F . This edge must be one of e, f ,

because if for arbitrary bisets X̂, Ŷ an edge covers X̂ ∪ Ŷ then it also covers one
of X̂, Ŷ . Each of e, f covers Ŵe ∩ Ŵf , because each of e, f has an endnode in C

and C ⊆ We ∩Wf . Consequently, one of e, f covers both Ŵe ∩ Ŵf and Ŵe ∪ Ŵf .

However, if for arbitrary bisets X̂, Ŷ an edge covers both X̂∩ Ŷ , X̂∪ Ŷ then it cover
both X̂ and Ŷ . Hence one of e, f covers both Ŵe, Ŵf . This is a contradiction, since

δI(Ŵe) = {e}, δI(Ŵf ) = {f}, and e 6= f .

Lemma 3.3. Let I be an inclusion-minimal cover of a ring-bifamily F . There
exists an ordering e1, . . . , eq of I and a nested set-family C1 ⊂ · · · ⊂ Cq of sets in

{X : X̂ ∈ F} such that for every j = 1, . . . , q the following holds (see Fig. 2(a)):

(i) Cj is the min-core of FIj−1
, where Ij = {e1, . . . , ej} and I0 = ∅, and ej is the

unique edge in I covering Ĉj.

(ii) If ej = ujvj where vj ∈ Cj, then Ij is an F(uj , C)-cover and Ij−1 is an
F(vj , C)-cover, where C is the min-core of F .

Proof. Let C1 = C. By Claim 3.2 there is a unique edge e1 ∈ I covering Ĉ1. Let
e1 = u1v1, where v1 ∈ C1. Then clearly I0 = ∅ is an F(v1, C)-cover and I1 = {e1}
is an F(u1, C)-cover. Thus if e1 covers F we are done. Otherwise, let C2 be the
min-core of FI1 . Then C1 ⊂ C2. Let e2 = u2v2 be the edge in I covering Ĉ2, where
v2 ∈ C2. As C2 is the min-core of FI1 and v2 ∈ C2, it follows that I1 is an F(v2, C)-
cover and I2 = I1 ∪ {e2} is an F(u2, C)-cover. We can continue this process until
some edge eq covers FIq−1

. Namely, given the edge set Ij−1 = {e1, . . . , ej−1} that
still does not cover F , Cj is the min-core of FIj−1

, and ej = ujvj is the edge in I

covering Ĉj , where vj ∈ Cj . Then Cj−1 ⊂ Cj . As Xj is a min-core of FIj−1
and

vj ∈ Xj , it follows that Ij−1 is an F(vj , C)-cover and Ij is an F(uj , C)-cover. The
lemma follows.

Recall that a directed spider is a directed tree (arborescence) with at most one
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node (the root) of outdegree ≥ 2. The following statement is an immediate conse-
quence from [Chuzhoy and Khanna 2008, Theorem 4].

Lemma 3.4 [Chuzhoy and Khanna 2008]. Let Q be a set of directed simple
paths ending at a set A = {aP : P ∈ P} of distinct nodes. There exists P ⊆ Q
with P ≥ ⌈2|Q|/3⌉ such that the following holds. Every P ∈ P has a subpath P ′

(possibly of length zero) that ends at aP and has no internal node in A, such that
in the (simple) graph J induced by the subpaths {P ′ : P ∈ P}, every connected
component is either a directed spider with at least 2 nodes in A, or is a path in P.

Now we finish the proof of Theorem 3.1. For every C ∈ CF fix some inclusion-
minimal cover IC ⊆ I of F(C). Let e1, . . . , eq be an ordering of IC as in Lemma 3.3,
where ej = ujvj is as in the lemma. Obtain a directed path PC (see Fig. 2(b))
by orienting every edge ej = ujvj from uj to vj and adding for every j = q, . . . , 2
the directed edge vjuj−1, if vj 6= uj−1; hence if vj 6= uj−1 for all j, then the node
sequence of PC is (uq, vq, uq−1, vq−1, . . . , u1, v1). Let aC = v1 and note that aC ∈ C.
Let Q = {PC : C ∈ CF}. As the min-cores of F are pairwise disjoint, the path in Q
end at distinct nodes. Hence Lemma 3.4 applies, and thus there exists a subfamily
C ⊆ CF of F-cores of size at least |C| ≥ ⌈2|CF |/3⌉, such that the following holds.
Every PC with C ∈ C has a subpath P ′

C that ends at aC , such that if J1, . . . , Jh
are the connected components of the (simple) graph J induced by the subpaths
{P ′

C : C ∈ C}, then every Jt is either a directed spider with at least 2 nodes in
{aC : C ∈ C}, or is a path in P. For every t = 1, . . . , h let Ct = {C : vC ∈ Jt}
and let St = J ∩ I be the set of those edges e ∈ I for which the orientation of e is
in Jt. From the construction and Lemma 3.3 it follows that St is an F(Ct)-spider-
cover. Thus the collection S = {S1, . . . , Sh} of edge-sets spider-covers C. Since
|C| ≥ ⌈2|CF |/3⌉, Theorem 3.1 follows.

We now briefly describe how Theorem 3.1 implies Theorem 1.3; for details see
[Nutov 2010a; 2010b]. Note that Definitions 3.1 and 3.2 consider covers only of
bisets in F for which the inner parts are cores, namely, the relevant bifamily is
{X̂ ∈ F : X is an F-core}; the latter is uncrossable if F is, by Lemma 2.2. Any un-
crossable simple bifamily satisfies the assumptions of Theorem 3.1, by Lemma 2.2.
Thus we have the following.

Theorem 3.5. Any cover I of an uncrossable bifamily F admits a subpartition
that spider-covers a subfamily C ⊆ CF of F-cores of size at least |C| ≥ ⌈2|CF |/3⌉.

For a bifamily F and an edge set I, let ν(I) denote the number |CFI
| of min-cores

of the residual bifamily FI . Given a partial solution I, the density of an edge set
S ⊆ E \ I is c(S)/(ν(I) − ν(I ∪ S)). The ρ-Greedy Algorithm starts with I = ∅,
and as long as ν(I) ≥ 1, it finds and adds to I an edge-set S ⊆ E \ I of density
at most ρ · opt/ν(I), where opt denotes the optimal solution value. It is known
that the ρ-Greedy Algorithm, if can be applied, computes a solution I such that
c(I) ≤ ρ ln(ν(∅) + 1) · opt.
One can show that if S is an FI(C)-spider-cover, then ν(I) − ν(I ∪ S) ≥ |C|/3

(in the particular case of set-families arising from the Steiner Forest problem, we
have an improved bound ν(I) − ν(I ∪ S) ≥ |C|/2 [Klein and Ravi 1995]). By an
averaging argument, Theorem 3.5 implies that there exists an F(C)-spider-cover
of density at most 3 · 3/2 · opt/ν(I) (for set-families a density of 3 · opt/ν(I) is

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Zeev Nutov

achieved, while for set-families arising from the Steiner Forest problem a density of
2 · opt/ν(I) is achieved). Using this, one can design, under Assumptions 1, 2, a
polynomial time algorithm that finds an edge set S (which may not be a spider-
cover) of density at most 9 · opt/ν(I). An additional factor of 2 is invoked since
to find such S, we “guess” the center s and compute for every min-core C a 2-
approximate F(s, C)-cover; no polynomial time algorithm is known for computing
an optimal F(s, C)-cover (for set-families arising from the Steiner Forest problem,
one can compute an optimal F(s, C)-cover by a shortest path computation [Klein
and Ravi 1995]). We note that in [Nutov 2010b], an algorithm that computes a
2-approximate F(s, C)-cover for an uncrossable set-family F uses as a subroutine
a 2-approximation algorithm for finding a minimum node-weight edge-cover of a
ring-set-family. Such an algorithm easily follows from the observation that if I is
an inclusion-minimal cover of a ring-set-family, then |δI(v)| ≤ 2 for all v ∈ V . The
same statement is true for ring-bifamilies, by Lemma 3.3.

4. PROOF OF THEOREM 1.6

The following statement finishes the proof of Proposition 1.5.

Claim 4.1. Suppose that for edge-costs Bifamily Edge-Cover with T -uncrossable
F admits a polynomial time algorithm that computes a solution of cost ≤ ρ(γ)·τ(F),
where F is the T -uncrossable bifamily from Corollary 1.1, and γ, ρ are as in Propo-
sition 1.5. Then Rooted Survivable Network admits a polynomial time algorithm

that computes a solution of cost ≤ opt ·
∑k

ℓ=1
ρ(ℓ)

k−ℓ+1 .

Proof. Consider the following sequential algorithm. Start with J = ∅. At
iteration ℓ = 1, . . . , k, add to J an augmenting edge-set Iℓ that increases by 1 the
connectivity between pairs in Tℓ = {{s, t} : λ

S
J (s, t) = r(s, t)−k+ℓ−1, s, t ∈ T}. Let

Tℓ be the union of the pairs in Tℓ and Fℓ the corresponding Tℓ-uncrossable bifamily
as in Corollary 1.1. Note that max

{s,t}∈Tℓ

λS
J (s, t) ≤ ℓ, hence c(Iℓ) = O(ℓ) · τ(Fℓ). After

iteration ℓ, we have λS
J (s, t) ≥ r(s, t) − k + ℓ for all s, t ∈ T . Consequently, after

k iterations λS
J (s, t) ≥ r(s, t) holds for all s, t ∈ T , thus the computed solution

is feasible. For the approximation ratio, it is sufficient to show that τ(Fℓ) ≤
opt/(k − ℓ + 1). For all U ∈ Fℓ, any feasible solution H to Rooted Survivable
Network has at least k − ℓ + 1 edges covering U , by Menger’s Theorem. Thus if x
is a characteristic vector of E(H), then x/(k − ℓ + 1) is a feasible solution for the
LP-relaxation for edge-covering Fℓ. The statement follows.

Claim 4.2. For both edge-costs and node-costs, a ρ-approximation for Rooted
Survivable Network with requirements in {0, k} implies a ρ·min{k, |T |−1}-approxima-
tion for Subset k-Connected Subgraph.

Proof. Choose arbitrary min{k, |T | − 1} roots and for each root s compute a
ρ-approximation for Rooted Survivable Network with requirements r(s, t) = k for
each t ∈ T \ {s}. Then take the union of the min{k, |T | − 1} subgraphs computed.
It is known and easy to see that the computed solution is feasible, and its cost is
as claimed.

Except for Survivable Network with node-costs, Theorem 1.6 easily follows from
Theorem 1.4, Corollary 1.1, and Claims 4.1 and 4.2. As for Survivable Network with
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node-costs, it is remarked in [Chuzhoy and Khanna 2009] that a β-approximation
for Element-Connectivity Survivable Network implies anO(k3β log |T |)-approximation
for Survivable Network. Thus for node-costs, our O(k log |T |)-approximation for
Element-Connectivity Survivable Network together with the result of [Chuzhoy and
Khanna 2009], implies an O(k4 log2 |T |)-approximation algorithm for Survivable
Network. This finishes the proof of Theorem 1.6.

5. CONCLUSIONS, RECENT DEVELOPMENTS, AND OPEN PROBLEMS

In this paper we developed approximation algorithms for Survivable Network prob-
lems for both edge-costs and node-costs. Our algorithms are simple and combinato-
rial, and they achieve much better approximation guarantees than those previously
known. For edge-costs, our ratios are O(k ln k) for Rooted Survivable Network and
O(k2 ln k) for Subset k-Connected Subgraph. These ratios are constants for constant
values of k. For node-costs, we give the first non-trivial algorithm for Element-
Connectivity Survivable Network, matching (up to constants) the best known ratio
for Edge-Connectivity Survivable Network.

We mention some recent developments. [Laekhanukit 2011] showed that for undi-
rected graphs and |T | ≤ 2k, one can solve an instance of Subset k-Connected Sub-
graph Augmentation by solving O(log k) instances of Rooted Survivable Network Aug-
mentation. Thus for |T | ≥ 2k, our O(k)-approximation algorithm leads to the ratio
O(k log2 k) for Subset k-Connected Subgraph. By an additional analysis, he reduced
the ratio to O(k log k) when |T | ≥ k2. In [Nutov 2011] it is shown that for both
directed and undirected graphs, and edge-costs and node-costs, Subset k-Connected
Subgraph Augmentation can be reduced to solving only one instance (or two in-
stances, in the case of directed graphs) of Rooted Survivable Network Augmentation

and
(

|T |
|T |−k

)2

· O
(

log |T |
|T |−k

)

instances of the Min-Cost k-Flow problem. Still, the

main procedure in both algorithms is an algorithm for the rooted case.

Recently, [Panigrahi 2011] suggested a generalization of Survivable Network with
node-costs, that also captures several known problems in wireless network design.
In [Nutov 2012b], similar ratios to the ones obtained in this paper are shown for
this more general problem, and in addition, an O(log |CF |) ratio is obtained for
directed Bifamily Edge-Cover problem with intersecting bifamily F .

A minor open problem is to achieve a ratio of O(k) for Rooted Survivable Network
with edge-costs. Such an algorithm would probably rely on the iterative rounding
method, while all algorithms in this paper are combinatorial. A more important
open problem is to achieve a ratio of Õ(k2) for general Survivable Network.

Finally, we note that for all problems considered, a significant obstacle lies in the
way of achieving a ratio sublinear in k. As mentioned in [Lando and Nutov 2009],
this would imply a sublinear in n ratio for the directed variant. Such algorithms
are known only for k = 1, and they are highly non-trivial; see [Charikar et al. 1999]
for the rooted case and [Feldman et al. 2012] for the general case. Furthermore, for
the directed variant, even for rooted requirements, no ratio better than the trivial
O(n) is known even for k = 2; it is a major open problem to achieve a sublinear
ratio for this variant.
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