
Approximating Steiner Network Activation

Problems

Zeev Nutov

The Open University of Israel
nutov@openu.ac.il

Abstract. In the Steiner Networks Activation problem we are given a
graph G = (V,E), S ⊆ V , a family {fuv(xu, xv) : uv ∈ E} of monotone
non-decreasing activating functions from ℝ

2
+ to {0, 1} each, and connec-

tivity requirements {r(u, v) : u, v ∈ V }. The goal is to find a weight as-

signment w = {wv : v ∈ V } of minimum total weight w(V ) =
∑

v∈V
wv,

such that: for all u, v ∈ V , the activated graph Gw = (V,Ew), where
Ew = {uv : fuv(wu, wv) = 1}, contains r(u, v) pairwise edge-disjoint
uv-paths such that no two of them have a node in S ∖ {u, v} in common.
This problem was suggested recently by Panigrahi [14], generalizing the
Node-Weighted Steiner Network and the Minimum-Power Steiner Network
problems, as well as several other problems with motivation in wireless
networks. We give new approximation algorithms for this problem.

For undirected/directed graphs, our ratios are O(k log n) for k-Out/In-
connected Subgraph Activation and k-Connected Subgraph Activation. For
directed graphs this solves a question from [14] for k = 1, while for the
min-power case and k arbitrary this solves an open question from [11].
For other versions on undirected graphs, our ratios match the best known
ones for the Node-Weighted Steiner Network problem [10].

1 Introduction

In Network Design problems, we are given a graph G = (V,E), a function
! : 2E → ℝ+, and a monotone property � of subgraphs of G; monotonicity
of � means that H ∈ � implies H ′ ∈ � for any H ⊆ H ′ ⊆ G. The goal is to
find F ⊆ E with !(F ) minimum, such that (V, F ) ∈ � . In Edge-Costs Network
Design problems !(F ) = c(F ) =

∑
e∈F ce for given edge-costs c = {ce : e ∈ E}.

For an edge-set F on V let V (F ) denote the set of endnodes of the edges in F .
In Node-Weighted Network Design problems, instead of edge-costs we are given
node-weights w = {wv : v ∈ V }, and seek a node subset V ′ ⊆ V of minimum
total weight w(V ′) =

∑
v∈V ′ wv such that the subgraph (V ′, F ) of G induced by

V ′ satisfies � ; equivalently, we seek an edge subset F ⊆ E such that the graph
(V, F ) satisfies � and w(V (F )) is minimum. Panigrahi [14] suggested the fol-
lowing generalization of Node-Weighted Network Design problems, that captures
also several known problems in wireless network design. For further motivation,
applications, and history of the problem, see the paper of Panigrahi [14].



Definition 1. Let G = (V,E) be a graph and let {fuv : uv ∈ E} be a fa-
mily of activating functions, where each fuv is from Duv ⊆ ℝ

2
+ to {0, 1}, and

fuv(xu, xv) = fvu(xv, xu) if G is undirected. Let w = {wv : v ∈ V } be a
non-negative weight assignment on V . An edge uv ∈ E is activated by w if
fuv(wu, wv) = 1. Let Ew = {uv ∈ E : fuv(wu, wv) = 1} be the set of edges
activated by w. For V ′ ⊆ V let w(V ′) =

∑
v∈V ′ wv be the weight of V ′.

We consider connectivity variants of the following problem.

Network Activation
Instance: A graph G = (V,E), a family {fuv(xu, xv) : uv ∈ E} of activating

functions from Duv ⊆ ℝ
2
+ to {0, 1} each, and a graph property � .

Objective: Find a weight assignment w = {wv : v ∈ V } with w(V ) minimum
such that the graph Gw = (V,Ew) activated by w satisfies � .

Unless stated otherwise, or is clear from the context, graphs can be undi-
rected or directed. We will assume that each activating function fuv admits a
polynomial time evaluation oracle, and also use the following assumptions.

Assumption 1. For every uv ∈ E, fuv is monotone non-decreasing, namely,
fuv(xu, xv) = 1 implies fuv(yu, yv) = 1 whenever yu, yv ∈ Duv, yu ≥ xu, and
yv ≥ xv.

Assumption 2. For every edge e = uv ∈ E, we can compute in polynomial
time some optimal weight assignment xe = xuv activating e; here xe has values
xe
u = xuv

u on u and xe
v = xuv

v on v (such that fuv(xe
u, x

e
v) = 1 and xe

u + xe
v is

minimal), and is zero otherwise.

Assumption 3. For every uv ∈ E, Duv = Du × Dv where ∣Du∣, ∣Dv∣ are
polynomial in n = ∣V ∣.

We are not aware of any specific problems that do not satisfy Assumption 1
or Assumption 2. For justification of Assumption 3 see the paper of Panigrahi
[14]. Note that Assumption 3 implies Assumption 2, since it enables to compute
in polynomial time all weight assignments activating uv.

Network Activation generalizes Node-Weighted Network Design problems, by
setting fuv(xu, xv) = 1 if xu ≥ wu, xv ≥ wv, and uv ∈ E. Another famous
example is the Minimum-Power Network Design problem, where instead of acti-
vating functions we are given edge-costs c = {cuv : uv ∈ E}. Here an edge uv
is activated by a weight assignment w if wu, wv ≥ cuv in the case of undirected
graphs, or if wu ≥ cuv in the case of directed graphs. An equivalent formulation
is as follows. For an undirected/directed edge-set F and a node v let �F (v) de-
note the set of edges in F incident to v. If F is directed, �outF (v) is the set of
edges in F leaving v. The c-power of F is defined by

pc(F ) =
∑

�F (v) ∕=∅

max
e∈�F (v)

c(e) if F is undirected

pc(F ) =
∑

�out
F

(v) ∕=∅

max
e∈�out

F
(v)

c(e) if F is directed



Now consider the directed variant of the Network Activation problem when
each activating function fuv(xu, xv) = guv(xu) depends on the weight at u only,
and does not depend on xv; namely, fuv(xu, a) = fuv(xu, b) for all xu, a, b. Under
Assumptions 1 and 2, this variant is equivalent to the directed Minimum-Power
Network Design problem with edge-costs cuv = xuv

u = min{xu : guv(xu) = 1}.
We are interested in Network Activation problems with graph property �

that for every node pair (u, v) ensures a certain number r(u, v) of uv-paths,
with the additional property that they cannot share edges and some nodes. For
undirected graphs, generalizing the algorithm of Klein and Ravi [5] for Node-
Weighted Steiner Forest, Panigrahi [14] gave an O(log n)-approximation algo-
rithm for Steiner Forest Activation and for 2-Connected Subgraph Activation. He
asked whether similar results can be obtained for directed graphs, e.g. for the
Arborescence Activation or the Strongly Connected Subgraph Activation problems.
We answer this question, and moreover, generalize all this to high connectivity,
by extending and significantly simplifying the generic approach developed in [11,
13, 10], as well as using some additional ideas.

Definition 2. For a subset S of nodes in a graph G, let �S
G(u, v) denote the

maximum number of edge-disjoint uv-paths in G such that no two of them have
a node in S ∖ {u, v} in common. Given connectivity requirements r = {r(u, v) :
u, v ∈ U ⊆ V }, we say that G satisfies r if �S

G(u, v) ≥ r(u, v) for all u, v ∈ U .

We consider variants of the following problem.

Steiner Network Activation
Instance: A graph G = (V,E), S ⊆ V , a family {fuv(xu, xv) : uv ∈ E} of

activating functions from ℝ
2
+ to {0, 1} each, and connectivity require-

ments r = {r(u, v) : u, v ∈ U ⊆ V }.
Objective: Find a weight assignment w on V with w(V ) minimum such that the

graph Gw = (V,Ew) activated by w satisfies r.

Edge-connectivity is the case S = ∅, node-connectivity is the case S = V , and
element-connectivity is the case S ∩ U = ∅. Let k = max{r(u, v) : u, v ∈ U}
denote the maximum requirement.

The simplest type of connectivity requirements is when U = {s, t} and
r(s, t) = k, namely, when we require k disjoint paths from a source s to the
sink t. This gives the k Disjoint Paths Activation problem, which has several vari-
ants, depending whether the graph is undirected or directed, and on the choice
of S: when S = ∅ the paths are edge-disjoint, and when S = V the paths are
internally-disjoint.

In Steiner Network Activation problems, the following types of requirements
are often considered in the literature, c.f. [7, 11, 13, 1, 10].

– Out-rooted requirements: there is s ∈ V such that r(u, v) > 0 implies u = s.
In-rooted requirements: there is s ∈ V such that r(u, v) > 0 implies v = s.

– Subset uniform requirements: r(u, v) = k for all u, v ∈ U ⊆ V and r(u, v) = 0
otherwise; uniform requirements is the case when U = V , namely, when
r(u, v) = k for all u, v ∈ V .



A graph is: k-out-connected from s if it contains k internally-disjoint paths
from s to every v ∈ V ∖ {s}, and k-in-connected to s if it contains k internally-
disjoint paths from every v ∈ V ∖ {s} to s. A graph with at least k + 1 nodes
is k-connected if it contains k internally-disjoint paths from every node to the
other. In the k-Out/In-connected Subgraph Activation problem Gw is required to
be k-out/in-connected from/to a given root s; this is the case of uniform out/in-
rooted requirements and S = V . In the k-Connected Subgraph Activation problem
Gw is required to be k-connected; this is the case of uniform requirements and
S = V .

In Steiner Network Activation Augmentation problems we are given a graph J
such that r(u, v)− �S

J (u, v) ≤ 1 for all u, v ∈ V , and seek a minimum weight as-
signment w such that the graph (V,EJ∪Ew) satisfies r. Equivalently, given a set
T = {uv : r(u, v)−�S

J (u, v) = 1} of demand-edges (the edges in T are undirected
or directed, depending whether J is undirected or directed), we require that
�S
J∪Ew

(u, v) ≥ �S
J (u, v)+1 for all uv ∈ T . It is known that a �-approximation for

Steiner Network Activation Augmentation implies a k�-approximation for Steiner
Network Activation. On the other hand, Steiner Network Activation Augmentation
is a particular case of the Bifamily Edge-Cover Activation problem defined below
(c.f. [7, 10]). We need some definitions to present this problem.

Definition 3. An ordered pair X̂ = (X,X+) of subsets of a groundset V is
called a biset if X ⊆ X+; X is the inner part, X+ is the outer part, and
� (X̂) = X+ ∖X is the boundary of X̂. A biset-family is called a bifamily if for
any X̂, Ŷ ∈ ℱ the following holds: X = Y implies X+ = Y + (bijectiveness),
and X ⊆ Y implies X+ ⊆ Y + (monotonicity).

Definition 4. The intersection and the union of two bisets X̂ and Ŷ is defined
by X̂ ∩ Ŷ = (X ∩Y,X+ ∩Y +) and X̂ ∪ Ŷ = (X ∪Y,X+ ∪Y +). The biset X̂ ∖ Ŷ
is defined by X̂ ∖ Ŷ = (X ∖ Y +, X+ ∖ Y ) A bifamily ℱ is:

– uncrossable if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ ℱ or X̂ ∖ Ŷ , Ŷ ∖ X̂ ∈ ℱ for any X̂, Ŷ ∈ ℱ .
– intersecting if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ ℱ for any X̂, Ŷ ∈ ℱ with X ∩ Y ∕= ∅.
– a ring-bifamily if ℱ is an intersecting bifamily and if the intersection of the

inner parts of all bisets in ℱ is non-empty.

A directed/undirected edge e covers a biset X̂ if it goes from V ∖X+ to X .
An edge set I covers a bifamily ℱ if every X̂ ∈ ℱ is covered by some edge e ∈ I.
We consider the following generic problem.

Bifamily Edge-Cover Activation
Instance: A graph G = (V,E), a family {fuv(xu, xv) : uv ∈ E} of activating

functions, and a bifamily ℱ on V .
Objective: Find a minimum-weight assignment w on V such that Ew covers ℱ .

Given an instance of Steiner Network Activation Augmentation, the corre-
sponding Bifamily Edge-Cover Activation instance is obtained as follows. To avoid
considering “mixed” cuts that contain both nodes and edges, we may assume
that st /∈ EJ for all st ∈ T . One way to achieve this is to subdivide every edge
st ∈ EJ with st ∈ T by a dummy node, and to add all these dummy nodes to S.



For X ⊆ V , let X+ be the union of X and the set of those nodes that have
a neighbor in X . Let us say that a biset X̂ = (X,X+) is tight if � (X̂) ⊆ S and
there exists st ∈ T that covers X̂ such that ∣� (X̂)∣ = �S

J (s, t).
By Menger’s Theorem, J ∪Ew satisfies the connectivity requirements if, and

only if, Ew covers the family ℱJ,T of tight bisets, c.f. [7]. It is easy to see that
ℱJ,T is a bifamily. This bifamily is uncrossable in the case of element-connectivity
requirements [3], and intersecting in the case of out-rooted uniform requirements
[4]. In the case of undirected graphs and out/in-rooted requirements, it is suf-
ficient to cover the bifamily ℱs

J,T = {X̂ ∈ ℱJ,T : s /∈ X+}. This bifamily is
intersecting for rooted uniform requirements, c.f. [4].

A polynomial time implementation of our algorithms requires that certain
queries related to ℱ can be answered in polynomial time. Given an edge set I
on V , the residual bifamily ℱ(I) of ℱ (w.r.t. I) consists of all members of ℱ
that are uncovered by the edges of I. It is easy to verify that if ℱ is uncrossable,
then so is ℱ(I), for any I, c.f. [10].

Definition 5. A set C ∈ {X : X̂ ∈ ℱ} is a core (or an ℱ -core) of a bifamily
ℱ , if C does not contain as subsets two distinct inclusion-minimal members of
the set-family {X : (X,X+) ∈ ℱ}. An inclusion-minimal (inclusion-maximal)
core is a min-core (max-core). Let Cℱ (ℳℱ ) denote the set-family of min-cores
(max-cores) of ℱ .

Assumption A. Given the inner part X of a biset X̂ ∈ ℱ , the outer part X+

of X̂ can be computed in polynomial time.

Assumption B. For any edge set I on V , the families Cℱ(I) of min-cores and
ℳℱ(I) of max-cores of ℱ(I) can be computed in polynomial time.

Using standard max-flow min-cut methods, it is easy to see that Assumptions
A and B hold for the family of tight bisets. Summarizing, we have the following.

Corollary 1. Given an instance of Steiner Network Activation Augmentation
(with st /∈ EJ for all {s, t} ∈ T ), J ∪ Ew satisfies the requirements if, and
only if, Ew covers the bifamily ℱJ,T of tight bisets. Furthermore, Assumptions
A and B hold for ℱJ,T . ⊓⊔

For a graph (V, F ) let �F = max
v∈V

∣�F (v)∣ denote the maximum number of

edges in F incident to a node in (V, F ). Our first result is the following simple
relation between Network Activation and Edge-Costs Network Design problems.

Theorem 1. Suppose that for some graph property � the following holds.

– There exists an integer � such that �F ≤ � holds for any inclusion minimal
edge-set F with (V, F ) ∈ �.

– Edge-Costs Network Design with property � admits a �-approximation algo-
rithm.

Then Network Activation with property � admits an ��-approximation algo-
rithm, under Assumptions 1 and 2.



Theorem 1 has the following consequence (to be proved formally in Section 4).

Corollary 2. The k Internally-Disjoint Paths Activation problem admits a 2-
approximation algorithm, if Assumption 1 holds and if Ds, Dt are polynomial
in n.

The main result of this paper is the following.

Theorem 2. Under Assumptions 1,3,A,B, Bifamily Edge-Cover Activation ad-
mits the following approximatio ratios: 2 for ring bifamilies, and O(log ∣Cℱ ∣) for
undirected graphs with uncrossable ℱ , or for directed graphs with intersecting ℱ .

In [6, 11, 13, 10, 8] it is shown how various Steiner Network problems can be
decomposed into Bifamily Edge-Cover problems. Using this, we deduce from The-
orem 2 the following result (to be proved formally in Section 4), that for the
particular case of directed graphs and k = 1 answers a question from [14].

Theorem 3. Steiner Network Activation problem admit the following approxi-
mation ratios under Assumptions 1 and 3. For both undirected/directed graphs,
k-Out/In-connected Subgraph Activation and k-Connected Subgraph Activation ad-
mit ratio O(k logn), and k Disjoint Paths Activation admits ratio 2k. For undi-
rected graphs, the following ratios are also achievable:

– O(log ∣U ∣) for requirements in {0, 1, 2}.
– O(k log ∣U ∣) for element-connectivity requirements.
– O(k2 log ∣U ∣) for rooted requirements and for subset uniform requirements.
– O(k4 log2 ∣U ∣) for general requirements.

2 Proof of Theorem 1

Recall that by Assumption 2, for every e = uv ∈ E, we can compute in polyno-
mial time some optimal weight function xe activating e, with values xe

u = xuv
u

on u and xe
v = xuv

v on v, and zero otherwise; hence xe
u + xe

v = min{xu + xv :
fuv(xu, xv) = 1}. In the proof of Theorem 1, the key observation is the following
statement, which applies for both directed and undirected graphs.

Lemma 1. Let G = (V,E) be a (directed or undirected) graph and let E′ ⊆ E.
Let w′ be a weight function on V defined by w′

u = max
e∈�E′ (u)

xe
u if u ∈ V (E′) and

w′
u = 0 otherwise, and let c be a cost function on E defined by ce = xe

u + xe
v

for all e = uv ∈ E. Then E′ ⊆ Ew
′ , and w′(V ) ≤ c(E′) ≤ �E′ ⋅w(V ) for any

weight function w such that E′ ⊆ Ew.

Proof. To see that E′ ⊆ Ew
′ , note that w′

u ≥ xuv
u and w′

v ≥ xuv
v for every

uv ∈ E′, by the definition of w′. Hence uv ∈ Ew
′ , by Assumption 1.

We prove that w′(V ) ≤ c(E′). Let D′ be a set of directed edges on V (E′)
obtained from E′ by choosing for every u ∈ V (E′) some maximum c-cost edge
e ∈ �E′(u) incident to u, and picking into D′ the orientation of e with tail u.



Assign cost c′uv to every edge uv ∈ D′ as follows; c′uv = cuv if uv does not
belong to a cycle of length 2 of D′ and c′uv = x′

u otherwise. It is easy to see that
c(E′) ≥ c′(D′) and that c′(D′) ≥ w′(V ). The statement follows.

Let now w be any weight function such that E′ ⊆ Ew. We prove that c(E′) ≤
�E′ ⋅w(V ). Note that cuv ≤ wu + wv for every uv ∈ E′, by the definition of c
and since E′ ⊆ Ew. This implies:

c(E′) =
∑

uv∈E′

cuv ≤
∑

uv∈E′

(wu + wv) =
∑

u∈V

∣�E′(u)∣wu ≤ �E′ ⋅w(V ) .

This concludes the proof of the lemma. ⊓⊔

We now finish the proof of Theorem 1. The algorithm is as follows. With edge-
cost function c as in Lemma 1, compute an �-approximate c-cost solution E′

satisfying the property� , and return the weight functionw′ as in Lemma 1. This
can be done in polynomial time, by Assumption 2. By Lemma 1, E′ ⊆ Ew

′ , hence
the solution w′ returned is feasible, namely, Ew

′ satisfies � , by the monotonicity
of � .

Let w be an optimal solution to Network Activation, and let F ⊆ Ew be
an inclusion minimal edge set that satisfies � . By the assumption, �F ≤ �.
Using Lemma 1 and the fact that E′ is an �-approximate c-cost solution, while
(V, F ) ∈ � , we get:

x′(V ) ≤ c(E′) ≤ � ⋅ c(F ) ≤ � ⋅�F ⋅w(V ) ≤ � ⋅� ⋅w(V ) .

The proof of Theorem 1 is now complete.

3 Proof of Theorem 2

We need the concept “spider-cover” introduced in [11, 13]. For a bifamily ℱ on
V , a min-core C ∈ Cℱ , and s ∈ V let

ℱ(C) = {X̂ ∈ ℱ : X ⊇ C,X is an ℱ -core}

ℱ(s, C) = {X̂ ∈ ℱ(C) : s /∈ X+}

Definition 6. Let ℱ be a bifamily on V and let C ⊆ Cℱ . We say that an undi-
rected/directed edge-set S on V is an ℱ(s, C)-spider-cover if s ∈ V (S) and if
S can be partitioned into ℱ(s, C)-covers {PC : C ∈ C} such that the node sets
{V (PC) ∖ {s} : C ∈ C} are pairwise disjoint. We say that S is an ℱ(C)-spider-
cover, or a spider-cover if C is clear from the context, if the following holds:

– If ∣C∣ ≥ 2 then there exists s ∈ V (a center of the spider-cover) such that S
is an ℱ(s, C)-spider-cover.

– If ∣C∣ = 1, say C = {C}, then S covers ℱ(C).

Equivalently, for ∣C∣ ≥ 2, an ℱ(C)-spider-cover S with a chosen center s is a
union of ℱ(s, C)-covers {PC : C ∈ C} so that only s can be a common end-node
of two of them.



Definition 7. Let ℱ be a bifamily on V and let C ⊆ Cℱ . We say that a collection
S = {S1, . . . , Sℎ} of edge-sets spider-covers C if the following holds:

– The node-sets V (S1), . . . , V (Sℎ) are pairwise disjoint.
– C admits a partition {C1, . . . , Cℎ} such that each St is an ℱ(Ct)-spider-cover.

In [11] directed covers of intersecting set-families are considered, For this
case, [11, Theorem 2.3] states that any cover I of ℱ admits a ”tail-disjoint” sub-
partition that spider-covers a subfamily C ⊆ Cℱ of size at least ∣C∣ ≥ ⌈2∣Cℱ ∣/3⌉;
in the setting of [11] this bound is the best possible. [13, Theorem 2.3] states that
any (undirected) cover I of an uncrossable set-family ℱ admits a subpartition
that spider-covers the entire family Cℱ of ℱ -cores. In the case of bifamilies, the
following is proved in [10].

Theorem 4 ([10]). Any undirected cover I of an uncrossable bifamily ℱ admits
a subpartition that spider-covers Cℱ .

For the case of directed covers of intersecting bifamilies, we use a novel method
to prove the following. Let us say that a bifamily ℱ is simple if the inner part
of every member of ℱ is a core.

Theorem 5. Let ℱ be a simple bifamily such that the ℱ-cores are pairwise
disjoint and such that ℱ(C) is a ring-bifamily for every C ∈ Cℱ . Then any
directed cover I of ℱ admits a subpartition that spider-covers a subfamily C ⊆ Cℱ
of ℱ-cores of size at least ∣C∣ ≥ ⌈2∣Cℱ ∣/3⌉.

The following statement is well known, c.f. [10].

Lemma 2. If a bifamily ℱ is uncrossable or intersecting, then so is the bifamily
{X̂ ∈ ℱ : X is an ℱ-core}, the min-cores of ℱ are pairwise disjoint, and ℱ(C)
is a ring-bifamily for every min-core C ∈ Cℱ . In particular, for every min-core
C there is a unique max-core containing C.

Note that Definitions 6 and 7 consider covers only of bisets in ℱ for which the
inner parts are cores, namely, the relevant bifamily is {X̂ ∈ ℱ : X is an ℱ -core};
this bifamily is uncrossable if ℱ is, by Lemma 2. Any uncrossable simple bifamily
satisfies the assumptions of Theorem 5, by Lemma 2. Thus Theorem 5 implies
the following.

Corollary 3. Any directed cover I of an intersecting bifamily ℱ admits a sub-
partition that spider-covers a subfamily C ⊆ Cℱ of ℱ-cores of size at least
∣C∣ ≥ ⌈2∣Cℱ ∣/3⌉.

We now prove Theorem 5, and at the end of this section describe how The-
orem 4 and Corollary 3 imply Theorem 2.

For an edge-set I and a biset X̂ on a node set V let �I(X̂) denote the set of
edges in I covering X̂. We need the following (known) statement.

Lemma 3. Let I be an inclusion-minimal directed cover of a ring bifamily ℱ
and let C be the min-core of ℱ . Then ∣�I(Ĉ)∣ = 1.



Proof. Clearly, ∣�I(Ĉ)∣ ≥ 1 since I covers ℱ and since Ĉ ∈ ℱ . Suppose to the
contrary that there are distinct e, f ∈ �I(Ĉ). By the minimality of I, there are
Ŵe, Ŵf ∈ ℱ such that �I(Ŵe) = {e} and �I(Ŵf ) = {f}. There is an edge in

I covering Ŵe ∪ Ŵf , because Ŵe ∪ Ŵf ∈ ℱ . This edge must be one of e, f ,

because if for arbitrary bisets X̂, Ŷ an edge covers X̂ ∪ Ŷ then it also covers
one of X̂, Ŷ . Each of e, f covers Ŵe ∩ Ŵf , because each of e, f has an endnode

in C and C ⊆ We ∩ Wf . Consequently, one of e, f covers both Ŵe ∩ Ŵf and

Ŵe∪Ŵf . However, if for arbitrary bisets X̂, Ŷ an edge covers both X̂∩ Ŷ , X̂∪ Ŷ

then it cover both X̂ and Ŷ . Hence one of e, f covers both Ŵe, Ŵf . This is a

contradiction, since �I(Ŵe) = {e}, �I(Ŵf ) = {f}, and e ∕= f . ⊓⊔

The proof of the following key statement is similar to the proof of [11,
Lemma 2.6] where directed covers of ring set-families are considered.

u2

v1

v3

u1

u3

2
3 v

v
1

1v

2

u
u

u
2

3

v

(a) (b)

Fig. 1. (a) Illustration to Lemma 4; inner parts of the bisets are shown by darker
ellipses. (b) Construction of the path PC .

Lemma 4. Let I be an inclusion-minimal directed cover of a ring bifamily ℱ .
There exists an ordering e1, . . . , eq of I and a nested family C1 ⊂ ⋅ ⋅ ⋅ ⊂ Cq of

sets in {X : X̂ ∈ ℱ} such that for every j = 1, . . . , q the following holds (see
Fig. 1(a)).

(i) Cj is the min-core of ℱIj−1 , where Ij = {e1, . . . , ej} and I0 = ∅, and ej is

the unique edge in I covering Ĉj .
(ii) If ej = ujvj where vj ∈ Cj , then Ij is an ℱ(uj , C)-cover and Ij−1 is an

ℱ(vj , C)-cover, where C is the min-core of ℱ .

Proof. Let C1 = C. By Lemma 3 there is a unique edge e1 ∈ I covering Ĉ1.
If e1 = u1v1 where v1 ∈ C1, then clearly I0 = ∅ is an ℱ(v1, C)-cover and
I1 = {e1} is an ℱ(u1, C)-cover. Thus if e1 covers ℱ we are done. Otherwise,
let C2 be the min-core of ℱI1 . Then C1 ⊂ C2. Let e2 = u2v2 be the edge in I
covering Ĉ2, where v2 ∈ C2. As C2 is the min-core of ℱI1 and v2 ∈ C2, it follows
that I1 is an ℱ(v2, C)-cover and I2 = I1 ∪ {e2} is an ℱ(u2, C)-cover. We can
continue this process until some edge eq covers ℱIq−1 . Namely, given the edge
set Ij−1 = {e1, . . . , ej−1} that still does not cover ℱ , Cj is the min-core of ℱIj−1 ,



and ej = ujvj is the edge in I covering Ĉj , where vj ∈ Cj . Then Cj−1 ⊂ Cj . As
Cj is a min-core of FIj−1 and vj ∈ Cj , it follows that Ij−1 is an ℱ(vj , C)-cover
and Ij is an ℱ(uj , C)-cover. The lemma follows. ⊓⊔

Recall that a directed spider is an arborescence (directed tree) with at most
one node (the root) of outdegree ≥ 2. The following statement is an immediate
consequence from [1, Theorem 4].

Lemma 5 (Chuzhoy and Khanna [1]). Let Q be a set of directed simple
paths ending at a set A = {aP : P ∈ P} of distinct nodes. There exists P ⊆ Q
with P ≥ ⌈2∣Q∣/3⌉ such that the following holds. Every P ∈ P has a subpath P ′

(possibly of length zero) that ends at aP and has no internal node in A, such that
in the (simple) graph J induced by the subpaths {P ′ : P ∈ P}, every connected
component is either a directed spider with at least 2 nodes in A, or is a path in P.

Proof of Theorem 5. For every C ∈ Cℱ fix some inclusion-minimal cover IC ⊆ I
of ℱ(C). Let e1, . . . , eq be an ordering of IC as in Lemma 4, where ej = ujvj
is as in the lemma. Obtain a directed path PC adding for every j = q, . . . , 2
the directed edge vjuj−1, if vj ∕= uj−1; hence if vj ∕= uj−1 for all j, then the
node sequence of PC is (uq, vq, uq−1, vq−1, . . . , u1, v1). Let aC = v1 and note that
aC ∈ C. Let Q = {PC : C ∈ Cℱ}. As the min-cores of ℱ are pairwise disjoint,
the path in Q end at distinct nodes. Hence Lemma 5 applies, and thus there
exists a subfamily C ⊆ Cℱ of ℱ -cores of size at least ∣C∣ ≥ ⌈2∣Cℱ ∣/3⌉, such that
the following holds. Every PC with C ∈ C has a subpath P ′

C that ends at aC ,
such that if J1, . . . , Jℎ are the connected components of the (simple) graph J
induced by the subpaths {P ′

C : C ∈ C}, every Jt is either a directed spider with
at least 2 nodes in {aC : C ∈ C}, or is a path in P . For every t = 1, . . . , ℎ let
Ct = {C : vC ∈ Jt} and let St = J ∩ I be the set of those edges e ∈ I that in
Jt. From the construction and Lemma 4 it follows that St is an ℱ(Ct)-spider-
cover. Thus the collection S = {S1, . . . , Sℎ} of edge-sets spider-covers C. Since
∣C∣ ≥ ⌈2∣Cℱ ∣/3⌉, Theorem 5 follows. ⊓⊔

We now describe how Theorem 4 and Corollary 3 imply Theorems 2. We use
a Greedy Algorithm for the following type of problems:

Covering Problem
Instance: A ground-set E and integral functions �, ! on 2E , where �(E) = 0.
Objective: Find I ⊆ E with �(I) = 0 and with !(I) minimized.

In the Covering Problem, the instance functions �, ! may be given by an
evaluation oracle; � is the deficiency function that measures how far is I from
being a feasible solution, and ! is the weight function. Given a partial solution I,
the density of a set S ⊆ E ∖I is !(S)/(�(I)−�(I ∪S)). The �-Greedy Algorithm
starts with I = ∅, and as long as �(I) ≥ 1, it finds and adds to I an edge-set
S ⊆ E ∖ I of density at most � ⋅opt/�(I), where opt denotes the optimal solution
value. The following statement is known, c.f. [13].



Theorem 6. For any Covering Problem such that � is decreasing, the �-Greedy
Algorithm computes a collection S of subsets of E such that I =

∪
S∈S

S is a

feasible solution and such that
∑
S∈S

!(S) ≤ � ⋅ (ln(�(∅)) + 1) ⋅ opt. Furthermore,

if ! is subadditive then !(I) ≤ � ⋅ (ln(�(∅)) + 1) ⋅ opt.

In our setting, for I ⊆ E, let �(I) = ∣C(ℱ(I))∣ denote the number of min-
cores of the residual bifamily ℱ(I), and let !(I) = min{w(V ) : I ⊆ Ew} be an
optimal weight assignment that activates I. Clearly, � is decreasing, and ! is
sub-additive.

Unfortunately, we do not have a polynomial time evaluation oracle for the
function !, namely, we do not have a method to compute !(S) in polynomial
time for a given edge set S. However, we can show a 2-approximate polynomial
time evaluation oracle for !(S) if S is a spider. Note that if every node in the
graph (V, S) has degree at most �, then Theorem 1 gives a �-approximation for
!(S) in polynomial time. In particular, we have a 2-approximation if S is a path.
If S is a spider, then S has at most one node s of degree ≥ 2, and then with the
help of Assumption 3, we can still obtain a 2-approximation for !(S) as follows.
We “guess” the weight ws ∈ Ds of s in some optimal weight assignment inducing
S, and update each activating function fsv(xs, xv) to f sv(ws, xv). Then we apply
the algorithm as in Theorem 1 on the obtained instance. For a “correct” guess
of ws our estimation for !(S) will be between !(S) and 2!(S)− ws.

Recall that in the Bifamily Edge-Cover problem we eventually need to compute
a weight-assignment w and I ⊆ Ew such that I covers ℱ . To apply the Greedy
Algorithm, we will show how to find a weight assignment w = wS and S ⊆ E

w
S

(S may not be a spider-cover), such that for some constant � the following holds:

wS(V )

�(I) − �(I ∪ S)
≤ � ⋅

opt

�(I)
.

Note that !(S) ≤ wS(V ), hence such S has density at most � ⋅ opt/�(I). Con-
sequently, we can apply the �-Greedy Algorithm to compute a collection S of
subsets of E such that I =

∪
S∈S

S is a feasible solution (namely, �(I) = 0) and

such that
∑
S∈S

wS(V ) ≤ � ⋅ (ln(�(∅)) + 1) ⋅ opt. Setting w(v) = max
S∈S

wS
v (or even

wv =
∑
S∈S

wS
v ) for every v ∈ V and I =

∪
S∈S

S gives a weight assignment w and

a feasible solution I ⊆ Ew as required.
For simplicity of exposition, it is sufficient to consider the case I = ∅. We

assume that E is a feasible solution, thus �(E) = 0. Let � = �(∅). Theorem 2
will be proved if we prove the following.

Lemma 6. There exists an algorithm that given an instance of Bifamily Edge-
Cover Activation with either undirected E and uncrossable ℱ , or with directed
E and intersecting ℱ , finds under Assumptions 1,3,A,B in polynomial time a
weight-assignment w and S ⊆ Ew (S may not be a spider-cover) such that

w(V )

� − �(S)
≤ 9 ⋅

opt

�
.



In the rest of this section we prove Lemma 6.
The following statement follows from Theorem 4 and Corollary 3 by a stan-

dard averaging argument.

Proposition 1. Any optimal ℱ-cover contains an ℱ(C′)-spider-cover S′ for
some C′ ⊆ Cℱ , such that !(S′)/∣C′∣ ≤ 3/2 ⋅ opt/�. ⊓⊔

Using Proposition 1, we show under Assumptions 1,3,A,B how to find in
polynomial time an edge-set S (which may not be a spider cover) and a weight-
assignmentwS as in Lemma 6; note that Proposition 1 only establishes existence
of a spider-cover S′ of low density, but does not implies an algorithm for finding
such S′.

Lemma 7 ([11, 10]). Let ℱ be a biset-family on V , let C ⊆ Cℱ , and let S be a
directed/undirected edge set on V such that the following holds.

– If ∣C∣ ≥ 2 then there is s ∈ V such that S is a ℱ(s, C)-cover for every C ∈ C.
– If ∣C∣ = 1, say C = {C}, then S covers all ℱ-cores containing C.

If the min-cores of ℱ and of ℱS are pairwise disjoint then � − �(S) ≥ ∣C∣/3.

It is known that under Assumptions A and B, a standard primal-dual algo-
rithm computes a minimum-cost undirected/directed edge-cover of a ring bifam-
ily ℱ . Furthermore, if P is an inclusion-minimal cover of ℱ then �P ≤ 2; for
undirected P this is proved in the full version of [10], while for directed P easily
follows from Lemma 4. Thus Bifamily Edge-Cover Activation with ring-bifamily ℱ
admits a 2-approximation algorithm. Combined with Theorem 1 and Lemma 2
we obtain the following.

Corollary 4. Given an instance of Bifamily Edge-Cover Activation with either
undirected E and uncrossable ℱ or with directed E and intersecting ℱ , s ∈ V ,
and C ∈ Cℱ , the problem of finding an optimal weight assignment w on V such
that Ew covers ℱ(s, C) admits a 2-approximation algorithm, under Assumptions
A and B.

Now we describe the algorithm that finds S and w as in Lemma 6. The
algorithm is essentially the same as the one in [13, 10] for the node-weighted case,
except that we “guess” not only the center s of an optimal density spider but
also the corresponding weight assignment ws ∈ Ds of s (for min-power problems,
the approach of “guessing” both s and the power of s was used in [11]). For every
fixed “guess” s ∈ V and ws ∈ Ds compute a weight assignment w = w(s,ws), a
set of min-cores C = C(s,ws), and an ℱ(s, C)-cover S = S(s,ws) ⊆ Ew as follows.
Set temporarily the weight of s to ws, and update each activating function
f sv(xs, xv) to gsv(xv) = f sv(ws, xv) by setting xs = ws. For every C ∈ Cℱ
let wC be the weight assignment and PC the ℱ(s, C)-cover computed by the
2-approximation algorithm as in Corollary 4, with weight of s fixed to ws. Let
WC = wC(V )− ws, where WC = ∞ if PC does not exist. Sort the members of
Cℱ by increasing weight, say WC1 ≤ WC2 ≤ . . . ≤ WCq

. Let Mi be the (unique,
by Lemma 2) max-core containing Ci. Let �j be defined as follows:



– �1 = ws + min{WCi
: s ∈ V ∖M+

i } if {Ci : s ∈ V ∖M+
i } ∕= ∅ and �1 = ∞

otherwise.
– �j = Wj/j where Wj = ws +

∑j

i=1 WCi
, j = 2, . . . , q.

Note that �j ≤ 2 ⋅ w
′(V )
j

for any weight assignment w′ with w′
s = ws such

that Ew
′ contains an ℱ(s, C′)-spider-cover S′ with ∣C′∣ = j.

Next we find an index j for which �j is minimum, which determines the
corresponding weight assignment w = w(s,ws), the set of min-cores C = C(s,ws),
and the ℱ(s, C)-cover S = S(s,ws) ⊆ Ew. If j = 1 then w = wCi , S = PCi ,
and C = {Ci}, where i is the index for which the minimum is attained in the

definition of �1. If j ≥ 2 then wv = max
i≤j

wCi
v for all v ∈ V , S =

j∪
i=1

PCi and

C = {C1, . . . , Cj}.
We compute such triple w(s,ws), C(s,ws), and S(s,ws), for every s ∈ V and

ws ∈ Ds. Then, among all triples computed we choose one tripple w, C, S with
w

(Ss,ws )(V )
∣C(s,ws)∣

minimum. For this choice we have w(V )
∣C∣ ≤ 2 ⋅ !(S′)

∣C′∣ for any ℱ(C′)-

spider-cover S′. In particular, if S′ is as in Proposition 1, then w(V )
∣C∣ ≤ 2 ⋅ !(S′)

∣C′∣ ≤

3 ⋅ opt

�
. On the other hand, w(V )

�−�(S) ≤ 3 ⋅ w(V )
∣C∣ , by Lemma 7. Consequently,

w(V )
�−�(S) ≤ 9 ⋅ opt

�
, as required.

Time complexity. The time complexity to compute S as in Lemma 6 is the num-
ber ∣V ∣ ⋅max

s∈V
∣Ds∣ of “guesses” of the pair (s, ws) (polynomial by Assumption 3)

multiplied by the following: the time required to compute the family Cℱ (poly-
nomial by Assumption 5), plus n∣Cℱ ∣ times the time required to check whether a
given node v belongs to the max-ℱ -core M containing a give min-core C (poly-
nomial by Assumptions A and B) plus n∣Cℱ ∣ times the time required to apply
the (polynomial time) algorithm in Corollary 4.

The proof of Lemma 6, and thus also of Theorem 2 is complete.

4 Proof of Theorem 3

We start by proving Corollary 2. Note that in a graph that consists of k internally-
disjoint st-paths, the degree of every node distinct from s, t is at most 2. Thus
the following algorithm computes a 2-approximate solution to the k Internally-
Disjoint Paths Activation problem. We “guess” the weights ws of s and wt of
t in some optimal weight-assignment, update the activating functions of edges
incident to s and to t accordingly, and apply the algorithm from Theorem 1.

We also need the following statements that follows from Theorem 2 by ele-
mentary constructions.

Corollary 5. Under Assumptions 1,3,A,B, the directed problem of finding a
minimum-weight assignment w such that the reverse edge set of Ew covers an
intersecting bifamily ℱ , admits an O(log ∣Cℱ ∣)-approximation algorithm.



Proof. It is easy to see that a weight-assignment w is a feasible solution to an
instance of the problem in the corollary if, and only if, w is a feasible solution to
an instance of Bifamily Edge-Cover Activation obtained by replacing every edge
uv ∈ E by the edge vu with activating function gvu(xv, xu) = fuv(xu, xv). Thus
the statement follows from Theorem 2. ⊓⊔

As was mentioned in the Introduction, for all the types of requirements con-
sidered, a �-approximation for Steiner Network Activation Augmentation implies a
k�-approximation for Steiner Network Activation. Recall also that by Corollary 1,
Steiner Network Activation Augmentation is reducible to the problem of covering
the bifamily ℱJ,T of tight bisets, or the bifamily ℱs

J,T = {X̂ ∈ ℱJ,T : s /∈ X} in
the case of out-rooted requirements.

Consider the directed/undirected k-Outconnected Subgraph Activation prob-
lem. In the augmentation version, the initial graph J is (k−1)-outconnected from
s and J∪Ew should be k-outconnected from s. The corresponding bifamily ℱs

J,T

is intersecting in the directed case [4] and uncrossable in the undirected case [3].
Hence the augmentation version admits ratio O(log n), by Theorem 2. This im-
plies an O(k logn)-approximation for directed/undirected k-Outconnected Sub-
graph Activation. By Corollary 5, we have the same ratio for k-Inconnected Sub-
graph Activation. The ratio for directed/undirected k-Out/In-connected Subgraph
Activation in Theorem 3 follows.

Consider the undirected/directed k-Connected Subgraph Activation problem.
Our algorithm is a modification of the O(k)-approximation algorithm of [6] for
the Minimum-Cost k-Connected Subgraph problem. For undirected graphs the
algorithm is as follows.

1. Let R ⊆ V be a subset of k nodes, so ∣R∣ = k. Construct a graph G′ by
adding to G a new node s and new edges {sv : v ∈ R} with f sv(xs, xv) = 1
for all v ∈ R.

2. Compute an O(k logn)-approximate weight-assignment w such that (V,Ew)
is k-outconnected from s.

3. Let F be an inclusion minimal set of edges on R such that (V,Ew)∪F is k-
connected. Using the 2-approximation algorithm from Corollary 2, compute
for every uv ∈ F a 2-approximate weight-assignment wuv such that Ew

uv

contains k internally-disjoint uv-paths.
4. Output w +

∑
uv∈F

wuv.

It is known and is shown in [6] that F as at Step 3 exists and is a forest
on R. Hence ∣F ∣ ≤ k − 1 = O(k). Consequently, the approximation ratio is
O(k logn) + 2∣F ∣ = O(k logn) +O(k) = O(k logn).

The algorithm for directed graphs is similar, except that at step 2 we require
that (V,Ew) is both k-out-connected and k-inconnected to R. In this case we
have ∣F ∣ ≤ 2k − 1, hence the approximation ratio is still O(k logn).

Other ratios in Theorem 3 are identical to the best known ones for the undi-
rected Node-Weighted Steiner Network [13, 10, 8], and they are derived from The-
orem 2 in the same way as the ratios in [13, 10, 8] are derived.



5 Conclusions

This paper generalizes a line of research of the author initiated in the conference
version of [11] in 2006 on min-power and node-weighted connectivity problems.
For the more general Steiner Network Activation problem, we now have ratio
O(k logn) for k-Out/In-connected Subgraph Activation and k-Connected Subgraph
Activation, for both undirected and directed graphs. For directed graphs, this
solves a question from [14] for k = 1, and for the min-power case and k arbitrary
this solves an open question from [11]. Except the undirected k-Outconnected
Subgraph Activation and k-Connected Subgraph Activation problems, whose min-
power variants admit an O(log k)-approximation algorithm [2], our ratios match
the best known ones for the easier min-power or the node-weighted problems.
Our results rely on Theorem 1, Theorem 4 from [10], and Theorem 5 proved in
this paper. In fact, the new unifying and simple approach (modulo the non-trivial
technical Lemma 5 by [1]) in the proof of Theorem 5, can be used to prove a
slightly weaker variant of Theorem 4 from [10] (undirected graphs and uncross-
able bifamilies), as well as all the other previous “Spider-Cover Decomposition
Theorems” from [11, 13].

There are still several open problems in the field, which is appropriate to
state for the easier min-power and node-weighted problems, see [2, 10, 13, 9, 12].

References

1. J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In
FOCS, pages 105–114, 2008.

2. N. Cohen and Z. Nutov. Approximating minimum-power edge-multicovers.
Manuscript, 2011.

3. L. Fleischer, K. Jain, and D. Williamson. Iterative rounding 2-approximation
algorithms for minimum-cost vertex connectivity problems. J. of Computing and

System Sciences, 72(5):838–867, 2006.
4. A. Frank. Rooted k-connections in digraphs. Discrete Applied Math., 157(6):1242–

1254, 2009.
5. P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-

weighted Steiner trees. J. of Algorithms, 19:104115, 1995.
6. G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set

covers. Algorithmica, 37:75–92, 2003.
7. G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems,

Ch. 58 in Approximation algorithms and Metaheuristics, Editor T. F. Gonzalez.
Chapman & Hall/CRC, 2007.

8. G. Kortsarz and Z. Nutov. Subset and rooted connectivity problems revisited.
Manuscript, 2011.

9. Y. Lando and Z. Nutov. On minimum power connectivity problems. J. Discrete

Algorithms, 8(2):164–173, 2010.
10. Z. Nutov. Approximating minimum cost connectivity problems via uncrossable

bifamilies and spider-cover decompositions. In FOCS, pages 417–426, 2009.
11. Z. Nutov. Approximating minimum power covers of intersecting families and

directed edge-connectivity problems. Theoretical Computer Science, 411(26-
28):2502–2512, 2010.



12. Z. Nutov. Approximating minimum-power k-connectivity. Ad Hoc & Sensor Wire-

less Networks, 9:129–137, 2010.
13. Z. Nutov. Approximating steiner networks with node-weights. SIAM J. on Com-

puting, 37(7):3001–3022, 2010.
14. D. Panigrahi. Survivable network design problems in wireless networks. In SODA,

2011.


