
The Open University of Israel
Department of Mathematics and Computer Science

Approximation Algorithms for Generalized
Assignment Problems

Thesis submitted as partial fulfillment of the requirements

towards an M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

By

Israel Beniaminy

Prepared under the supervision of Dr. Zeev Nutov

June 2005

Abstract

We consider a class of max-profit scheduling problems that occur naturally in many
different applications, all involving assignment of jobs to multiple resources under a
set of constraints. In the Max-Profit Generalized Assignment Problem (Max-GAP),
we are given a set J of m bins (knapsacks), and a set I of n items. Each bin j ∈ J

has capacity c(j). Each item i ∈ I has in bin j size `(i, j) and profit p(i, j). The
objective is to find a maximum profit feasible assignment. The problem admits a 1/2-
approximation algorithm. Our main result is a (1− 1/e)-approximation algorithm for
Max-GAP with fixed profits when each item i has a fixed profit p(i, j) = p(i) in every
bin j. A particular case of Max-GAP with fixed profits is the Multiple Knapsack with
Assignment Restrictions (MKAR) problem, where each bin j ∈ J has capacity c(j) and
a specified set I(j) of items that can be assigned to it, and each item i has size `(i) and
profit p(i). We show that this version is APX-hard, and give a fast 1/2-approximation
algorithm.

1

Acknowledgements

I wish to thank my thesis advisor, Dr. Zeev Nutov, for his friendly, knowledgeable and

invaluable guidance, advice and support throughout the gestation and development of the

results presented in this thesis. He played an important role in my effort to take the path

of rigorous mathematical approach to the problems discussed here, rather than the heuristic

approaches I have developed in my commercial work, and thus gain an insight towards how

these two disciplines inform each other. Dr. Nutov’s patience, encouragement, inspiration

and time investment in guiding me through this process are all much appreciated.

Thanks to Dr. Raphael Yuster for showing how to derandomize the algorithm of our main

result, and for tightening the analysis of the algorithm’s approximation ratio. Thanks to Dr.

Guy Kortsarz for valuable discussions, comments and ideas. I also thank an anonymous

referee for useful comments on a draft paper presenting our key findings.

I also thank my colleagues at ClickSoftware Technologies for stimulating discussions and

ideas.

I am thankful to my parents, who taught me that learning is a lifetime activity, and that

it is never too late to look for new types of knowledge. It was in this spirit that I started my

M.Sc. studies long after establishing a commercial career. I was looking forward to showing

my mother the end-result of these studies. Instead, completing this thesis is yet another

painful reminder that she is no longer with us. I miss her terribly.

My deepest thanks go to my son Gilad, my daughter Shira, and my wife Nehama for their

love and understanding through the long process of studying towards the M.Sc. degree and

of research towards this thesis. Nehama, without your encouragement, patience, shared joy,

support and ever-present love, this thesis would not have been possible. You have facilitated

my work in so many ways, taking far more than your share of managing our children and

household, supporting me through tough times, gently prodding me when I needed it, and

always believing that I could finish this work even when I almost didn’t. Thanks for being

with me on this journey - I am indebted to you for this work, and for everything else, more

than I could ever say. I gratefully and whole-heartedly dedicate this thesis to you.

2

Contents

1 Introduction 4

2 Problems Considered in this Research 5

2.1 The Generalized Assignment Problem (GAP) 5

2.2 Multi-Knapsack with Assignment Restrictions (MKAR) 6

2.3 Related problems . 6

2.4 Previous work . 6

2.5 This work: New results for GAP and MKAR 7

3 A 1/2-Approximation Algorithm for GAP 8

3.1 Min-GAP and Psuedo-Packings . 8

3.2 A (1,2) Bi-criteria Approximation for Min-GAP 11

3.3 Approximating GAP . 11

4 A (1− 1/e) Approximation Algorithm for Fixed-Profit GAP 13

5 The MKAR Problem 18

5.1 Special Instances of MKAR are APX-hard 18

5.2 A Combinatorial 1/2-Approximation Algorithm for MKAR 19

6 Conclusions 23

3

1 Introduction

We consider a class of problems that occur naturally in many different applications, all

requiring the profit-maximization of assignment of jobs to multiple resources under a set

of constraints. Such applications include inventory matching [4], loading containers [8],

multiprocessor scheduling [12] and storage management in multimedia systems [13].

As most variants of such problems are NP-Complete, it is interesting to investigate

polynomial-time algorithms that compute approximate solutions. Such algorithms are char-

acterized by their approximation ratio, defined as follows:

Definition 1.1 A ρ-approximation algorithm (ρ < 1) for a maximization problem is

a polynomial-time algorithm that computes a solution of value at least ρ times the optimal

value. ρ is called an approximation ratio for the algorithm.

In this work, we consider contant-ratio approximation algorithms - that is, algorithms

whose approximation ratio does not depend on problem size.

This work is organized as follows: Section 2 defines the problems under consideration,

highlights the relationships between them, and reviews previously published results. Sec-

tion 3 presents detailed proofs for the best known previous results for approximating GAP

(the General Assignment Problem) - a 1/2-approximation due to Chekuri and Khanna [3],

based on a result by Shmoys and Tardos [11]. Section 4 presents our main result: a better

approximation for an important restriction of GAP - Fixed-Profit GAP. Section 5 discusses

MKAR, giving approximation hardness results and a fast combinatorial 1/2-approximation

algorithm for GAP.

4

2 Problems Considered in this Research

A substantial part of the existing literature on scheduling addresses minimization goals,

such as mimimizing the “makespan” - the time until the last job is completed. This work

addresses maximization goals, involving some capacity constraints such as container size or

available time. With such problems, the goals are typically maximizing the total profit of

the jobs or items that can be scheduled or placed, given the stated capacity constraints.

Such maximization is often a more accurate reflection of real-life applications, while still

admitting simple and concise problem statements.

Throughout this work we assume without loss of generality that all the problem param-

eters are integers.

2.1 The Generalized Assignment Problem (GAP)

We consider the following problem:

Generalized Assignment Problem (GAP):

Instance: A set J of m bins (knapsacks), and a set I of n items. Each bin j ∈ J has a

capacity c(j). For each item i and bin j we have size `(i, j) and profit p(i, j).

Objective: Find a maximum profit feasible assignment.

To be more precise, an assignment for GAP where every item is assigned to at most one bin

is feasible if the capacity constrains are satisfied; namely, `(Aj) =
∑

i∈Aj
`(i, j) ≤ c(j) for

every bin j ∈ J and the set Aj of items assigned to it.

Remark: GAP has also been defined in the literature as a closely related minimization

problem. In this thesis, following [3], we use the term GAP to refer to the maximization

version of the problem. We will refer to the minimization version as Min-GAP. The min-

imization version replaces the profits p(i, j) with costs w(i, j). In Min-GAP, the goal is to

find a feasible assignment for all of the items, such that the total cost for the assigned items

is minimized. Some research on Min-GAP, such as [11], has also addressed minimizing the

makespan - the time until the last job is completed.

Fixed-Profit GAP is a restriction of GAP where p(i, j) is fixed for all j ∈ J , and may

therefore be written as p(i).

5

2.2 Multi-Knapsack with Assignment Restrictions (MKAR)

MKAR is a special case of GAP, where the item size and its profit do not depend on the bin

it is assigned to:

Multi-Knapsack with Assignment Restrictions (MKAR):

Instance: A set J of m bins (knapsacks), and a set I of n items. Each bin j ∈ J has capacity

c(j) and a specified set I(j) of items that can be assigned to it. Each item i ∈ I has size `(i)

and profit p(i).

Objective: Find a maximum-profit feasible assignment.

2.3 Related problems

MKAR is a generalization of the extensively researched Multiple Knapsack Problem

(MKP, [3]). In MKP, any item can be assigned to any bin, provided only that the item’s

size does not exceed the bin’s capacity. In the terms of MKAR’s definition, I(j) = I, and

thus there are no assignment restrictions.

An extension of MKAR that occurs in some natural applications is the Multi-Knapsack

problem with Color constraints Problem [4].

Definition 2.1 MKARCC, or Multi-Knapsack with Assignment Restrictions and Color Con-

straints Problem, is a generalization of the multi-knapsack problem. In this generalization, a

set of colors C is defined, and each item is associated with a color c(i) ∈ C. The color con-

straints require that the number of distinct colors for items assigned to any specific knapsack

must be less than a constant K.

A related problem is discussed in [10] under the name Class-Constrained Multiple

Knapsack Problem (CCMK).

2.4 Previous work

A 1/2-approximation algorithm for Max-GAP was given by Chekuri and Khanna [3] based on

a result of Shmoys and Tardos [11], that considered the corresponding minimization version

Min-GAP: instead of profits p(i, j) there are costs w(i, j), and the objective is to find a

feasible assignment of all items (assuming such exists) while minimizing the total cost.

Definition 2.2 A pseudopacking is an assignment so that `(i, j) ≤ c(j) for each item i

assigned to bin j, and that can be made feasible by removing from each bin at most one item.

6

Since checking whether all items can be assigned is an NP-hard problem, Shmoys and

Tardos [11] proved that for Min-GAP there is a polynomial-time algorithm that finds a

pseudopacking of cost ≤ opt. Using this, Chekuri and Khanna [3] proved that for GAP (the

maximization version), there exists a polynomial-time algorithm that returns a pseudopack-

ing of profit ≥ opt. This implies that GAP admits a 1/2-approximation algorithm (see [3]).

Chekuri and Khanna also showed that GAP is APX-hard even for some simple instances.

A particular well-studied case of MKAR is the Multi-Knapsack Problem, with I(j) = I

for all j, for which Chekuri and Khanna [3] gave a PTAS. The difficulty of MKAR compared

to Multi-Knapsack is in assigning items to “correct” bins. Another particular case is when

p(i) = `(i) for all i; for this case several 1/2-approximation algorithms are given in [5].

We are not aware of any previously published approximation results for MKARCC. For

the related CCMK problem, [10] gives a PTAS. Since we show in this work that MKAR is

APX-hard, and any instance of MKAR is easily reduced to an instance of MKARCC where

all colors are different, it is unlikely that a PTAS exists for MKARCC. The key difference

between CCMK and MKARCC are the assignment restrictions in MKARCC.

2.5 This work: New results for GAP and MKAR

Our main result is a (1−1/e)-approximation algorithm for fixed-profit GAP. As stated above,

fixed-profit GAP may be viewed as a generalization of MKAR. We also extend this result to

MKARCC, which is another generalization of MKAR.

We also show that MKAR is APX-hard, and give a combinatorial, simple and fast 1/2-

approximation algorithm, generalizing [5].

7

3 A 1/2-Approximation Algorithm for GAP

This section presents results due to Shmoys and Tardos [11], and to Chekuri and Khanna

[3]. We have made minor enhancements to the discussion in order to consider bin capacities

(which are not considered in the main result of [11]), and in order to provide more detail for

the definition and proof of the bi-criteria approximation.

3.1 Min-GAP and Psuedo-Packings

We represent a Min-GAP instance by the the following linear program LP (C, T). Integer

solutions to this program have a one-to-one correspondence with schedules of cost at most

C and makespan at most T , where all items are scheduled. Note that this program does not

state any minimization or maximization objective, as we are concerned at this point only

with finding feasible solutions obeying the constraints on C and T .

∑
i∈I

∑
j∈J w(i, j)xij ≤ C (1)∑

j∈J xij = 1 ∀i ∈ I∑
i∈I `(i, j)xij ≤ min(T, c(j)) ∀j ∈ J

xi,j ≥ 0 ∀i ∈ I, j ∈ J

xi,j = 0 ∀i ∈ I, j ∈ J so that `(i, j) > min(T, c(j))

Let x = {xij} be a feasible solution to (1). Note that xij may be interpreted as the

fraction of item i assigned to bin j. The first constraint guarantees total cost less than C.

The second constraint requires that all items are scheduled. The third constraint requires

that the total size of items assigned to a bin does not exceed its capacity, and does not exceed

the maximum allowed makespan. The fourth constraint enforces non-negative solutions, and

the fifth guarantees that no item is assigned if it is too large for its bin or for the specified

makespan: such items cannot participate in feasible integer solutions.

Shmoys and Tardos [11] proved:

Theorem 3.1 ([11]) There exists a polynomial-time algorithm that, given a feasible (pos-

sibly fractional) solution to LP (C, T), generates a pseudopacking for the Min-GAP instance

represented by LP (C, T). This pseudopacking is an assignment with cost of at most C, a

makespan of at most 2T , and, for any bin that is overpacked (i.e., the total size of assigned

items exceeds either bin size or T), there exists one item whose removal would result in a

8

feasible packing for that bin.

The following algorithm is used to prove this theorem: We use the fractional solution of

(1) to construct a bipartite graph B = (V, U,E), and assign a value x′(v, u) to each edge

(v, u) ∈ E. One side of B consists of node set U representing the items, where node ul

corresponds to item il for 1 ≤ l ≤ n. The other side of B consists of node set V = {vjs : j =

1, . . . ,m, s = 1, . . . , kj}, where kj = d
∑

i xije. Thus, a bin j corresponds to a set of nodes in

V , labeled vjs.

For each (item, bin) pair with xij ≥ 0, we add one or more edges to B. Each of these

edges is assigned the cost w(i, j). The algorithm uses two main variables: The variable s is

the index of the current node in V out of the set of nodes corresponding to the bin being

processed. The variable currtotal records the total of x′ over the edges in B incident on the

currently processed node (vjs). We also extend a vector x′ to the edges in B, as follows:

For each bin j do:

currtotal← 0, s← 1

For each item i where xij ≥ 0, ordered by non-increasing size `(i, j), do

currtotal← currtotal + xij

If currtotal ≤ 1

Add edge (vjs, ui) to B

x′(vjs, ui)← xij

If currtotal = 1 s← s + 1, currtotal← 0

Else

Add edge (vjs, ui) to B

x′(vjs, ui)← xij − (currtotal − 1), currtotal← currtotal − 1, s← s + 1

Add edge (vjs, ui) to B

x′(vjs, ui)← currtotal

End If

End For

End For

This construction connects each node vjs ∈ V to one or more nodes in U , so that for any

bin j, the sum of x′ vector over edges incident to nodes vjs for s = 1, . . . , kj − 1 is 1.

Definition 3.1 A non-negative vector x on the edges of a graph is a fractional matching if,

for each node u, the sum of components of x corresponding to edges incident on u is at most

1. The fractional matching exactly matches a node u if the corresponding sum is exactly 1.

A fractional matching x is a matching if each component of x is 0 or 1.

9

It is easy to verify that the graph B and the vector x′ have the following properties:

• x′ is a fractional matching in B of cost at most C.

• x′ exactly matches each item node ui for i = 1, . . . , n.

• x′ exactly matches each bin node vjs for j = 1, . . . ,m and s = 1, . . . , kj − 1.

The next step of the algorithm is finding a minimum-cost integral matching M in B that

exactly matches all item nodes in U . This matching defines the required pseudopacking:

assign item i to bin j for each edge (vjs, ui) ∈M .

Let us show that this pseudopacking satisfies the requirements of Theorem 3.1. Observe

that since there exists a fractional matching in B of cost at most C (given by vector x′), and

since the integrality gap for matching is 1, there exists an integral matching M with cost at

most C. It remains to show that the total size of items packed into each bin satisfies the

pseudopacking requirements. Define `max
js to be the maximum item size `(i, j) corresponding

to edges incident on vjs, and similarly let `min
js denote the minimum item size `(i, j) corre-

sponding to edges incident on vjs. Clearly, `min
js ≥ `max

j,s+1 for all j ∈ J, s = 1, . . . , kj. Denote

the adjusted capacity for each bin j to be c′(j) = min(T, c(j)). The total size of items packed

into bin j is at most
∑kj

s=1 `max
js . By the constraints of (1), xij may be positive only where

`ij ≤ c′(j), so `max
j1 ≤ c′(j). The sum of the remaining terms for each bin j is:

kj∑
s=1

`max
js ≤

kj−1∑
s=2

`min
js ≤

kj−1∑
s=1

∑
i:(vjs,ui)∈E

`ijx
′(vjs, ui) ≤

kj∑
s=1

∑
i:(vjs,ui)∈E

`ijx
′(vjs, ui) =

n∑
i=1

`ijxij ≤ c′(j)

Therefore the total size of the items packed into bin j is at most 2c′(j). Furthermore,

the removal of at most one item (the one matched to bin node vj1) is sufficient to convert

the pseudopacking into a feasible packing.

This completes the proof of Theorem 3.1.

The time complexity of the algorithm used in this proof is dominated by the solution to

the linear program (1).

10

3.2 A (1,2) Bi-criteria Approximation for Min-GAP

Theorem 3.2 There exists a (1,2) bi-criteria approximation for Min-GAP, i.e. a polynomial-

time algorithm yielding a feasible assignment of all items to bins with cost equal to the small-

est possible cost, and with makespan of at most twice the smallest makespan for solutions

not exceeding that cost.

Proof: The total cost of any feasible assignment is in the range [0, nW], where W =

maxi,j w(i, j). The makespan of any feasible assignment does not exceed Tmax = n ×
maxi,j `(i, j). Using a bisection search within the range of possible total costs, we find

the smallest cost C for which there exists a feasible fractional solution to LP (C, Tmax). This

requires solving the linear program at most log(nW) times. Denote the cost of the fractional

solution found by this search by Cfrac.

Next, we use a bisection search on the range [0, Tmax] to find the smallest makespan T

for which there exists a feasible fractional solution to LP (Cfrac, T). This requires solving

the linear program at most log(Tmax) times. Denote the makespan of the fractional solution

found by this search by Tfrac.

We apply the algorithm of Theorem 3.1 to obtain a pseudopacked solution with total

cost Cfrac and makespan of at most 2Tfrac. The proof is completed by observing that Cfrac

can not be larger than the smallest possible cost of any integer assignment, and Tfrac can

not be larger than the smallest possible makespan of any integer assignment not exceeding

a total cost of Cfrac.

The algorithm described here solves a linear program at most log(nW)+log(Tmax) times,

followed by applying the algorithm of Theorem 3.1. Both of these steps may be performed

in polynomial time.

�

3.3 Approximating GAP

Chekuri and Khanna [3] proved:

Theorem 3.3 ([3]) There exists a 1/2-approximation algorithm for GAP.

Proof: As previously mentioned, the term GAP in this work refers to the maximization

problem as in Definition 2.1.

We show how to transform an instance of GAP to an instance of Min-GAP. Each profit

on the GAP instance is converted into a corresponding cost in the Min-GAP instance by

11

setting w(i, j) = L− p(i, j), where L > maxi,j p(i, j) is selected so that all costs are positive.

To create a feasible instance, we add a bin bm+1 with capacity 0, and for all items i we set

the item sizes `(i, m+1) = 0 and the costs w(i, m+1) = L. We then use the algorithm from

the proof of Theorem 3.2 to find a pseudo-packing. This pseudo-packing is transformed into

an assignment - not necessarily feasible - for the GAP instance, as follows: For each item

packed by the psuedo-packing into bin j, 1 ≤ j ≤ m, assign the item to bin j in the GAP

instance.

Theorem 3.2 guarantees that this assignment has at least the optimum profit. To obtain

a feasible assignment that has at least half the profit, we examine each bin whose capacity

is violated by the assignment. Let j be any such bin, and let ij be the item whose removal

assures feasibility as guaranteed by Theorem 3.1. If p(ij, j) is at least half the total profit

of bin j we discard all other items assigned to j, otherwise we discard item ij from the

assignment. This gives a feasible assignment with at least half the profit given by the LP

solution.

�

12

4 A (1−1/e) Approximation Algorithm for Fixed-Profit

GAP

This section presents our main result:

Theorem 4.1 Fixed-Profit GAP admits a (1− 1/e) approximation algorithm.

Let J be the set of m bins, and I be the set of n items. Recall that each bin j has

capacity c(j), and each item i has a bin-dependent size `(i, j) and a global profit p(i). We

use a standard LP-formulation for set-packing problems. For S ⊆ I let p(S) =
∑

i∈S p(i)

and for a bin j, let `(S, j) =
∑

i∈S `(i, j). Let Π = {(S, j) : `(S, j) ≤ c(j)}. For every pair

(S, j) ∈ Π introduce a variable y(S,j) which represents the “amount of S packed in the bin

j”. Then integral feasible solutions to the following linear program correspond to feasible

solutions to the Max-GAP with fixed profits instance.

max
∑

(S,j)∈Π p(S)y(S,j) (2)

s.t.
∑

(S,j)∈Π,i∈S y(S,j) ≤ 1 ∀i ∈ I∑
(S,j)∈Π y(S,j) ≤ 1 ∀j ∈ J

y(S,j) ≥ 0 ∀(S, j) ∈ Π.

The corresponding dual problem is:

min
∑

i∈I xi +
∑

j∈J zj (3)

s.t.
∑

i∈S xi + zj ≥ p(S) ∀(S, j) ∈ Π

xi, zj ≥ 0 ∀i ∈ I, j ∈ J

Note that (3) has exponential number of constraints, while (2) has exponential number

of variables. However, any basic feasible solution of (2) has at most n+m non-zero variables.

Now, if we had a polynomial time separation oracle for (3), we could compute an optimal

solution to (2) (the non-zero entries) in polynomial time, see Chapter 6 in [7]. The number

of non-zero entries in such a computed solution is polynomial in n + m. Unfortunately, such

an oracle may not exist, since the separation problem for (3) defined by a specific bin j is

equivalent to the knapsack problem. To see this, introduce new variables wi = p(i) − xi

and rewrite the constraints in (3) as w(S) =
∑

i∈S wi ≤ zj. Then, checking whether for a

13

specific j there exists (S, j) ∈ Π so that w(S) > zj is equivalent to checking whether there

exists S ⊆ I so that `(S, j) ≤ c(j) and w(S) > zj. The latter is a knapsack problem. Since

knapsack admits an FPTAS, we get an approximate separation oracle, which for any ε > 0

checks whether there exists (S, j) ∈ Π so that w(S) > zj(1 − ε). This implies that we can

solve the following linear program in time polynomial in 1/ε and in its size:

min
∑

i∈I xi +
∑

j∈J zj (4)

s.t.
∑

i∈S xi + zj(1− ε) ≥ p(S) ∀(S, j) ∈ Π

xi, zj ≥ 0 ∀i ∈ I, j ∈ J.

Thus we can also solve the dual of (4), which is:

max
∑

(S,j)∈Π p(S)y(S,j) (5)

s.t.
∑

(S,j)∈Π,i∈S y(S,j) ≤ 1 ∀i ∈ I∑
(S,j)∈Π y(S,j) ≤ 1

1−ε
∀j ∈ J

y(S,j) ≥ 0 ∀(S, j) ∈ Π.

Let ν and ν(ε) denote the optimal values of (2) and of (5), respectively. Clearly, ν(ε) ≥ ν.

Note that if y(ε) is a feasible solution to (5) then (1− ε)y(ε) is a feasible solution to (2). In

particular, a feasible solution y = (1− ε)y(ε) to (2) of value at least (1− ε)ν(ε) ≥ (1− ε)ν

can be found in time polynomial in 1/ε and in the size of the problem. We will apply a

standard randomized rounding on y to obtain an integral feasible solution ỹ to (2). The

rounding procedure is as follows.

1. For each bin j choose randomly with distribution y(S,j) a unique set Aj of items assigned

to bin j at this stage (possibly Aj = ∅).

2. For every item assigned to more than one bin, remove that item from all bins containing

it, except for one, chosen arbitrarily.

Let ỹ be an integral solution derived from y by such randomized rounding, and let ν̃ =∑
(S,j)∈Π p(S)ỹ(S,j) be the (random variable corresponding to the) profit of ỹ. Let Pi be the

probability that item i is packed by ỹ, that is, Pi is the probability that there exists (S, j) ∈ Π

with i ∈ S and ỹ(S,j) = 1. Let xij =
∑

(S,j)∈Π,i∈S y(S,j) be the fraction of item i assigned to

bin j by y, and let xi =
∑

j∈J xij be the overall fraction of item i assigned to all bins by y.

14

Proposition 4.2 Pi ≥ (1− 1/e + 1/(32m2))xi for every item i ∈ I.

Proof: Let i ∈ I. Clearly, Pi = 1 − Πj∈J(1 − xij). Let T = {j ∈ J : xij > 0} be the

set of bins j ∈ J with xij being non-zero, and let t = |T |. Notice that t ≤ m = |J |, and

we may clearly assume that t ≥ 2 since for t = 1 the statement to prove is trivial. The

minimum value of 1 − Πj∈J(1 − xij) is attained when xij = xi/t for every j ∈ T . Thus

Pi ≥ 1− (1− xi/t)
t, and

Pi

xi

≥ 1

xi

(
1−

(
1− xi

t

)t
)

.

The right-hand side of the latter inequality is monotonically decreasing in xi, so its minimum

is reached when xi = 1. Thus

Pi

xi

≥ 1

xi

(
1−

(
1− xi

t

)t
)
≥ 1−

(
1− 1

t

)t

.

Since t ≤ m, in order to complete the proof it suffices to show that for all t ≥ 2, (1− 1/t)t <

1/e − 1/(32t2). To see this, let ∆(t) = 1/e − (1 − 1/t)t. Clearly ∆(t) > 0 and ∆(t) is

monotone decreasing. For t ≥ 2

∆(t)−∆(t + 1) =

(
1− 1

t + 1

)t+1

−
(

1− 1

t

)t

=

(
1− 1

t

)t
[(

1 +
1

t2 − 1

)t (
1− 1

t + 1

)
− 1

]

>

(
1− 1

t

)t [(
1 +

t

t2 − 1

) (
1− 1

t + 1

)
− 1

]
=

(
1− 1

t

)t [(
1 +

t

t2 − 1
− 1

t + 1
− t

(t2 − 1)(t + 1)

)
− 1

]
= (1− 1

t
)t 1

(t2 − 1)(t + 1)

≥ 1

4(t2 − 1)(t + 1)

In particular,

∆(t) ≥
∞∑
s=t

1

4(s2 − 1)(s + 1)
>

1

32t2
.

�

15

Note that we used a solution y of value
∑

i∈I p(i)xi ≥ (1− ε)ν. Also note that since our

algorithm is polynomial in 1/ε and the size of the input we may choose ε = 1/(32m2) and

our algorithm remains polynomial in the size of the input. It follows therefore that

E(ν̃) =
∑
i∈I

p(i)Pi ≥
(

1− 1

e
+

1

32m2

) ∑
i∈I

p(i)xi

≥
(

1− 1

e
+

1

32m2

)
(1− ε)ν

>

(
1− 1

e
+

1

32m2
− ε

)
ν =

(
1− 1

e

)
ν.

To complete the proof of Theorem 4.1, we show that the algorithm can be derandomized.

We show how the method of conditional probabilities (see, e.g., [2]) can be used in our setting.

As before, let y be a feasible solution to (2) of value at least (1− ε)ν(ε) ≥ (1− ε)ν. Now, for

each bin j ∈ J let S(j) = {S : y(S,j) > 0}. In case νj =
∑

(S,j)∈Π y(S,j) < 1 we also add the

empty set to S(j) and define y(∅,j) = 1−νj. Recall that each S(j) has only a polynomial size.

When we preformed our randomized rounding we have selected a unique Aj ∈ S(j) (each

with its corresponding probability y(S,j)) and proved that E(ν̃) =
∑

i∈I p(i)Pi > (1− 1/e)ν.

We shall now deterministically decide which S ∈ S(j) to chose as Aj, starting sequentially

from bin 1, until the last bin is reached, and Am is selected. For S ∈ S(1), let E(ν̃ | S)

denote the conditional expectation of ν̃ given that we selected S as A1. By the formula for

conditional probabilities we have

E(ν̃) =
∑

S∈S(1)

E(ν̃ | S)y(S,j).

In particular, there exists S ∈ S(1) for which E(ν̃ | S) ≥ E(ν̃). How do we locate this

S? We first compute E(ν̃) precisely. This can be done since E(ν̃) =
∑

i∈I p(i)Pi and since

each Pi can be computed precisely as each xij is known. We sequentially test all S ∈ S(1)

(there are only a polynomial number of tests). For each S ∈ S(1) we can compute precisely

E(ν̃ | S) because

E(ν̃ | S) = p(S) +
∑

i∈I\S

p(i)(1− Πj∈J\{1}(1− xij)).

Thus, we can deterministically locate S ∈ S(1) for which E(ν̃ | S) ≥ E(ν̃) and define A1 = S.

We now continue to bins 2, 3, . . . ,m and do the same thing while maintaining the invariant

that the conditional expectation, given the selections in the prior bins, never deceases. After

selecting the set Am in the last bin we have a deterministic selection whose profit is at least

as good as the original expectation E(ν̃), and hence at least (1 − 1/e)ν. This completes

16

the proof of Theorem 4.1. The proof also shows that the integrality gap of (2) is at least

(1− 1/e), that is, there always exists an integral solution to (2) of value at least (1− 1/e)ν.

We remark that our algorithm extends to a more general problem, MKARCC, described

in section 2, as shown in the following corollary.

Corollary 4.3 Max-GAP with Color Constraints Problem with fixed profits admits a (1 −
1/e)-approximation algorithm.

Proof: The proof uses the same strategy as the one of Theorem 4.1. The definition of Π

needs to be changed so that it includes only those sets of items that do not violate the color

constraints. The approximate separation oracle for a specific constraint related to a specific

bin checks all possible combinations of colors for the bin, and finds the approximate solution

for the knapsack problem when the set of items under consideration is restricted to each

color combination. If some color combination violates the constraint, then we have found a

pair (S, j) violating the constraint. The number of combinations is at most |I|K . Therefore,

the approximate separation oracle is still performed in polynomial time. No other part of

the proof is affected. �

17

5 The MKAR Problem

5.1 Special Instances of MKAR are APX-hard

We show that even highly restricted instances of MKAR are APX-hard. We note that the

case when `(i) ∈ {1, 2} (but bin capacities and item profits are arbitrary) was shown to be

APX-hard in [1].

Theorem 5.1 MKAR with unit profits is APX-hard even on instances where all the bins

have size 3 and `(i) ∈ {1, 3} for all i.

Proof: The proof is similar to the one given in [3] to show APX-hardness of some Max-

GAP instances, and is presented here to show that MKAR, a more restricted problem than

Max-GAP, is also APX-hard. The following problem is reduced to MKAR:

Maximum 3-Dimensional Matching (3DM):

Instance: An equitable partition X, Y, Z of a ground set V and a set-family T ⊆ X×Y ×Z.

Objective: Find a subfamily M ⊆ T of pairwise disjoint sets (matching) of maximal size.

Here is the reduction. Given an instance ((X, Y, Z), T) of 3DM with |T | = m and

|X| = |Y | = |Z| = n, create an instance of MKAR as follows. The set of bins is T , and the

set of items is V ∪ U where U is a set of additional m− n items. All bins have size 3, items

in V have size 1, items in U have size 3, and all items have unit profits. Item i ∈ V can be

placed in bin j ∈ T if the set j contains the element i. Items in U can be placed in any bin.

Clearly, 3 items from V can fit in a bin if, and only if, they form a set in T . Thus bins with

3 items correspond to a matching in T . It follows therefore that if 3DM has a matching of

size n, then MKAR has a solution of size 3n + (m− n) = 2n + m.

A 3-bounded instance 3DM-3 of 3DM is one in which the number of occurrences of any

element of V in T is at most 3. Kann [9] showed that there exists an ε0 > 0 such that it

is NP-hard to decide whether an instance of 3DM-3 has a matching of size n or if every

matching has size at most (1 − ε0)n. In the latter case, our MKAR instance can achieve a

profit of at most 3(1− ε0)n + 3ε0n + [m− (1− ε0)n− 3ε0n/2] = 2n + m− ε0n/2.

It follows therefore that it is NP-hard to decide whether our MKAR instance can achieve

a profit of 2n + m or of 2n + m− ε0n/2. The APX-hardness now follows from the fact that

m = O(n) for 3DM-3. �

18

5.2 A Combinatorial 1/2-Approximation Algorithm for MKAR

We give a simple and fast combinatorial 1/2-approximation algorithm for MKAR which does

not require solving linear programs (as in Theorem 4.1 or as in [11]), generalizing [5].

Theorem 5.2 MKAR has a 1/2-approximation algorithm whose running time O(T (m, n)+

m2n2), where m = |J |, n = |I|, and T (m, n) is the time for computing a maximum cost

(s, t)-flow in a capacitated bipartite graph with parts of size m and n.

Given an instance of MKAR, the assignment graph is a bipartite graph G = (I + J, E)

where ij ∈ E if i ∈ I(j) (assuming `(i) ≤ c(j) for every i ∈ I(j)). Consequently, I(j) is the

set of neighbors of j in G. Each edge e = ij ∈ E has length `e = `(i) and profit pe = p(i).

Let πe = pe/`e. For a node v of G let δ(v) denote the set of edges incident to v. Consider

the linear program:

max
∑

e∈E πexe (6)

s.t.
∑

e∈δ(j) xe ≤ c(j) ∀j ∈ B∑
e∈δ(i) xe ≤ `(i) ∀i ∈ I

xe ≥ 0 ∀e ∈ E.

Let x be a feasible solution to (6). We say that xe (or e) is fractional if 0 < xe < `e (for

e = ij, xe is the amount of item i packed in bin j). Any non-fractional feasible solution to

(6) bijectively corresponds to a solution to the MKAR instance, and has profit
∑

e∈E πexe.

Lemma 5.3 Let x be a basic feasible solution to (6). Then the set F (x) of fractional edges

is a forest so that in any connected component of F (x) at most one leaf belongs to I. In

particular, if M is a maximum matching in F (x), then any non-isolated node i ∈ I of F (x)

is matched by M .

Proof: Let x be a feasible solution to (6), and let P = (e1, . . . , e`) be a path or a cycle

in F (x). Let P ′ = {e1, e3, . . .}, P ′′ = P − P ′ = {e2, e4, . . .}. Set ε = min{ε+, ε−} where

ε+ = min{`e−xe : e ∈ P} and ε− = min{xe : e ∈ P}. Since all the edges in P are fractional,

ε > 0. Let de = ε for e ∈ P ′, de = −ε for e ∈ P ′′, and de = 0 otherwise. Let x′ = x + d,

x′′ = x − d. It is easy to see that if P is a cycle, then x′, x′′ are feasible solutions. Since

x = (x′ +x′′)/2, x cannot be basic. Thus F (x) is a forest. A similar argument applies if P is

a path in F (x) between two leaves u, v ∈ I. In this case, it is easy to see that x′, x′′ satisfy

the constraints of (6) for every node of G distinct from u, v. To see that this is so for u and

for v, note that if i ∈ I is a leaf of F (x), then for e ∈ δ(i), xe > 0 if, and only if, e is the

19

unique edge of F (x) incident to i. Consequently, in any connected component of F (x) at

most one leaf belongs to I. The second statement follows easily from the first statement. �

Corollary 5.4 Given a feasible solution x to (6) we can find in O(|E(G)|2) time a feasible

solution z such that π · z ≥ π · x and F (z) is a forest so that in any connected component of

F (z) at most one leaf belongs to I, where |E(G)| is the number of edges in G.

Proof: For Q ⊆ E denote π(Q) =
∑
{π(e) : e ∈ Q}. Let P, P ′, P ′′ be as in the proof of

Lemma 5.3. Set Q = P ′ if π(P ′) ≥ π(P ′′) and Q = P ′′ otherwise, and ε = min{ε+, ε−},
where ε+ = min{`e − xe : e ∈ Q} and ε− = min{xe : e ∈ P −Q}. Let ze = xe + ε for e ∈ Q,

ze = xe − ε for e ∈ P − Q, and ze = xe otherwise. Note that |F (z)| ≤ |F (x)| − 1 (by the

choice of ε), and that π · z ≥ π · x. Furthermore, z is a feasible solution to (6) if x is, by

an argument similar to the one as in the proof of Lemma 5.3. Thus, by repeatedly replacing

x by z as above, we convert x into z as in the statement. Finding cycle/path P as above

(or determining that such does not exist) can be done in O(|E(G)| time, and each time P is

found the number of fractional edges reduces by at least 1. The statement follows. �

Lemma 5.5 Given an instance of MKAR, a pseudopacking of profit at least the optimal

value of (6) can be computed in O(T (m, n) + m2n2) time, where m, n and T (m, n) are as in

Theorem 5.2.

Proof: Finding an optimal solution x to (6) (which may not be basic) is easily reduced to a

max-cost flow problem as follows. We direct all edges in G from I to J , add a source s with

edges si of the capacity `(i) for every i ∈ I, and a sink t with edges jt of the capacity c(j)

for every j ∈ J . The costs are πe for e ∈ E and are zero otherwise. We then compute a flow

f of maximum cost from s to t. It is easy to see that the restriction of f to E is an optimal

solution to (6). Then we compute in O(|E(G)|2) = O(m2n2) time a feasible solution z as

in Corollary 5.4. Finally, we compute a maximum matching M in F (z) and set xe = `e for

every e ∈M . It is easy to see that the resulting (possibly non-feasible) solution that has no

fractional edges corresponds to a pseudopacking as required. �

As was shown in section 3.3, after a pseudopacking of profit at least opt is found, an

assignment of profit at least opt/2 can be found in linear time. Thus Lemma 5.5 implies

Theorem 5.2.

We note that the integrality gap of (6) is 1/2 even for unit profits. Note that in the

previous section we used a different LP-formulation to get a better approximation ratio.

An example of the execution of this algorithm is given in Figure 1. Figure 2 gives a case

for which the 1/2 approximation ratio is tight.

20

s
t

���
��

���
�� ���

���
�	

	� ��
�

�	

	� ��
��

��
��
��
��
��
��
��
��
��
���
��
��
��
���
��
��
�� π e

=1
.

�� !
"#$%
&'(%
)#*
+,"-
.&"/
,01

s
t

���
��

���
�� ���

���
�	

	� ��
�

�	

	� ��
��

�/
2�3
4("$
%+,
"-

5 5 5 6

�(!
"##0
(%07

+&�(
%)"#
�,(
"1.
"#0
#%

�7
8�%9

�'*
10#
%�%)
"#

�+ 8
$0'
7".
�(:
)#*

5 5 5 6

� � � �

�0
2�%
(9)#
*

���
��

���
��

���
���

�	

	� ��
�

�	

	� ��
��

;<=
>?@A
BCD<=
AE

FG HG FG HGFG HG FG HG

p=
6 p=

6

p=
10

Figure 1: Example for the algorithm used in proving Theorem 5.2

21

��
��
��
��
��
	

��
��
��

	�
��

��
	��
��
��
 π e

=1
.

����
����
���
����

����
�� !
�"�
�#$%
&

'()
*+)
*,(-
.

���/
�%��
0 ��
$%&
����
"0��
��1

���/
�%%�
���!

�0��
�$�%
���
�1"
�%�
%�

�!�
���
�2$%
&

��0�
$�0�
03�

s
t

456
5789
:;

456
5789
:<

< = =

>8?
@<

>8?
@<

s
t

456
5789
:;

456
5789
:<

>8?
@<

>8?
@<

= =

p=
2 p=

2

456
5789
:;

456
5789
:<

>8?
@<>8?

@<

ABC
DEF
E

+)*,
(-G

ABC
DEF
E

+)*,
(-G456

5789
:;

456
5789
:<

>8?
@<>8?

@< ABC
DEF
E

+)*,
(-G

ABC
DEF
E

+)*,
(-G

ABC
DEF
E

+)*,
(-G

ABC
DEF
E

+)*,
(-G456

5789
:;

456
5789
:<

>8?
@<>8?

@<

Figure 2: Tight example for the algorithm used in proving Theorem 5.2

22

6 Conclusions

In this work, we have shown the following results: Our main result is a (1−1/e)-approximation

for Fixed-Profit GAP. We also gave a fast combinatorial (1/2)-approximation for MKAR,

which is a restriction of Fixed-Profit GAP.

One open problem is extending our (1−1/e)-approximation to GAP, without restrictions

on profits, or proving that such an algorithm is unlikely to exist.

Another open problem is determining whether a better approximation ratio for Fixed-

Profit GAP is possible. There is a well-known problem - the Max-Coverage problem - for

which (1 − 1/e) was shown to be the best possible approximation ratio, unless P=NP [6].

We conjecture that this may be also shown for Fixed-Profit GAP, possibly by using similar

methods as in [6].

23

References

[1] J. Aerts, J. Korst, F. Spieksma, W. Verhaegh, and G. Woeginger, Random redundant

storage in disk arrays: complexity of retrieval problems, IEEE Transactions on Com-

puters, Vol. 52, no. 9 (2003), 1210–1214.

[2] N. Alon and J.H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York,

2000.

[3] C. Chekuri and S. Khanna, A PTAS for the multiple knapsack problem, SODA 2000,

213–222.

[4] M. Dawande and J. Kalagnanam, The multiple knapsack problem with color constraints,

IBM Research Report, RC 21128 (94508), Revised March 24, 1998.

[5] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. S. Salman, Approxima-

tion algorithms for the multiple knapsack problem with assignment restrictions, J. of

Combinatorial Optimization, 2000, Vol. 4,171–186.

[6] U. Feige, A threshold of ln n for approximating set cover, J. ACM, Vol. 45,634–652.

[7] M. Grötchel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer, 1998.

[8] M. S. Hung and J. C. Fisk, A heuristic routine for solving large loading problems, Naval

Research Logisitical Quarterly, 26(4):643-650, 1979.

[9] V. Kann, Maximum Bounded 3-dimensional Matching is MAX SNP-Complete, Infor-

mation Processing Letters 37, 1991, 27–35.

[10] H. Shachnai, T. Tamir, Polynominal time approximation schemes for class-constrained

packing problem, APPROX 2000, 238–249.

[11] D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assign-

ment problem, Math Programming A, 62:461–74, 1993.

[12] J. Turek, J. Wolf and P. Yu, Approximate algorithms for scheduling parallelizable tasks,

SPAA ’92, 323–332.

[13] J. Wolf, P. Yu and H. Shachnai, Disk load balancing for video-on-demand systems, ACM

Multimedia Systems Journal, 5:358–370, 1997.

24

