
An LP 7/4-approximation for the Tree Augmentation Problem

Guy Kortsarz ∗

Rutgers University, Camden

guyk@crab.rutgers.edu

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Abstract

In the Tree Augmentation Problem (TAP) the goal is to augment a tree T by a minimum

size edge set F from a given edge set E such that T ∪ F is 2-edge-connected. The best known

approximation ratio for the problem is 1.5 [5, 12]. Several paper analysed integrality gaps of

LP and SDP relaxations for the problem. In [13] is given a simple LP with gap 1.5 for the case

when every edge in E connects two leaves of T . Recently, Cheriyan and Gao [1] showed that

a certain SDP relaxation obtained by the Lasserre lift-and-project method has integrality gap

7/4 + ǫ. Here we show, by a simple and short proof, that a modification of the LP used in [13]

has integrality gap 7/4, which is achieved by the combinatorial algorithm of [12].

1 Introduction

A graph (possibly with parallel edges) is k-edge-connected if there are k pairwise edge-disjoint paths

between every pair of its nodes. We study the following fundamental connectivity augmentation

problem: given a connected undirected graph G = (V, E) and a set of additional edges (called

“links”) E on V disjoint to E , find a minimum size edge set F ⊆ E such that G+F = (V, E ∪F) is

2-edge-connected. The 2-edge-connected components of the given graph G form a tree. It follows

that by contracting these components, one may assume that G is a tree. Hence, our problem is:

Tree Augmentation Problem (TAP)

Instance: A tree T = (V, E) and a set of edges (called links) E on V disjoint to E .

Objective: Find a minimum size subset F ⊆ E of links such that T ∪ F is 2-edge-connected.

TAP can be formulated as the problem of covering a laminar family as follows. Root T at some

node r. Every edge of T partitions T into two parts T ′ and T \ T ′, where r /∈ T ′; let Ê denote

the set family obtained by picking for each edge the part T ′ that does not contain r. Then Ê is

laminar, and F ⊆ E is a feasible solution for TAP if and only if F covers Ê , namely, for every

T ′ ∈ Ê there is a link in F from T ′ to T \ T ′. TAP is also equivalent to the problem of augmenting

∗Partially supported by NSF grant number 0728787.

1

the edge-connectivity from k to k + 1 for any odd k; this is since the family of minimum cuts of a

k-connected graph with k odd is laminar.

The best known approximation ratio for TAP is 1.5 [5, 12]. Several paper analysed integrality

gaps of LP and SDP relaxations for the problem. In [13] is given a simple LP with gap 1.5 for

LL-TAP – a special case of TAP where every link in E connects two leaves of T . In [13] is also

given a 17/12-approximation algorithm for LL-TAP. Recently, Cheriyan and Gao [1] showed that

for TAP, a certain SDP relaxation obtained by the Lasserre lift-and-project method has integrality

gap 7/4 + ǫ. This is the first approximation for general TAP with respect to some mathematical

program. Here we show, by a simple and short proof, that a modification of the LP used in [13] has

integrality gap 7/4, which is achieved by (a modification of) the combinatorial algorithm of [12].

In the more general Weighted TAP problem, the links in E have weights {we : e ∈ E} and the

goal is to find a minimum weight augmenting edge set F ⊆ E such that T ∪F is 2-edge connected.

This problem admits several 2-approximation algorithms [6, 10, 7, 8]. The approximation ratio

of 2 for all these algorithms is tight even for TAP. These algorithms achieve ratio 2 w.r.t. to the

standard LP-relaxataion, that seeks to minimize
∑

e∈E wexe over the polyhedron:

{

x ∈ R
E : x(δ(A)) ≥ 1 ∀A ∈ Ê , xe ≥ 0 ∀e ∈ E

}

where δ(A) denotes the set of links with exactly one endnode in A and x(F) =
∑

e∈E xe. This LP

has integrality gap at least 1.5 for TAP [3], and at most 5/3 for LL-TAP [13].

Breaking the ratio of 2 for Weighted TAP is a major open problem in network design, see the

surveys [9, 11]. Several algorithms are known for special cases. In [2] is shown how to round a

half-integral solution to the above LP within ratio 4/3. However, there are instances that do not

have an LP optimal solutions which is half integral. In [4] is given an algorithm with ratio (1+ln 2)

and running time nf(D) where D is the diameter of T . Studying various LP-relaxations for TAP is

motivated by the hope that these may lead to breaking the ratio of 2 for Weighted TAP.

For u, v ∈ V let (u, v) ∈ E denote the edge in T and uv the link in E between u and v. A link

uv covers all the edges along the path P (uv). The choice of the root r defines a partial order on

V : u is a descendant of v (or v is an ancestor of u) if v belongs to P (ru); if, in addition, (u, v) ∈ T ,

then u is a child of v, and v is the parent of u. The leaves of T are the nodes in V \ {r} that have

no descendants. We denote the leaf set of T by L(T), or simply by L, when the context is clear.

The rooted subtree of T induced by r′ and its descendants is denoted by Tr′ (r
′ is the root of Tr′).

A subtree T ′ of T is called a rooted subtree of T if T ′ = Tr′ for some r′ ∈ V .

Definition 1.1 (shadow) Let P (uv) denote the path between u and v in T . A link u′v′ is a

shadow of a link uv if P (u′v′) ⊆ P (uv).

Every TAP instance can be rendered closed under shadows by adding all shadows of existing

links. We refer to the addition of all shadows as shadow completion. Shadow completion does not

affect the optimal solution size, since every shadow can be replaced by some link covering all edges

2

covered by the shadow. Thus we may assume that the set of links E is closed under shadows.

Definition 1.2 (twin link and stem) A link between two leaves of T is a twin link if its con-

traction results in a new leaf; the least common ancestor of the endnodes of a twin link is called a

stem. Let W denote the set of twin links, and for e ∈W let se denote the stem of e.

For A,B ⊆ V and F ⊆ E let δF (A,B) denote the set of links in F with one end in A and the

other end in B, and let δF (A) = δF (A, V \A) denote the set of links in F with exactly one endnode

in A. The default subscript in the above notation is E. Let L denote the set of leaves of T and let

OL = {A ⊆ V : |A ∩ L| is odd}. For a function x on E and F ⊆ E let x(F) =
∑

e∈F xe.

Let Π be the polyhedron defined by the following set of linear constraints:

x(δ(A)) ≥ 1 ∀A ∈ E (1)

x(δ(v)) = 1 ∀v ∈ L (2)

x(δ(A, V)) ≥ ⌈|A ∩ L|/2⌉ ∀A ∈ OL (3)

xe − x(δ(se)) = 0 ∀e ∈W (4)

xe ≥ 0 ∀e ∈ E (5)

Inequalities (1) and (5) are the constraints of a standard LP-relaxation for TAP. Validity of the

constraints (2) and (3) was already observed in [13, 12], and we add over it the constraints in (4).

Specifically, without the constraints in (4) the above LP was shown to have integrality gap 3/2 for

LL-TAP, but for TAP the constraints in (4) are crucial.

Now we explain why the above LP is a relaxation for TAP.

Definition 1.3 (exact cover) An edge set F is an exact cover of L if |δF (v)| = 1 for all v ∈ L.

Lemma 1.1 ([12]) Given a TAP instance with shadow completion, let F be an optimal shadows-

minimal solution with |F ∩W | maximal. Then F is an exact cover of L, and for any e = ab ∈W ,

either e ∈ F and |δF (se)| = 1, or e /∈ F and |δF (se)| = 0.

Let ΠL be the polyhedron defined by (2), (3), and (5). The extreme points of ΠL are the

characteristic vectors of the exact edge-covers of L, see [14]; thus by Lemma 1.1, these constraints

are valid. The validity of the constraints (4) follows also from Lemma 1.1. Consequently, the LP

τ = min{x(E) : x ∈ Π} is a relaxation for TAP. Combining techniques from [13, 12] and using some

new methods, we prove the following.

Theorem 1.2 TAP admits a polynomial time algorithm that computes a solution F such that

|F | ≤ 7
4τ .

3

2 Proof of Theorem 1.2

Let S = {se : e ∈W} be the set of stems of T and let R = V \ (L∪S). Let ρ ≥ 1.5 be a parameter,

set later to ρ = 7/4. Define a weight function w on E(L, V) by:

we =











ρ if e ∈ δ(L,L) \W

ρ− 1
2 if e ∈ δ(L, V \ L)

ρ+ 1
2 if e ∈W

Lemma 2.1 Let FL be a minimum weight exact cover of L and x ∈ Π such that x(E) = τ . Then:

ρτ ≥ w(FL) +
1

2

∑

v∈R

x(δ(v)). (6)

Proof: Let x′ be defined by x′e = xe if e ∈ δ(L, V) and x′e = 0 otherwise. Note that x′ ∈ ΠL, since

x satisfies (2), (3), and (5). Since FL is an optimal (integral) exact cover of L with respect to the

weights we and x′ ∈ ΠL, x
′ · w ≥ w(FL). Thus to prove the lemma, it is sufficient to prove the

following:

ρτ ≥ x′ · w +
1

2

∑

v∈R

x(δ(v)) .

Assign ρxe tokens to every e ∈ E. The total amount of tokens is exactly ρx(E) = ρτ . We will

show that these tokens can be moved around such that the following holds:

(i) every e ∈ δ(L,L), and thus every e ∈W , keeps its initial ρxe tokens.

(ii) every e ∈ δ(L, V \ L) keeps (ρ− 1
2)xe tokens from its initial ρxe tokens.

(iii) every v ∈ R gets 1
2xe tokens for each e ∈ δ(v).

(iv) every e ∈W gets additional 1
2xe tokens, to a total of (ρ+ 1

2)xe tokens.

This distribution of tokens is achieved in two steps. In the first step, for every e ∈ E, move 1
2xe

token from the ρxe tokens of e to each non-leaf endnode of e, if any. Note that after this step,

(i) and (ii) hold, and every v ∈ V \ L gets 1
2xe token for each e ∈ δ(v). In the second step, every

e ∈ W gets all the tokens moved at the first step to its stem se by the links in δ(se). The amount

of such tokens is 1
2x(δ(se)) =

1
2xe, by (4). This gives an assignment of tokens as claimed, and thus

the proof of the lemma is complete. �

To prove Theorem 1.2 we prove the following.

Theorem 2.2 For ρ = 7/4 there exist a polynomial time algorithm that given an instance of TAP

computes a solution I of size at most the right-hand size of (6). Thus |I| ≤ 7
4τ .

In the rest of the paper we prove Theorem 2.2. The algorithm as in Theorem 2.2 is an adjustment

of the 1.5-approximation algorithm of [12] for TAP. Let FL be a minimum w-weight exact cover of

L. Let M = δFL
(L,L). Initially, the algorithm assigns coupons to leaves unmatched by M and to

4

links in M , such that the total number of coupons assigned equals w(FL). For technical reasons,

we also assign 1 coupon to the root r of T .

Initial assignment of coupons: Every link in M \W gets ρ coupons, every link in M ∩W gets ρ+ 1
2

coupons, every unmatched leaf gets ρ− 1
2 coupons, and r gets 1 coupon. By Lemma 2.1, the total

amount of coupons plus 1
2

∑

v∈R x(δ(v)) is at most ρτ .

To contract a rooted subtree T ′ of T is to combine all nodes in T ′ into a single node v. The

edges and links with both endpoints in T ′ are deleted. The edges and links with one endpoint in

T ′ now have v as their new endpoint. For a set of links I ⊆ E, let T/I denote the tree obtained by

contracting every 2-edge-connected component of T ∪ I into a single node. Since all contractions

are induced by subsets of links, we refer to the contraction of every 2-edge-connected component

of T ∪ I into a single node simply as the contraction of the links in I.

Our algorithm iteratively contracts certain subtrees of T/I. We refer to the nodes created by

contractions as compound nodes. Each compound node always owns 1 coupon. Non-compound

nodes are referred to as original nodes (of T). Each time a contraction takes place, the new

compound node gets 1 coupon, which together with the links added is paid by the total credit of

the contracted subtree. For technical reasons, r is also considered as a compound node.

Definition 2.1 Let uv ∈ E such that coupons(P (uv)) ≥ 2 and either both u, v are unmatched by

M , or uv ∈ M . Then adding uv to the partial solution I and assigning 1 coupon to the obtained

compound node is called a greedy contraction.

One of the steps of the algorithm is to apply greedy contractions exhaustively; clearly, this can

be done in polynomial time. We have following properties of the matching M on leaves of T/I.

Lemma 2.3 After all greedy contractions are exhausted, M is a matching on the original leaves

(thus x(δ(v)) = 1 for every node v matched by M) such that:

(i) No contraction of a link in M creates a new leaf; in particular, M ∩W = ∅.

(ii) If two leaves a, b are unmatched by M then ab /∈ E.

Proof: Property (M1) is proved in [12]. (M2) holds since any link ab ∈ E such that a, b are

unmatched by M gives a greedy contraction. �

Definition 2.2 ([12]) A rooted subtree T ′ of T/I is M -compatible if for any bb′ ∈M either both

b, b′ belong to T ′, or none of b, b′ belongs to T ′. A set of links B′ is an exact cover of T ′ if the set

of edges of T/I that is covered by B′ equals the set of edges of T ′.

We use the following notation for the credit distributed in a rooted subtree T ′ of T/I. Let

coupons(T ′) denote the total number of coupons owned by nodes of T ′ and by links in M with

both endnodes in T ′. Let R′ = R∩T ′ and credit(T ′) = coupons(T ′)+ 1
2

∑

v∈R′ x(δ(v)). In the next

section we will prove the following key statement.

Lemma 2.4 There exists a polynomial time algorithm that finds an M -compatible subtree T ′ of

5

T/I and an exact cover B′ ⊆ E of T ′ such that credit(T ′) ≥ |B′|+ 1.

Algorithm Tree-Cover (Algorithm 1) initiates I ← ∅ as a partial cover. It computes a

minimum w-weight exact edge cover FL of L, sets M = δ(FL, FL) and initiates the described credit

scheme. In the main loop, the algorithm iteratively exhausts greedy contractions, then computes

T ′, B′ as in Lemma 2.4, adds B′ to I, contracts T ′, and leaves a coupon on the created compound

leaf. The stopping condition is when I covers T , namely, when T/I is a single node.

It is easy to see that all the steps in the algorithm can be implemented in polynomial time.

The credit scheme used implies that the algorithm computes a solution I of size at most ρ times

the right-hand size of (6). Hence it only remains to prove Lemma 2.4.

Algorithm 1: Tree-Cover(T = (V, E), E) (A 1.5-approximation algorithm)

1 initialize: I ← ∅

2 FL ← minimum w-weight exact edge cover of L, M ← δFL
(L,L).

3 Give ρ coupons to every link in M \W , give ρ+ 1
2 coupons to every link in M ∩W , give

ρ− 1
2 coupons to every unmatched leaf, and give 1 coupon to r.

4 while T/I has more than one node do

5 Exhaust greedy contractions and update I and M accordingly.

6 Find a subtree T ′ of T/I and a cover B′ of T ′ as in Lemma 2.4.

7 Contract T ′, assign 1 coupon to the new compound leaf, and set I ← I ∪B′.

8 return I

3 Proof of Lemma 2.4

The up-link up(a) of a node a is the link au such that u is as close as possible to the root; assuming

shadows completion, u is an ancestor of a. For U ⊆ V , we let up(U) = {up(u) : u ∈ U}. A rooted

subtree T ′ of T is a-closed if up(a) belongs to T ′, and T ′ is a-open otherwise.

Definition 3.1 (Semi-closed tree) A rooted subtree T ′ of T/I is semi-closed (w.r.t. a matching

M on the leaves of T/I) if it is M -compatible and closed w.r.t. its unmatched leaves. T ′ is minimally

semi-closed if T ′ is semi-closed but any proper subtree of T ′ is not semi-closed.

In what follows, let us use the following notation:

• L′ = L(T ′) is the set of leaves of T ′ and S′ = S(T ′) is the set of stems of T ′.

• R′ = V (T ′) \ (L′ ∪ S′) and Σ =
∑

v∈R′ x(δ(v)).

• M ′ = M(T ′) is the set of links in M with both endnodes in T ′.

• U ′ is the set of leaves of T ′ unmatched by M , and U ′

0 is the set of the original leaves in U ′.

• C ′ is the set of non-leaf compound nodes of T ′ (recall that this includes r, if r ∈ T ′).

• B(T ′) = M ′
⋃

up(U ′) (hence |B(T ′)| = |M ′|+ |U ′| = |L′| − |M ′|).

6

Lemma 3.1 ([12]) If T ′ is minimally semi-closed then B(T ′) is an exact cover of T ′.

Definition 3.2 (deficient tree) A semi-closed tree T ′ is deficient if credit(T ′) < |B(T ′)|+ 1.

Definition 3.3 (dangerous tree) A semi-closed tree T ′ is dangerous if |C ′| = |S′| = 0, |M ′| = 1,

|L′| = 3, and there exists an ordering a, b, b′ of L′ such that bb′ ∈ M ′, ab′ ∈ E, the contraction of

ab′ does not create a new leaf, and T ′ is b-open.

We prove the following.

Lemma 3.2 Any deficient tree is dangerous.

Note that we can check in polynomial time whether a given rooted subtree of T/I is dangerous.

If T/I has a minimally semi-closed subtree T ′ that is not dangerous, then T ′ is not deficient, so

T ′ and B(T ′) satisfy the requirement of Lemma 2.4. Thus we will assume that all minimally semi-

closed subtrees of T/I are dangerous. In this case, it is shown in [12] that Algorithm 2 below finds

an M -compatible tree T ′ and its cover B′ such that credit(T ′) ≥ |B′|+ 1.

Algorithm 2: Find-Tree(T = (V, E), E,M) (Finds a non-deficient tree T ′ and its cover B′

such that |B′| = |B(T ′)|, when all minimally semi-closed trees are dangerous.)

1 Let M̃ be a matching on the leaves of T/I obtained from M by replacing the link e = bb′ by

the link ẽ = ab′ in every dangerous tree T0 of T .

2 Let T ′ be a minimally semi-closed tree w.r.t. the matching M̃ .

3 return T ′ and B′ = M̃(T̃ ′)∪ up(Ũ ′), where Ũ ′ is the set of unmatched leaves of T ′ w.r.t. M̃ .

The proof of Lemma 2.4 is now complete. It remains only to prove Lemma 3.2.

4 Proof of Lemma 3.2

Let T ′ be a deficient tree with root r′. We will show that T ′ is dangerous. Note that |B(T ′)| =

|M ′|+ |U ′| and that coupons(T ′) = ρ|M ′|+ |U ′|+ (ρ− 1
2)|U

′

0|+ |C
′|. Hence for ρ = 7/4 we have:

coupons(T ′)− |B(T ′)| = (ρ− 1)|M ′|+ (ρ−
3

2
)|U ′

0|+ |C
′| =

7

4
|M ′|+

1

4
|U ′

0|+ |C
′| . (7)

Claim 4.1 |C ′| = 0, |M ′| ≤ 1, and |S′| = 0.

Proof: From (7) we immediately get that |C ′| = 0, |M ′| ≤ 1, and if |M ′| = 1 then |U ′

0| = 0. To

see that |S′| = 0, note that if |S′| ≥ 1, then Lemma 2.3 implies the contradiction |M ′| = 1 and

|U ′

0| ≥ 1. �

Claim 4.2 Σ ≥ |U ′|+ 1− 2|M ′|. Thus |M ′| = 1, Σ < 1/2, and |L′| = 3.

Proof: Let E′ = δ(U ′) ∪ δ(T ′). Note that x(E′) ≥ |U ′|+ 1. If e ∈ δ(U ′), then e contributes xe to

Σ, unless e is incident to a matched leaf. However, x(δ(b)) = 1 for every matched leaf b, and the

number of matched leaves in T ′ is 2|M ′|. Hence Σ ≥ x(E′) ≥ |U ′|+ 1− 2|M ′|, as claimed.

7

θ

T\T’

α

γ ε
β

r

u

u

a b

b’

’

’

Figure 1: Illustration to the proof of Lemma 3.2 (links in E1 are shown by dashed lines).

We prove the second statement. If |M ′| 6= 1, then since |M ′| ≤ 1, we must have |M ′| = 0;

this implies Σ ≥ |U ′| + 1 ≥ 2, which gives the contradiction credit(T ′) − |B(T ′)| ≥ 1
2Σ ≥ 1. Thus

|M ′| = 1. If Σ ≥ 1
2 , then credit(T ′)− |B(T ′)| ≥ 7

4 |M
′|+ 1

2Σ ≥ 1. We show that |L′| = 3. If |L′| ≤ 2

then |M ′| = 0, as otherwise we get a contradiction to Lemma 2.3(i). Also, |L′| ≥ 4 is not possible,

since then |U ′| ≥ 2, which implies the contradiction Σ ≥ |U ′|+ 1− 2|M ′| ≥ 1. �

Let bb′ be the matched pair and a the unmatched leaf of T ′. Let u and u′ be the least common

ancestor of ab and ab′, respectively, and assume w.l.o.g. that u is a descendant of u′ (see Fig. 1).

Let xab = α, xbb′ = β, xab′ = γ, x(δ(b, T \ T ′) = ǫ, and x(δ(b′, T \ T ′) = θ. To finish the proof of

the lemma, it is sufficient to show the following:

• If u 6= u′, then γ > 0 and ǫ > 0.

• If u = u′, then at least one of the following holds: γ, ǫ > 0 or α, θ > 0.

Indeed, if u 6= u′, then γ > 0 implies that the link ab′ exists, and ǫ > 0 implies that T ′ is b-open.

Thus, by the definition, T ′ is dangerous. The same holds if u = u′ and γ, ǫ > 0. If u = u′ and

α, θ > 0, then ab exists (since α > 0) and T ′ is b′-open (since θ > 0); thus by exchanging the roles

of b, b′ we get that T ′ is dangerous, by the definition. Consider the following links sets:

• E1 = δ({a, b}, R′) = x(δ(a,R′)) + x(δ(b, R′)) are the links from a, b to R′.

• E2 = δ(Tu \ {a, b}, T \Tu) = δ(Tu ∩R
′, T \Tu) are the links from Tu ∩R

′ to nodes outside Tu.

• E3 = δ(R′, T \ T ′) are the links from R′ to nodes outside T ′.

Any e ∈ E1 ∪ E2 ∪ E3 contributes xe to Σ. Recalling that x(δ(b)) = x(δ(b′)) = 1 and x(δ(a)) ≥ 1,

it is easy to verify that:

(i) Σ ≥ x(E1) + x(E2) = x(δ(Tu))− γ ≥ 1− γ if u 6= u′.

The first inequality is since every e ∈ E1 ∪ E2 contributes xe to Σ and since E1 ∩ E2 = ∅.

(ii) Σ ≥ x(E1) = x(δ(a,R′)) + x(δ(b, R′)) ≥ x(δ(a,R′)) ≥ x(δ(a))− α− γ ≥ 1− α− γ.

(iii) Σ ≥ x(E3) ≥ x(δ(T ′, T \ T ′))− θ − ǫ ≥ 1− θ − ǫ.

(iv) α+ ǫ ≤ 1 (since x(δ(b)) = 1) and γ + θ ≤ 1 (since x(δ(b′)) = 1).

8

Suppose that u 6= u′. Then 1/2 > Σ ≥ 1 − γ, by (i); hence γ > 1/2. If ǫ = 0 then (iii) implies

θ > 1/2, and we obtain a contradiction to (iv) γ + θ > 1. Thus, γ, ǫ > 0 in this case, as claimed.

Suppose that u = u′. By (ii) and (iii), α+ γ > 1/2 and θ + ǫ > 1/2. One can easily verify that

combined with (iv) this gives that we must have γ > 0 and ǫ > 0, or α > 0 and θ > 0, as claimed.

This concludes the proof of Lemma 3.2.

References

[1] J. Cheriyan and Z. Gao. Approximating unweighted tree augmentation via lift-and-project.

Manuscript, 2014.

[2] J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packing of laminar families. In

ESA, pages 510–520, 1999.

[3] J. Cheriyan, H. Karloff, R. Khandekar, and J. Koenemann. On the integrality ratio for tree

augmentation. Oper. Res. Lett., 36(4):399–401, 2008.

[4] N. Cohen and Z. Nutov. A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-

connectivity augmentation of trees with constant radius. Theor. Comput. Sci., 489-490:67–74,

2013.

[5] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 3/2-approximation for augmenting a

connected graph into a two-connected graph. In APPROX, pages 90–101, 2001.

[6] G. N. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation

problems. SIAM J. Computing, 10:270–283, 1981.

[7] M. Goemans, A. Goldberg, S. Plotkin, E. T. D. Shmoys, and D. Williamson. Improved

approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

[8] K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.

Combinatorica, 21(1):39–60, 2001.

[9] S. Khuller. Approximation algorithms for finding highly connected subgraphs (chapter 6). In

Approximation algorithms for NP-hard problems (Ed. D. S. Hochbaum). PWS, Boston, 1996.

[10] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. J. of

Algorithms, 14:214–225, 1993.

[11] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems (chapter 58).

In Handbook of Approximation Algorithms and Metahueristics (Ed. T. F. Gonzales). Chapman

& Hall/CRC, 2007.

9

[12] G. Kortsarz and Z. Nutov. A simplified 1.5-approximation algorithm for augmenting edge-

connectivity of a graph from 1 to 2. Manuscript, 2014.

[13] Y. Maduel and Z. Nutov. Covering a laminar family by leaf to leaf links. Discrete Applied

Mathematics, 158(13):1424–1432, 2010.

[14] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag Berlin,

Heidelberg New York, 2004.

10

