
The Open University of Israel
Department of Mathematics and Computer Science

Covering a Laminar Family
by Leaf to Leaf Links

Thesis submitted as partial fulfillment of the requirements

towards an M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

By

Yael Maduel

Prepared under the supervision of Prof. Zeev Nutov

April 2009

Abstract

The Tree Augmentation Problem (TAP) is: given a tree T = (V, E) and a set E of

edges (called links) on V disjoint to E , find a minimum size edge subset F ⊆ E so that

T +F is 2-edge-connected. TAP is equivalent to the problem of finding a minimum size

edge-cover F ⊆ E of a laminar set-family. We consider the restriction LL-TAP of TAP

to instances when every link in E connects two leaves of T . The best approximation

ratio for TAP is 3/2 [3, 4, 5], and no better ratio was known for LL-TAP. All the

previous approximation algorithms that achieve a ratio better than 2 for TAP, or even

for LL-TAP, were quite involved.

For LL-TAP we obtain the following approximation ratios: 17/12 for general trees,

11/8 for trees of height 3, and 4/3 for trees of height 2. We also give a very simple

3/2-approximation algorithm (for general trees) and prove that it computes a solution

of size at most min{ 3

2
t, 5

3
t∗}, where t is the minimum size of an edge-cover of the leaves,

and t∗ is the optimal value of the natural LP-relaxation for the problem of covering the

leaf edges only. This provides the first evidence that the integrality gap of a natural

LP-relaxation for the problem is less than 2.

1

Acknowledgments

I wish to thank my thesis advisor, Prof. Zeev Nutov, for always being friendly and always

willing to help. Thank you for your time, efforts, guidance, patience and help.

I wish to thank my family, Yoram, Tamir and Or, for being supporting and understanding.

Special thanks to my husband Yoram, who always believes in me and without him I wouldn’t

have done this.

2

Contents

1 Introduction 4

2 Algorithm with ratio 3/2 (Proof of Theorem 1.1) 7

2.1 The lower bound . 7

2.2 The algorithm and its analysis . 7

2.3 Integrality gap . 9

2.4 A tight example . 10

3 Algorithm with ratio 17/12 (Proof of Theorem 1.2) 11

3.1 The lower bound . 11

3.2 The algorithm and its analysis . 12

3.3 Algorithm for trees of height ≤ 3 . 15

4 Conclusions and open problems 20

List of Figures

1 Illustration to the proof of Proposition 2.1 (links are shown by dashed lines). 7

2 A tight example; tree edges are shown by bold lines, the matching M is shown

by thin lines. 10

3

1 Introduction

We consider the following problem:

Tree Augmentation Problem (TAP)

Instance: A tree T = (V, E) and a set E of edges (called links) on V disjoint to E .

Objective: Find a min-size edge subset F ⊆ E so that T + F is 2-edge-connected.

TAP is equivalent to the problem of finding a minimum size edge-cover of a laminar family;

namely, given a graph G = (V,E) and a laminar family E on V , we seek a minimum size

edge-set F ⊆ E so that for every S ∈ E there exists uv ∈ F with u ∈ S and v /∈ S. Laminar

families play an important role in network design problems, c.f. [9]. See also surveys in [8, 11]

for various network design problems and applications of laminar families in the analysis of

algorithms for such problems.

Fredrickson and Jájá [6] showed that TAP is NP-hard even for trees of height 2, and

gave a 2-approximation algorithm for the more general weighted version of TAP, when links

have weights and we seek a minimum weight augmenting edge set F ⊆ E. Achieving a

ratio better than 2 for TAP was posed as a major open problem in graph connectivity in

the survey by Khuller [10]. This open question was resolved by Nagamochi [12] that gave a

(1.875 + ε)-approximation scheme for TAP. The currently best approximation ratio known

for TAP is 3/2, by Even, Feldman, Kortsarz, and Nutov: see the conference version in [3],

and the two part full version in [4, 5].

For S ⊆ V let δ(S) denote the set of links in E with exactly one endnode in S; let

E(S) denote the set of links in E with both endnodes in S. For E ′ ⊆ E and x ∈ RE let

x(E ′) =
∑

e∈E′ xe. Let τ ∗ denote the optimal value of the following standard LP-relaxation

for a TAP instance at hand:

τ ∗ = min x(E) (1)

s.t. x(δ(S)) ≥ 1 ∀S ∈ E

xe ≥ 0 ∀e ∈ E

Let τ denote the optimal value of a stronger LP-relaxation, which is obtained by adding to

(1) the ”leaf edge-cover integrality constraints” (see Chapter 27 in [13]):

τ = min x(E) (2)

s.t. x(δ(S)) ≥ 1 ∀S ∈ E

x(E(U) ∪ δ(U)) ≥ d|U |/2e ∀U ⊆ L with |U | odd

xe ≥ 0 ∀e ∈ E

4

Let t∗ denote the optimal value of the relaxation of (1) for the problem of covering only

the leaf edges, and similarly t is defined by relaxing (2). Namely:

t∗ = min {x(E) : x(δ(v)) ≥ 1 ∀v ∈ L, x ≥ 0} . (3)

t = min {x(E) : x(E(U) ∪ δ(U)) ≥ d|U |/2e ∀U ⊆ L with |U | odd, x ≥ 0} . (4)

Let LL-TAP be the restriction of TAP to instances when the endnodes of every link are

leaves of T . In the covering laminar family setting, this is equivalent to requiring that every

link has its endnodes in the minimal members of the laminar family, or that the laminar

family contains all the singletons, see [7]. The case when T is a star is equivalent to the

Edge-Cover problem. In this case τ ∗ = t∗, and τ = t is the optimal solution value, see

Chapter 27 in [13]. In general, τ ≥ τ ∗ and t ≥ t∗, and an equality may not hold.

LL-TAP was studied in several papers. Garg, Khandekar, and Talwar [7] gave a 5/3-

approximation algorithm for LL-TAP. Cheriyan, Jordán, and Ravi [1] showed that even the

special case of LL-TAP when the set of links forms a cycle on the leaves remains NP-hard,

and gave, for this restricted case, a 4/3-approximation algorithm that computes a solution

of size at most 4/3 · τ ∗. Motivated by this, they conjectured that the integrality gap of

the LP-relaxation (1) for the general TAP is 4/3. This conjecture was recently disproved

by Cheriyan, Karloff, Khandekar, and Könemann [2], that showed that the integrality gap

of (1) is at least 3/2. It is believed that the integrality gap of (1) is less than 2, but so

far there was no evidence that this is so even for LL-TAP. We also note that so far, all the

approximation algorithms that achieve a ratio better than 2 for TAP [12, 4, 5], or even for

LL-TAP [7, 1], were quite involved.

Here is some notation used in the paper. Given an instance T = (V, E), E of TAP, for

u, v ∈ V let (u, v) ∈ E denote the edge in T and uv the link in E between u and v. Fix a

designated node r to be the root of T ; this defines a partial order on the nodes of T . For

a, b ∈ V , a ≺ b means that a is a proper descendant of b, and if (a, b) ∈ E then b = p(a) is

the parent of a. A node is a leaf of T if it has no descendants; let L = L(T) the set of leaves

of T . Tuv denotes the unique uv-path in T , and Ta denodes the subtree of T rooted at a.

lca(u, v) is the least common ancestor of u, v in T . A link uv covers an edge e if e ∈ Tuv. For

a set L′ of leaves, up(L′) is a link in E with an endpoint in L′ covering the highest edge. For

a link set E ′ and a subtree T ′ of T let T ′ ∩ E ′ be the set of links in E ′ with both endnodes

in T ′; let V (E ′) be the set of endnodes of the links in E ′.

If we add a link uv to a partial solution F , then Tuv belongs to the same 2-edge-connected

component of T + F . Hence, we may contract Tuv. Since all contractions we do are induced

5

by subsets of links, we refer to the contraction of every 2-edge-connected component of T +F

into a single node simply as the contraction of the links in F .

Definition 1.1 A link uv ∈ Ta ∩ E is redundant for a node a 6= r if every link that covers

the edge (a, p(a)) is incident to u or to v, namely, if

{x ∈ Ta : there is xy ∈ E with y ∈ T − Ta} ⊆ {u, v}.

Let R denote the set of redundant links.

We will consider LL-TAP, when every link has both endnodes in L, and obtain the fol-

lowing results:

Theorem 1.1 For LL-TAP, opt ≥ |L| − |M |, and there exists a polynomial time algorithm

that computes a solution F of size |F | ≤ |L| − |M |/2 ≤ 3/2 · opt, where M is a maximum

matching in E − R. Furthermore, if the LL-TAP instance has no redundant links, then

|F | ≤ 5/3 · t∗ ≤ 5/3 · τ ∗ and |F | ≤ 3/2 · t ≤ 3/2 · τ .

Theorem 1.2 LL-TAP admits the following approximation ratios: 17/12 for general trees,

11/8 for trees of height 3, and 4/3 for trees of height 2.

6

a

vu

a

u v

Figure 1: Illustration to the proof of Proposition 2.1 (links are shown by dashed lines).

2 Algorithm with ratio 3/2 (Proof of Theorem 1.1)

2.1 The lower bound

Let U be the set of M -exposed leaves. We prove that opt ≥ |M |+ |U | = |L| − |M |.

Modify the LL-TAP instance by adding for every link uv ∈ E the dummy links ua, va,

a = lca(u, v). Clearly, this does not change the optimum and does not affect M . The next

statement shows that then removing the redundant links does not increase opt.

Proposition 2.1 After adding the dummy links, for any feasible solution F there exists a

feasible solution F ′ ⊆ E −R so that |F ′| ≤ |F |.

Proof: Let uv ∈ F ∩R be redundant for a 6= r (see Fig 1), namely, any link in E that covers

(a, p(a)), is incident to u or to v. Thus F contains a link incident to u or to v that covers

(a, p(a)); w.l.o.g., assume there is such a link incident to u (see Fig. 1). It is easy to see that

replacing uv by the link between v and lca(u, v) gives a new feasible solution. In this way

we can eliminate all redundant links. 2

Let F ⊆ E be an optimal solution, let M ′ be a maximum matching in F −R, and let U ′

be the set of M ′-exposed leaves. By Proposition 2.1, |F | ≥ |M ′|+ |U ′| = |L| − |M ′|. Clearly,

|M ′| ≤ |M |. Thus |F | ≥ |L| − |M ′| ≥ |L| − |M | = |M |+ |U |.

2.2 The algorithm and its analysis

Here we give an algorithm that computes a solution F with |F | ≤ 3/2·|M |+|U | = |L|−|M |/2.

Assign credit to every member of M + U as follows. Every link in M gets 3/2 credit units,

while every node in U gets 1 credit. The total credit is 3/2 · |M |+ |U |. For technical reasons,

we also assign 1 credit unit to r. We will show that we can contract T with a set F of links

so that every link is paid by the assigned credit, and 1 credit unit (of r) remains.

7

Definition 2.1 Let Q denote the set of 2-edge-connected components of T + M . Q ∈ Q is

a lonely component if it contains exactly one link (a lonely link) in M and does not contain

r. Denote by Q′ the set of lonely components and by M ′ the set of lonely links.

The algorithm maintains a set A of active nodes, while obeying the following invariants:

1. Every M -exposed leaf is active and r is active.

2. Every endnode of a link is either an M -covered leaf or an active node.

3. For every uv ∈M ′ there is a link zw with z ∈ Ta−{u, v} that covers the edge (a, p(a)),

where a = lca(u, v) 6= r.

4. Every link in M owns 3/2 credit units, while every node in A owns 1 credit.

Initially, A ← U + r, and invariants 1,2,3,4 hold. Invariant 3 holds because uv is not

redundant. Then proceed as follows. The general idea is to contract all the links of M into

active nodes without over spending the credit.

Step 1: Contract into an active node every non-lonely component Q ∈ Q−Q′. Note that if

|Q ∩M | = q, then the credit of Q is 3/2 · q if r /∈ Q and 3/2 · q + 1 if r ∈ Q. Thus the extra

credit in Q is at least 3/2 · q − q ≥ 1 if q ≥ 2, and 2.5− 1 = 1.5 if q = 1 (since then r ∈ Q).

Step 2: While M ′ 6= ∅ do the following. Pick uv ∈ M ′ with the lowest lca(u, v), so there

is no u′v′ ∈ M ′ with lca(u′, v′) ≺ lca(u, v). Let zw be a link as in Invariant 3. Contract the

component of T +M ′+zw containing zw and uv. We show later that z ∈ A, hence if w ∈ A,

then the extra credit ≥ 1.5, while if w is an endnode of a link in M ′ the extra credit is 1.

Step 3: While T 6= {r} iteratively choose a link and contract it. As every link chosen

connects two active nodes, the extra credit is 1.

Lemma 2.2 At Step 2 of the algorithm, for the lonely link uv with the lowest lca(u, v),

z ∈ A holds for the link zw chosen.

Proof: Suppose to the contrary that z /∈ A. Then there is zw′ ∈ M ′, by Invariant 2. We

must have lca(z, w′) ≺ lca(u, v), as otherwise uv, zw′ belong to the same 2-edge-connected

component of T + M ′. This contradicts the choice of uv. 2

Proposition 2.3 The solution F constructed is feasible and |F | ≤ 3/2 · |M | + |U | ≤ |L| −

|M |/2.

Proof: F is feasible since T was contracted into r. It is easy to verify that Invariants 1,2,3,4

hold during Steps 1,2,3. Thus the second statement follows from the credit scheme used. 2

8

2.3 Integrality gap

Here we will prove that our algorithm computes an edge set F with |F | ≤ 5/3 · t∗ ≤ 5/3 · τ ∗

and |F | ≤ 3/2 · t ≤ 3/2 · τ .

Definition 2.2 A k-star is a star with k leaves (single edges are 1-stars). An `-cycle is a

cycle of length `.

The following statement is well known, c.f., [13].

Lemma 2.4 Let x be a basic feasible solution of LP (3). Then x is half integral, and the

set {e ∈ E : xe > 0} forms a collection of node disjoint stars and odd cycles (covering L),

so that: every e with xe = 1 belongs to a star, and every e with xe = 1/2 belongs to a cycle.

Lemma 2.5 |F | ≤ 5/3 · t∗ ≤ 5/3 · τ ∗.

Proof: Recall that |F | ≤ |L|−|M |/2. Thus it is sufficient to show that (|L|−|M |/2) ≤ 5t∗/3,

namely, that 2(|L| − 5t∗/3) ≤ |M |. Let x be an optimal basic feasible solution to (3) as in

Lemma 2.4. Let Q be the set of connected components of {xe : xe > 0}. For Q ∈ Q let MQ

be a maximum matching in Q, let LQ be the node set of Q, and let t∗Q =
∑

e∈Q xe. Clearly,

MQ =
⋃

Q∈Q MQ is a matching, so |M | ≥ |MQ|. It is enough therefore to prove that

2(|LQ| − 5t∗Q/3) ≤ |MQ| ∀Q ∈ Q .

Suppose that Q is a k-star, k ≥ 1. Then |MQ| = 1, |LQ| = k + 1, and t∗Q = k. In this

case 2(|LQ| − 5t∗Q/3) = 2(k + 1− 5k/3) = 2(1− 2k/3) ≤ 2/3 < 1 = |MQ|.

Suppose that Q is a (2k+1)-cycle, k ≥ 1. Then |MQ| = k, |LQ| = 2k+1, and t∗Q = k+1/2.

In this case 2(|LQ| − 5t∗Q/3) = 2[2k + 1− (5/3) · (k + 1/2)] = 2k/3 + 1/3 ≤ k = |MQ|. 2

Lemma 2.6 |F | ≤ 3/2 · t ≤ 3/2 · τ .

Proof: We have t = |L| − |M | and our algorithm computes a solution F of size |F | ≤

|L| − |M |/2. Since |M | ≤ |L|/2, we obtain |F |/t ≤ 3/2. 2

The proof of Theorem 1.1 is complete.

Remark: If we consider the case when E consist only of singletons, then we get the Edge-

Cover problem. In this case, the same method shows that |L| − |M | ≤ 4/3 · t∗. Indeed, one

can easily verify that |LQ| − 4/3 · t∗Q ≤ |MQ| for every Q ∈ Q. This proves the well known

fact that for Edge-Cover the integrality gap of (3) is at most 4/3.

9

r

Figure 2: A tight example; tree edges are shown by bold lines, the matching M is shown by

thin lines.

2.4 A tight example

We can show that the ratio between the optimum and the lower bound |L| − |M | can be

arbitrarily close to 3/2, hence a better lower bound is needed to get a ratio better than

3/2. We can also show the ratio between the optimum and the solution computed by the

algorithm is asymptotically 3/2, hence the analysis of our algorithm is tight. We do not

have one example that illustrates both phenomena, so we will give two related examples.

Consider the tree and the matching of links in Figure 2, where the tree edges are shown

by bold lines. Let k be the number of children of the root. Note that the lower bound is

|L| − |M | = 4k − 2k = 2k.

If all links not in M are incident to the same leaf v, then an optimal solution is obtained

by adding to M any k − 1 links between v and every subtree of r not containing v. Hence

opt = 3k − 1 in this case, and the ratio between the optimum and the lower bound is

asymptotically 3/2.

If the links form a clique on the leaves then there exists an optimal solution which is a

perfect matching on the leaves. Hence opt = 2k in this case. The algorithm may compute

a solution of size 3k − 1, by adding to M any k − 1 links between some node v and every

subtree of r not containing v. In this case the ratio between the optimum and the size of

the solution computed by the algorithm is asymptotically 3/2.

10

3 Algorithm with ratio 17/12 (Proof of Theorem 1.2)

3.1 The lower bound

Definition 3.1 A pair of non-adjacent links e, e′ ∈ E(Ta) − R is a dangerous link-pair for

a ∈ V − r if {x ∈ Ta : there is xy ∈ E with y ∈ T − Ta} ⊆ V ({e, e′}). A link is dangerous if

it belongs to some dangerous link-pair.

Lemma 3.1 Let F be a feasible solution. Among all maximum matchings in F −R, let M ′

be one with the minimum number d′ of dangerous links, and let U ′ be the set of M ′-exposed

leaves. Then

|F | ≥ |M ′|+ |U ′|+ max{d′ − |L|/4, 0}/2 = |L| − |M ′|+ max{d′ − |L|/4, 0}/2 .

Proof: By the lower bound in Theorem 1.1, |F | ≥ opt ≥ |M ′|+ |U ′|. Thus if d′ ≤ |L|/4, the

statement is true. Suppose that d′ > |L|/4. Then there is a set D′ of (at least) d′ − |L|/4

pairwise disjoint dangerous pairs in M ′. For every pair {e, e′} ∈ D′ that is dangerous for a

node a, there is a link xy ∈ F with x ∈ V ({e, e′}) and y ∈ V −Ta, to cover the edge (a, p(a)).

The number of such links is at least (d′−|L|/4)/2, since the pairs in D′ are pairwise disjoint

and since their union is a matching. Hence the statement will follow if for every {e, e′} ∈ D′

there is a link xy ∈ F as above so that at least one of the following holds: y /∈ U ′ or xy ∈ R.

Now suppose that y ∈ U ′ and xy /∈ R for some {e, e′} ∈ D′. Let M ′′ be obtained from M ′

by replacing the link among e, e′ incident to x by the link xy. Then M ′′ is also a maximum

matching in F − R. Note that xy must be dangerous (so M ′′ has also exactly d′ danderous

links), as otherwise M ′′ has less dangerous links than M ′, contradicting the choice of M ′.

Note also that a ≺ lca(x, y), while the lca of the endnodes of e, e′ is a descendant of a; this

implies lca(V ({e, e′})) ≺ lca(x, y), hence any sequence of such replacements cannot loop and

must terminate. Consequently, we can obtain a maximum matching M ′′ in F − R with

d′ − |L|/4 pairwise disjoint dangerous pairs so that if e, e′ ∈ M ′′ is a pair dangerous for a,

then there is a link xy ∈ F with x ∈ V ({e, e′}) and y ∈ V − Ta, so that at least one of the

following holds: y /∈ U ′ or xy ∈ R. This finishes the proof, as for this case we already proved

that the statement is valid. 2

Definition 3.2 Let ν denote the maximum size of a matching in E − R. For i = 0, . . . , ν

define:

• Mi ⊆ E −R is a matching of size i with minimum number di of dangerous links;

• Ui is the set of Mi-exposed leaves;

11

• f(i) = |Mi|+ |Ui|+ max{di − |L|/4, 0}/2 = |L| − i + max{di − |L|/4, 0}/2.

Clearly, di is uniquely determined for every i, and thus also f(i) is uniquely determined.

Lemma 3.2 f(i) can be computed in polynomial time for every i.

Proof: Add a set Q of |L| − i new nodes to the graph (L,E − R), and zero weight links

between Q and L. Assign weight > 1 to every dangerous link (other links keep unit weights).

Now, compute a minimum weight perfect matching M in the obtained graph. This can be

done in polynomial time using Edmond’s algorithm. It is easy to see that the links in M

with both endnodes in L is a minimum weight matching of size i in E −R. 2

Corollary 3.3 opt ≥ mini f(i).

Proof: Let F be an optimal solution and let M ′ be a maximum matching in F − R with

minimum number d′ of dangerous links. Let i = |M ′| and let U ′ the set of M ′-exposed leaves.

Note that di ≤ d′. Thus from Lemma 3.1 we have |F | ≥ f(i), and the statement follows. 2

3.2 The algorithm and its analysis

We will prove the following statement:

Theorem 3.4 For any i = 0, . . . , ν, there exists a polynomial time algorithm that computes

a solution F of size |F | ≤ (17/12) · f(i).

Theorem 1.2 easily follows from Corollary 3.3 and Theorem 3.4. By Lemma 3.2 we can

find the index j ∈ {0, . . . , ν} for which f(j) = mini f(i). Then we use the algorithm as in

Theorem 3.4 to compute a solution F of size |F | ≤ (17/12) · f(j). By Corollary 3.3, we have

|F | ≤ (17/12) · f(j) ≤ (17/12) · opt.

The proof of Theorem 3.4 follows. Let M = Mi, U = Ui, and d = di. Assign credit to

every member of M +U as follows. Every link in M gets: 3/2 credit units if it is dangerous,

and 4/3 credit units otherwise. Every leaf in U gets 1 credit. The total credit assigned is

4

3
|M |+ |U |+

d

6
≤

17

12
(|M |+ |U |)−

1

24
(2|M |+ |U |) +

d

6

=
17

12
(|M |+ |U |) +

1

6
(d− |L|/4|)

≤
17

12

(

|M |+ |U |+
1

2
max{d− |L|/4, 0}

)

=
17

12
· f(i) .

For technical reasons, we also assign 1 credit unit to r. We will show that we can contract

T so that every link is paid by the assigned credit, and 1 credit unit (of r) remains. The

algorithm maintains the following invariants:

12

1. Every link in M owns 3/2 credit units if it is dangerous, and 4/3 credit units otherwise.

Every M -exposed leaf of T owns 1 credit, and r owns 1 credit.

2. Every endnode of a link is a leaf, and every M -covered leaf is an original leaf of T .

3. For every a 6= r and uv ∈M ∩Ta there is a link zw with z ∈ L(Ta)−{u, v} that covers

the edge (a, p(a)).

4. For every a 6= r and u1v1, u2v2 ∈ M ∩ Ta so that one of u1v1, u2v2 is not dangerous,

there is a link zw with z ∈ Ta − {u1, v1, u2, v2} that covers the edge (a, p(a)).

Note that initially Invariants 1,2,3,4 hold. Invariant 3 holds since uv is not redundant,

and Invariant 4 holds since the pair u1v1, u2v2 is not dangerous. Later, we will prove:

Lemma 3.5 Suppose that Invariants 1-4 hold. Then there exists a polynomial time algo-

rithm that finds a rooted subtree T ′ of T and a cover B ′ ⊆ E∩T ′ so that credit(T ′) ≥ |B′|+1,

and so that for any b1b2 ∈M either both b1, b2 belong to T ′, or none of b1, b2 belongs to T ′.

The algorithm iteratively finds a rooted subtree T ′ of T and a cover B′ ⊆ E of T ′ as in

Lemma 3.5, contracts T ′ using B′, and assigns 1 credit to the created leaf.

Algorithm Approx(T = (V, E), E,M, d)

(Computes a solution F with |F | ≤ (4/3) · |M |+ |U |+ d/6)

1: while T has more than one node do

2: Find a rooted subtree T ′ of T and a cover B′ of T ′ as in Lemma 3.5.

3: Contract T ′, give 1 credit to the new leaf, and set F ← F ∪B ′.

4: end while

5: Return F .

The condition credit(T ′) ≥ |B′|+ 1 assures that we are not over spending the credit. It

is easy to verify that other conditions assure that Invariants 1-4 continue to hold. Thus to

prove Theorem 3.4 it is sufficient to prove Lemma 3.5; this is what we will do in the rest of

this section.

Definition 3.3 ([12]) Let U be a subset of nodes of T . A rooted subtree T ′ of T is U -closed

if there is no link in E from U ∩ T ′ to T \ T ′. T ′ is leaf-closed if it is L(T)-closed. A

leaf-closed T ′ is minimally leaf-closed if any proper subtree of T ′ is not leaf-closed.

Proposition 3.6 ([12]) A minimally leaf-closed subtree T ′ of T is covered by up(L(T ′)).

13

Definition 3.4 (Semi-closed tree)

A rooted subtree T ′ of T is semi-closed (w.r.t. a link set M) if the following holds:

• For any b1b2 ∈M , either both b1, b2 belong to T ′, or none of b1, b2 belongs to T ′.

• T ′ is closed w.r.t. its M-exposed leaves, namely, every link incident to an M-exposed

leaf of T ′ has both endnodes in T ′.

T ′ is minimally semi-closed if T ′ is semi-closed but any proper subtree of T ′ is not semi-

closed.

Note that a semi-closed T ′ is not leaf-closed; T ′ is closed with respect to every M -exposed

leaf, but M -covered leaves may have links to nodes outside T ′. The concept of semi-closed

trees was defined in [3, 4], where it is assumed that “a contraction of a subset of M cannot

create a new leaf”. This implies that a semi-closed tree should have at least one M -exposed

leaf. We do not pose such a restriction, so in our setting a semi-closed T ′ may have zero

M -exposed leaves. As T itself is semi-closed, T has a minimally semi-closed subtree. Such

can be found in polynomial time, as T has at most |V | rooted subtrees, and clearly checking

if a subtree is semi-closed can be done in polynomial time. The following statement explains

how we intend to cover minimally semi-closed trees. This statement was essentially proved

in [3, 4], but as our definition slightly differs from the one in [3, 4], we provide a proof for

completeness of exposition.

Lemma 3.7 Let T ′ be a semi-closed subtree of T w.r.t. M . Let B(T ′) consist of the union

of M ∩ T ′ and the up-links of the M-exposed leaves of T ′. Then B(T ′) ⊆ E ∩ T ′, and if T ′

is minimally semi-closed, then B(T ′) covers T ′.

Proof: It is clear that B(T ′) ⊆ E ∩ T ′. Let T ′′ be obtained by contracting M ∩ T ′. The

leaves of T ′′ are the M -exposed leaves of T ′, T ′′ is leaf-closed, and T ′ is minimally semi-closed

if, and only if, T ′′ is minimally leaf-closed. Thus the up-links of the M -exposed leaves of T ′

cover T ′′ (if T ′ has no M -exposed leaves, then T ′′ is a single node), by Proposition 3.6. The

statement follows. 2

Consequently, to finish the proof of Lemma 3.5, it is sufficient to prove:

Lemma 3.8 Suppose that Invariants 1-4 hold. Then credit(T ′) ≥ |B(T ′)|+1 for any semi-

closed tree T ′.

Proof: Let a be the root of T ′, and let β be |M ∩ T ′| plus the number of M -exposed leaves

of T ′. Clearly, β ≥ |B ′|, and we claim that credit(T ′) ≥ β + 1. If a = r this is obvious, so

14

assume a 6= r. Clearly, credit(T ′)− β = credit(M ∩ T ′)− |M ∩ T ′|. Thus if |M ∩ T ′| ≥ 3, or

if M ∩T ′ consists of 2 dangerous links, then credit(M ∩T ′) ≥ |M ∩T ′|+ 1 and the required

extra unit of credit follows. We claim that the other cases (when M ∩ T ′ is empty, or is a

single link, or is a pair of links that are not both dangerous) are not possible. Otherwise,

we obtain a contradiction to Invariant 2. Consider the set C of the endnodes in T ′ of the

links in E that cover the edge (a, p(a)). Clearly, C 6= ∅, and we will show that C contains a

non-leaf node z. Note that C cannot contain an M -exposed leaf, as T ′ is closed w.r.t. such

leaves. Also, C − V (M ∩ T) 6= ∅; if M ∩ T ′ = ∅ this is obvious, if |M ∩ T ′| = 1 this follows

from Invariant 3, and if |M ∩T ′| = 2 this follows from Invariant 4. Consequently, C contains

a non-leaf node, as claimed, which gives a contradiction. 2

Lemma 3.5 now follows from Lemmas 3.7 and 3.8.

This finishes the proof of Theorem 3.4, and thus the proof of Theorem 1.2 for general

trees is now complete.

3.3 Algorithm for trees of height ≤ 3

Throughout this section assume that T has height ≤ 3. Then we use a slightly different

definition of dangerous links, and in our credit scheme we allow that some parts will have

negative credit.

Definition 3.5 For a 6= r, let Ja be a tree obtained by removing from Ta the subtrees rooted

at the children of a with at least 4 leaves. We say that a is a dangerous node and that Ja

is a dangerous subtree if Ja has exactly 4 leaves and {x ∈ Ta : there is xy ∈ E with y ∈

T − Ta} ⊆ Ja; note that two distinct dangerous subtrees are disjoint. Let D denote the set

of dangerous nodes. A dangerous link is a link with both endnodes in the same dangerous

subtree.

With this modified definition of dangerous links, let Mi, Ui, and di be as in Definition 3.2.

The function f is defined by f(i) = |Mi|+ |Ui|+ max{di − |D|, 0}/2.

Lemma 3.9 Let F cover T . Among all maximum matchings in F − R, let M ′ be one with

the minimum number d′ of dangerous links. Let U ′ the set of M ′-exposed leaves. Then

|F | ≥ |M ′|+ |U ′|+ max{d′ − |D|, 0}/2.

Proof: Similarly to argument in Lemma 3.1, |F | ≥ |M ′| + |U ′|. Thus if d′ ≤ |D|, the

statement is true. Assume therefore that d′ > |D|. Then there is a set D′ of (at least)

d′ − |D| dangerous nodes, each with 2 dangerous links from M ′ in its subtree. Consider

15

a ∈ D′. Let uv ∈ F be a link covering (a, p(a)), where u ∈ Ta. Let ut ∈ M so that

t ∈ Ta. Note that uv is not dangerous and that ut is dangerous. Thus v /∈ U ; otherwise,

M ′−ut+uv is a maximum matching in F with less dangerous links than M ′. Thus we have

at least d′ − |D| nodes in L− U ′ which degree w.r.t. F is at least 2. The statement follows.

2

Corollary 3.10 opt ≥ mini f(i).

Proof: Let F be an optimal solution and let M ′ be a maximum matching in F − R with

minimum number d′ of dangerous links. Let i = |M ′| and let U ′ be the set of M ′-exposed

leaves. Note that di ≤ d′. Thus from Lemma 3.9 we have |F | ≥ f(i), and the statement

follows. 2

Let ρ be the approximation ratio as in Theorem 1.2, that is, ρ = 11/8 if T has height 3

and ρ = 4/3 if T has height 2. Let M = Mj, U = Uj, and d = dj, where j = arg mini f(i).

We use the following credit scheme. Assign a credit of:

• 3− ρ to every dangerous link in M ;

• ρ to every non-dangerous link in M and to every u ∈ U ;

• −(3− 2ρ) to every node in D, namely, charge every node in D with 3− 2ρ.

Then credit(T) is at most ρ times the lower bound in Corollary 3.10 since:

credit(T) = ρ · (|M | − d) · ρ + (3− ρ) · d + ρ · |U | − (3− 2ρ) · |D|

≤ ρ · (|M |+ |U |) + max{d− |D|, 0}/3

≤ ρ · (|M |+ |U |+ max{d− |D|, 0}/2) .

The algorithm is as follows.

1. Calculate M,U as above and set F1 ←M ∪ {up(u) : u ∈ U}.

2. Obtain F2 by adding up(Q) to F1 for every 2-edge-connected component Q of T + F1

so that all the children of lca(Q) are leaves.

. Comment: If T has height 2 then F2 is already a feasible solution.

3. Obtain F3 by adding up(Q) to F2 for every 2-edge-connected component Q of T + F2

with r /∈ Q.

16

The following immediate statement implies that the computed solution is feasible.

Proposition 3.11 Fk covers all the rooted subtrees of T of height ≤ k, k = 1, 2, 3. Thus if

T has height ≤ 3, then at the end of the algorithm F is a feasible solution.

Let Qk be the set of 2-edge-connected components of T + Fk k = 1, 2. Let

Q′
1

= {Q ∈ Q1 : all the children of lca(Q) are leaves},

Q′′
1

= {Q ∈ Q1 −Q
′
1

: Q ⊆ Q2 for some Q2 ∈ Q2 with r /∈ Q2}.

Note that we might have Q1 − (Q′
1
∪Q′′

1
) 6= ∅.

Lemma 3.12 Any Q ∈ Q2 with r /∈ Q contains a unique component Q′′ ∈ Q′′
1
. Moreover,

lca(Q) = lca(Q′′) and {u ∈ Ta : there is uz ∈ E with z ∈ T − Ta} ⊆ Q′′, where a = lca(Q).

Proof: Let u ∈ Ta be a leaf with a link uz covering (a, p(a)). Let Q′′ ∈ Q1 be the component

that includes u. Suppose to the contrary that Q′′ ∈ Q′
1
. Then, after adding up(Q′′) to F2,

(a, p(a)) is covered, and then p(a) and a are in the same 2-edge connected component in

Q2. This contradicts p(a) /∈ Q. Thus, Q′′ ∈ Q1 − Q
′
1

and then lca(Q′′) has a non-leaf

child. Clearly, lca(Q′′) � lca(Q), otherwise Q contains p(a). The tree has height ≤ 3,

lca(Q′′) � lca(Q) ≺ r and lca(Q′′) has non-leaf child, thus lca(Q′′) = lca(Q) and Q′′ ⊆ Q.

Follows this, Q′′ ∈ Q′′
1
. As every leaf in {u ∈ Ta : there is uz ∈ E with z ∈ T − Ta} is

included in a component of Q1 that includes lca(Q), Q′′ is unique and {u ∈ Ta : there is uz ∈

E with z ∈ T − Ta} ⊆ Q′′ ∈ Q′′
1
. 2

Links in F2 − F1 correspond bijectively to components in Q′
1
, and by Lemma 3.12, links

in F3 − F2 corresponds bijectively to components in Q′′
1
. Hence, there is a bijective corre-

spondence between links in F3 − F1 and components in Q′
1
∪Q′′

1
.

The following statement implies that the credit distributed suffices to pay for the links

added during the algorithm.

Lemma 3.13 credit(Q) ≥ |F1 ∩ Q| for all Q ∈ Q1, and credit(Q) ≥ |F1 ∩ Q| + 1 if

Q ∈ Q′
1
∪Q′′

1
.

In the rest of this section we prove Lemma 3.13. This completes the proof of Theorem 1.2.

Proposition 3.14 Let Q ∈ Q′
1
∪Q′′

1
. Then |Q ∩ L| ≥ 4 and if |Q ∩ L| = 4 then Q contains

2 dangerous links.

Proof: Let a = lca(Q). We have Q ∈ Q′
1
∪ Q′′

1
, then a 6= r. We claim that {x ∈ Ta :

there is xy ∈ E with y ∈ T − Ta} ⊆ Q. For Q ∈ Q′
1

this is obvious and for Q ∈ Q′
2

this

17

follows Lemma 3.12. It is easy to see that if the statement does not hold, then Q ∩ M

contains a redundant link or F1 covers (a,p(a)), contradicting p(a) /∈ Q. 2

Proposition 3.15 Let Q ∈ Q1 and let a ∈ Q∩D. Then Ja ⊆ Q and |Q∩D| ≤ |F1 ∩Q|/2.

Proof: Let a ∈ Q∩D. Suppose to the contrary that there is u ∈ Ja−Q. Then u belongs to

Q′ ∈ Q1 and a′ = lca(Q′) ≺ a. The tree is of height 3 and a′ ≺ a ≺ r, thus Q′ ∈ Q′
1
. We have

a′ /∈ D, as otherwise u ∈ Ja′ and then u /∈ Ja. As a′ /∈ D and u ∈ Ta′ is in a dangerous tree,

Ta′ has at most 3 leaves, contradicting Proposition 3.14. Thus, the existence of u ∈ Ja −Q

leads to a contradiction and then Ja ⊆ Q.

We have |Q∩L| ≤ 2|F1∩Q| since F1 covers all the leaves. For every a ∈ D∩Q, all the leaves

of Ja are in Q, hence |Q ∩ L| ≥ 4|D ∩Q|. Consequently, |D ∩Q| ≤ |Q ∩ L|/4 ≤ |F1 ∩Q|/2.

2

Proposition 3.16 credit(Q) ≥ |F1 ∩Q| for all Q ∈ Q1.

Proof: This follows from Proposition 3.15 since

credit(Q) ≥ ρ · |F1 ∩Q| − (3− 2ρ) · |D ∩Q|

≥ ρ · |F1 ∩Q| − (3− 2ρ) · |F1 ∩Q|/2

= (2ρ− 3/2) · |F1 ∩Q| ≥ |F1 ∩Q| .

2

Proposition 3.17 credit(Q) ≥ |F1 ∩Q|+ 1 for all Q ∈ Q′
1
.

Proof: By Proposition 3.14, either Q has exactly 4 leaves and contains 2 dangerous links,

or lca(Q) has more than 4 leaves and has no dangerous node. In the former case, the total

credit in Q is 2(3 − ρ) − (3 − 2ρ) = 3 = |F1 ∩ Q| + 1. In the latter case, |F1 ∩ Q| ≥ 3, and

the total credit is ρ · |F1 ∩ Q|. As ρ ≥ 4/3 and |F1 ∩ Q| ≥ 3, the total credit is at least

|F1 ∩Q|+ 1. 2

Proposition 3.18 credit(Q) ≥ |F1 ∩Q|+ 1 for all Q ∈ Q′′
1
.

Proof: We have lca(Q) 6= r, and if lca(Q) has non-leaf child, then T is of height 3, which

means ρ = 11/8. Let |F1 ∩ Q| = q. By Proposition 3.14, either Q has exactly 4 leaves

and contains 2 dangerous links, or Q has more than 4 leaves and q ≥ 3. In the former

case, the total credit in Q is 2 · 13/8 − 1/4 = 3 = q + 1. To complete the proof, we need

to prove that credit(Q) ≥ q + 1 when q ≥ 3. If q ≥ 4 then follows Proposition 3.15,

credit(Q) ≥ 11/8 · q − 1/4 · q/2 = q + q/4 ≥ q + 1. If q = 3 and has no dangerous

node, then credit(Q) ≥ 11/8 · 3 > 4 = q + 1. If q = 3 and Q contains a dangerous

18

node, then follows Proposition 3.15, Q contains exactly one dangerous node a including

Ja. But, Q contains at most most 6 leaves, therefore at least one link is dangerous. Thus,

credit(Q) ≥ 11/8 · 2 + 13/8− 1/4 > 4 = q + 1. 2

19

4 Conclusions and open problems

The main contribution of this paper is in introducing the two concepts of “redundant links”

and “dangerous pairs”. For LL-TAP, this enabled us to obtain: a simple algorithm with

ratio 3/2 using the former concept, and a slightly more complicated algorithm with ratio

17/12 using the latter concept. These concepts might be useful to simplify or to improve

the current algorithms for general TAP.

We list three open problems. The main open problem is a achieving a ratio better than

2 for weighted TAP, when we seek to cover the tree with a set of links of minimum weight.

This is of interest even for weighted LL-TAP. The currently best known approximation ratio

for this problem is 2. We believe that breaking this barrier will lead to improved ratios to

several other problems, among them the Steiner Forest problem. Another open problem is

the integrality gap of LP-relaxations (1) and (2) for TAP or for LL-TAP. For TAP, we only

know that the integrality gap of LP (1) is between 3/2 and 2. For LL-TAP, we know that

the integrality gap of (1) is at most 5/3, while the integrality gap of (2) is at most 3/2; these

two upper bounds are proved in this work. As a last open problem, we pose a conjecture

that for LL-TAP the ratio 4/3 is achievable.

20

References

[1] J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packing of laminar families.

In ESA, pages 510–520, 1999.

[2] J. Cheriyan, H. Karloff, R. Khandekar, and J. Könemann. On the integrality ratio of

tree augmentation. Oper. Res. Lett., 36(4):399–401, 2008.

[3] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 3/2-approximation for augmenting

a connected graph into a two-connected graph. In APPROX, pages 90–101, 2001.

[4] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 1.8 approximation algorithm for

augmenting edge-connectivity of a graph from 1 to 2. To appear in Transactions on

Algorithms, 2008.

[5] G. Even, G. Kortsarz, and Z. Nutov. A 1.5 approximation algorithm for augmenting

edge-connectivity of a graph from 1 to 2. Manuscript, 2008.

[6] G. N. Fredrickson and J. Jájá. On the relationship between the biconnectivity augmen-

tation and traveling salesman problem. Theorethical Computer Science, 19(2):189–201,

1982.

[7] N. Garg, R. Khandekar, and K. Talwar. Covering a laminar family. Manuscript, 2000.

[8] M. Goemans and D. Williamson. The primal dual method for approximation algorithms

and its applications to network design problems, Ch. 4 in Approximation Algorithms for

NP-hard problems, D. S. Hochbaum Ed., pages 144-191. PWS, 1995.

[9] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network prob-

lem. Combinatorica, 21(1):39–60, 2001.

[10] S. Khuller. Approximation algorithms for for finding highly connected subgraphs, Ch. 6 in

Approximation Algorithms for NP-hard problems, D. S. Hochbaum Ed., pages 236-265.

PWS, 1995.

[11] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems, Ch. 58

in Approximation Algorithms and Metahueristics, T. F. Gonzales ed.,. CRC, 2007.

[12] H. Nagamochi. An approximation for finding a smallest 2-edge connected subgraph

containing a specified spanning tree. Discrete Applied Math., 126:83–113, 2003.

[13] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag

Berlin, Heidelberg New York, 2004.

21

