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Abstract. A wireless ad-hoc network is a collection of transceivers po-
sitioned in the plane. Each transceiver is equipped with a limited, non-
replenishable battery charge. The battery charge is then reduced after
each transmission, depending on the transmission distance. One of the
major problems in wireless network design is to route network traffic
efficiently so as to maximize the network lifetime, i.e., the number of
successful transmissions. This problem is known to be NP-Hard for a
variety of network operations. In this paper we are interested in two
fundamental types of transmissions, broadcast and data gathering.
We provide polynomial time approximation algorithms, with guaran-
teed performance bounds, for the maximum lifetime problem under two
communication models, omnidirectional and unidirectional antennas. We
also consider an extended variant of the maximum lifetime problem,
which simultaneously satisfies additional constraints, such as bounded
hop-diameter and degree of the routing tree, and minimizing the total
energy used in a single transmission.

1 Introduction

Wireless ad-hoc networks gained much appreciation in recent years due to mas-
sive use in a large variety of domains, from life threatening situations, such as
battlefield or rescue operations, to more civil applications, like environmental
data gathering for forecast prediction. The network is composed of numerous
transceivers (nodes) located in the plane, communicating by radio. A transmis-
sion between two nodes is possible if the receiver is within the transmission range
of the transmitter. The underlying physical topology of the network is dependent
on the distribution of the wireless nodes (location) as well as the transmission
power (range) assignment of each node. Since the nodes have only a limited, non-
replenishable initial power charge (battery), energy efficiency becomes a crucial
factor in wireless networks design.
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The transmission range rv of node v is determined by the power assigned
to that node, denoted by p(v). It is customary to assume that the minimal
transmission power required to transmit to distance d is dα, where the distance-
power gradient α is usually taken to be in the interval [2, 4] (see [1]). Thus,
node v receives transmissions from u if p(u) ≥ d(u, v)α, where d(u, v) is the
Euclidean distance between u and v. There are two possible models: symmetric
and asymmetric. In the symmetric model, also referred to as the undirected
model, there is an undirected communication link between two nodes u, v ∈ T ,
if p(u) ≥ d(u, v)α and p(v) ≥ d(v, u)α, that is if u and v can reach each other.
The asymmetric variant allows directed (one way) communication links between
two nodes. Krumke et al. [2] argued that the asymmetric version is harder than
the symmetric one. This paper addresses the asymmetric model.

Ramanathan and Hain [3] initiated the formal study of controlling the net-
work topology by adjusting the transmission range of the nodes. Intuitively, an
increase to the transmission range assignment allows more distant nodes to re-
ceive transmissions. But at the same time, it causes a quicker battery exhaustion,
which results in a shorter network lifetime. We are interested in maximizing the
network lifetime under two basic transmission protocols, data broadcasting and
data gathering. Data broadcasting, or in short broadcast, is a network task
when a source node s wishes to transmit a message to all the other nodes in
the network. Data gathering - a less popular, nevertheless important network
task, is also known as convergecast. Opposite to broadcast, there is a destination
node d, and all the other nodes wish to transmit a message to it. We consider
data gathering with aggregation.

Each node v, has an initial battery charge b(v). The battery charge decreases
with each transmission. The network lifetime is the time from network initial-
ization to the first node failure due to battery depletion. It is possible to look
at two formulations of the maximum network lifetime problem. In the discrete
version, node v can transmit at most bb(v)/dαc times to distance d. Whereas, the
fractional variant states that a transmission from node v to distance d is valid
for b/dα time units. For example, for b(v) = 15, d = 2, and α = 2, the discrete
version of the problem would allow b15/4c = 3 separate transmissions, while the
fractional formulation determines that node v can have a valid transmission for
15/4 = 3.75 time units. Most of the current research addresses the fractional
formulation. The discrete version was introduced by Sahni and Park [4]. They
provided a number of heuristics without guaranteed performance bounds. This
paper studies the discrete version, which seems to be more problematic.

An additional consideration in wireless networks design, is the type of the
antenna used for communication. In this paper we consider two types of commu-
nication antennas, omnidirectional and unidirectional. For a node u ∈ V equiped
with an omnidirectional antenna, a single message transmission to the most dis-
tant node in a set of nodes X is sufficient so that all the nodes in X receive the
message. While, if u uses a unidirectional antenna, then it has to transmit to
each of the nodes in X separately.



The paper is organized as follows. In the rest of the section, we introduce our
model, discuss previous work and outline our contribution. In Sections 2 and 3
we present our results for the unidirectional and omnidirecitonal antenna types,
respectively.

1.1 The Model

Graph Preliminaries. Here we provide some graph theory related definitions
used in this paper.

– For any graph H, let V (H) and E(H) be the node and edge sets of H,
respectively.

– In a directed graph H, let δH(v) be the set of outgoing edges from v in V (H).
– For a weighted graph H, with a weight function w, we alternately use the

notation w(e) and w(u, v), to specify the weight of edge e = (u, v) ∈ E(H).
The weight of H is given by C(H) =

∑

e∈E(H) w(e).

– The weight function w of graph H is said to be uniform, if ∀e ∈ E(H), w(e) =
w0, for some non-negative value w0.

– The cube of graph H, denoted H3, contains an edge (u, v) if there is a path
from u to v in H with at most 3 edges.

– A Hamiltonian circuit h = (u1, u2, . . . , un+1 = u1) in graph H, where ui ∈
V (H) for 1 ≤ i ≤ n, is a graph cycle that visits each node in V (G) exactly
once and also returns to the starting node. The weight of h is given by
C(h) =

∑n
i=1 w(ui, ui+1), where w is the weight function of H.

– Given an undirected graph H, let MST (H) be a minimum spanning tree of
H.

Network Model. We have n wireless nodes V positioned in a Euclidean plane.
The wireless network is then modeled by a complete, weighted, and undirected
graph GV with a weight function w : V × V → IR, w(u, v) = d(u, v)α. It is
easy to verify that the weight function obeys the weak triangle inequality with
coefficient 2α−1, i.e., for any u, v, w ∈ V, w(u,w) ≤ 2α−1(w(u, v) + w(v, w)).

Both types of messages, broadcast or convergecast, are propagated by using
a directed spanning tree of GV , called a transmission tree. A broadcast message,
originating in s ∈ V, is propagated by an arborescence Ts rooted at s, also called
a broadcast tree. In the case of a convergecast to d ∈ V, the messages from all
nodes are propagated by a reversed arborescence Td rooted at d, also called a
convergecast tree. In the case of a broadcast message, a node may be required
to transmit to multiple recipients (its children in the broadcast tree), while a
convergecast message is transmitted once to the parent in the convergecast tree.4

Every node v ∈ V has an initial battery charge b(v). After each message
propagation, its residual energy decreases. The energy decrease depends on the

4 We consider data gathering with aggregation, which means that each node v com-
bines the messages sent by the nodes in a subtree rooted at v into one message, and
then propagates it to its parent.



recipient nodes location, as well as the antenna type used, either omnidirec-
tional or unidirectional. Formally, the power consumption of v ∈ V due to a
transmission tree T is,

βT (v) =











max
e∈δT (v)

w(e), omnidirectional,
∑

e∈δT (v)

w(e), unidirectional.

Note that the reverse of a broadcast tree is a convergecast tree. Due to this
symmetry property, and in an attempt to keep the definitions simple, from this
point, we refer to the broadcast transmission protocol only. Although there is
symmetry in definitions, nevertheless not all the results work well for both cases.
We provide explicit statements whenever the results are relevant for convergecast
as well. In this paper we assume α = 2 for simplicity, though our results can be
easily extended to any constant value of α.

Problems Definition. The general maximum lifetime broadcast (MLB) prob-
lem is defined as follows. The input to the MLB problem is graph GV , ini-
tial battery charges b : V → IR, and a sequence of m source nodes S =
{s1, s2, . . . , sm}, where si ∈ V, for 1 ≤ i ≤ m. Each of the source nodes has
one broadcast message to transmit to all the other nodes. The output is a
sequence of broadcast trees TB = {T1, T2, . . . , Tk}, where Ti is rooted at si, for

1 ≤ i ≤ m, so that for all v ∈ V,
∑k

i=1 βTi
(v) ≤ b(v). Our objective is to

maximize k. Intuitively, given a sequence of source nodes, we wish to maximize
the number of successful broadcast message propagations, while satisfying the
battery constraint. That is, all the nodes have enough battery charge to support
message propagation in a sequence of broadcast trees.

There are two possible relaxations of the general maximum lifetime broadcast
problem. The first relaxation is to set si = s, for all si ∈ S, that is one source
node s generates all broadcast messages. The second relaxation is to require
that all the broadcast trees would be an orientation of one undirected tree. In
this paper we consider the following three problems.

Problem 1. [Single Source Maximum Lifetime Broadcast (SSMLB)]
Input: Graph GV , initial battery charges b : V → IR, and a source node s ∈ V.
Output: A sequence of broadcast trees TB = {T1, T2, . . . , Tk}, so that Ti is

rooted at s, and for all v ∈ V,
∑k

i=1 βTi
(v) ≤ b(v).

Objective: Maximize k.

Problem 2. [Single Source/Topology Maximum Lifetime Broadcast (SSTMLB)]
Input: Graph GV , initial battery charges b : V → IR, and a source node s ∈ V.
Output: A directed spanning tree T of GV rooted at s, and an integer k, 1 ≤
k ≤ m, so that for all v ∈ V, kβT (v) ≤ b(v).
Objective: Maximize k.



Problem 3. [Single Topology Maximum Lifetime Broadcast (STMLB)]
Input: Graph GV , initial battery charges b : V → IR, and a sequence of m source
nodes S = {s1, s2, . . . , sm}, where si ∈ V.
Output: An undirected spanning tree T of GV and an integer k, 1 ≤ k ≤ m, so
that for all v ∈ V,

∑k
i=1 βTi

(v) ≤ b(v), where Ti, 1 ≤ i ≤ k, is a broadcast tree
rooted at si, and is obtained by orienting the edges of T .
Objective: Maximize k.

The analogous problems for convergecast, SSMLC, SSTMLC, and STMLC
are defined in a similar way.

1.2 Previous Work

Numerous studies were conducted in the area of maximizing the network lifetime
under various transmission protocols. In addition to broadcast and converge-
cast, it is common to find references to multicast and unicast5 as well. Different
formulations of the maximum lifetime problem are due to the single/multiple
source/topology relaxations. These relaxations, mixed together with the antenna
type, have impact on the complexity of the problem.

As mentioned previously, to the best of our knowledge, there is no reference to
the discrete version of the maximum lifetime problem, except for [4]. Instead, we
survey the state of current results for the fractional case, grouped in accordance
to the communication model used.

Omnidirectional Model Orda and Yassour [5] gave polynomial-time algo-
rithms for broadcast, multicast and unicast in the case of single source/single
topology, which improved previous results by [6]. Segal [7] improved the running
time of the MLB problem for the broadcast protocol and also showed an opti-
mal polynomial-time algorithm for convergecast with aggregation. Additional
results may be found in [8, 6]. By allowing single source/multiple topol-
ogy, the broadcast and multicast become NP-Hard [5], while convergecast and
unicast have polynomial-time optimal solutions. In [5], the authors establish
an O(log n) and O(kε) approximation algorithms for broadcast and multicast,
respectively, where k is the size of the multicast destination set and ε is any
positive constant. The same paper shows an optimal solution for the unicast
case by using linear programming and max-flow algorithms. Liang and Liu [9]
prove that the convergecast problem without aggregation is NP-Complete for
general costs. An easier version, with aggregation, does have a polynomial solu-
tion [10] in O(n15 log n) time. To counter the slowness of the algorithm, Stanford
and Tongngam [11] proposed a (1 − ε)-approximation in O(n3 1

ε log1+ε n) time
based on Garg and Könemann [12] algorithm for packing linear programs. They
also propose several heuristics and evaluate their performance by simulation.

5 Multicast is a more general case of broadcast. A source node is required to transmit
to a set of nodes; unicast is more specific, a source node is required to transmit to
a single node.



Table 1. Current results for the fractional case

Single Source - Omnidirectional Model

Topology Broadcast Convergecast (with agg.)

Single OPT [5, 7, 6] OPT [7]

Multiple 6(1 − ε) approx. (follows from [11] and [16]) OPT [10]

Single Source - Unidirectional Model

Topology Broadcast Convergecast (with agg.)

Single NP-Hard [5] OPT [7]

Multiple OPT [5] OPT [10]

Generally, a common approach to solving the fractional problem is to use var-
ious LP formulations that reduce the problem to one of finding the maximum
multicommodity flow in a network. See also [13–15].

Unidirectional Model The authors in [5] show that for broadcast, the
problem is NP-Hard in the case of single source/single topology and has a
polynomial solution in the case of single source/multiple topology. They also
show that it is NP-Hard in both of these cases for multicast. To the best of our
knowledge, this is the only paper to address the unidirectional communication
model. Note that for convergecast there is no difference between the two models
(omnidirectional and unidirectional), as the node is required to transmit to its
parent in the convergecast tree only. Therefore, the results from [7] and [10] hold.

A summary of the results for the fractional case under the omnidirectional
model is given in Table 1 (OPT represents that the problem can be solved opti-
mally). The result for single source/multiple topology in case of broadcast is de-
rived from the simple fact that when the Garg-Könemann (1−ε)-approximation
algorithm uses λ-approximation minimum length columns it produces a λ(1−ε)
approximation to the packing LP defined by [11] if used for broadcasting. We can
choose a 6-approximation by Ambühl [16] as the λ-approximation algorithm for
the minimum energy broadcast problem. The 6-approximation can be improved
by using the result in [17].

1.3 Our contribution

We study the discrete version of the maximum lifetime problem under broad-
cast/convergecast transmissions. We provide polynomial time approximation al-
gorithms, with guaranteed performance bounds, for the maximum lifetime prob-
lem under two communication models, omnidirectional and unidirectional an-
tennas. We also consider an extended variant of the maximum lifetime problem,
which simultaneously satisfies additional constraints. In particular, our main
contributions are:

1. Under the unidirectional model, we state the NP-Hardness of the SSMLB and
SSTMLB problems. We provide an O(log n)-approximation to the SSTMLB



Table 2. Our contribution in the discrete case

Single Source - Unidirectional Model

Topology Approx. Remarks

Single O(log n)

Multiple 1 battery violation by O(log(nk∗)), k∗ is OPT

Multiple Source - Omnidirectional Model

Topology Approx. Remarks

Single 2 with additional bi-criteria

Multiple O(ρ2) with n/ρ + log ρ hop-diameter, and additional bi-criteria

problem. Then, for the SSMLB problem we find a sequence of broadcast
trees of optimal length k∗, so that the battery constraint is violated by at
most O(log(nk∗)) times. That is, the energy consumed by node v is at most
O(log(nk∗))b(v).

2. Under the omnidirectional model, we develop two approximation algorithms
for the STMLB problem. We assume uniform initial battery charges and
present a 2-approximation algorithm by using the MST (G) as the broadcast
tree. This immediately yields constant bounds for the total energy consumed
in a single transmission and the maximum degree. We then construct a
broadcast tree which is a O(ρ2)-approximation to the problem. In addition,
it has a bounded hop-diameter n/ρ + log ρ, where 1 ≤ ρ ≤ n, a constant
maximum degree, and the energy consumed in a single transmission is at
most ρ times the optimum for a broadcast transmission. We argue that the
tradeoff between the maximum lifetime and the hop-diameter is optimal.
That is, our multi-criteria approximation is tight.

3. Finally, we show that the results for the STMLB problem, can be applied
for the STMLC problem as well.

To the best of our knowledge, these are the first theoretic results for the
discrete formulation of the problem. Our results are summarized in Table 2.

2 Unidirectional Communication Model

The unidirectional model implies that each node is charged for every outgoing
edge in the transmission tree. The power consumption of v ∈ V due to a single
message transmission, in a directed tree T , is βT (v) =

∑

e∈δT (v) w(e).

In this section we consider two variants of the MLB problem under the sin-
gle source relaxation. First the more general case is addressed, where multiple
topologies are allowed, which is the SSMLB problem. Then, we show that by
doing slight modifications to the proposed algorithms, we establish a similar
result in the case of single topology relaxation, namely the SSTMLB problem.
We slightly modify the original problems, by allowing a violation of the battery



constraint by γ. That is, we require that the energy consumption of every v ∈ V
is at most γb(v).

Assuming P6=NP, both the single and the multiple topology cases cannot
achieve a 1/γ-approximation algorithm for any constant γ > 0, since deciding
whether even one tranmission is possible is equivalent to the so called Degree
Constrained Arborescence problem. This implicates that the SSMLB and
SSTMLB problems are NP-Hard (take γ = 1).

Note that in the single topology case, k transmissions with initial battery
charges {γb(v) : v ∈ V} imply bk/γc transmissions for initial battery charges
{b(v) : v ∈ V}. Indeed, since we are using the same arborescence, the power
consumption of every node in every message propagation is identical and there
are k message propagations, then for the original charges {b(v) : v ∈ V} the
number of propagations is at least bb(v)/(γb(v)/k)c = bk/γc. Unfortunately, for
the multiple topology case, we do not have a method to convert the battery
violation to a standard approximation.

Although the input to the SSMLB problem, is a weighted, undirected graph
GV , we can alternatively look at the directed version G′

V
, i.e., for every edge

e = (u, v) ∈ E(GV), create the instances (u, v), (v, u) in E(G′
V
). The weight

of the directional edge is the same as of the original one. In the rest of the
section we prove the next theorem, which summarizes our main results for the
unidirectional model.

Theorem 1. Given a weighted, directed graph G′
V

and a source node s ∈ V,
let k∗

1 and k∗
2 be the number of successful message propagations in the optimal

solutions of the SSTMLB and SSMLB problems, respectively. Then, (i) there
exists a broadcast tree T rooted at s, so that for all v ∈ V, (k∗

1/log n)βT (v) ≤ b(v);
(ii) there exists a sequence of broadcast trees TB = {T1, T2, . . . , Tk∗

2
}, each rooted

at s, and for all v ∈ V,
∑k∗

2

i=1 βTi
(v) ≤ (log (nk∗

2))b(v).

2.1 Weight Scaling Reduction

We start by showing a simple scaling of weights, which allows us to manipulate
the input graph G′

V
. If for some node v ∈ V and constant c > 0, we set b(v) ←

b(v)/c and for every outgoing edge e ∈ δG′

V
(v), set w(e) ← w(e)/c, we obtain a

similar instance to our problem. Note that an instance with uniform weights6 is
easily transformed into an instance with unit weights (all weights being 1), by
applying the weight scaling reduction described above.

2.2 The SSMLB problem

We start with the multiple topology case of the MLB problem under the single
source relaxation and prove part (ii) of Theorem 1.

6 Though graph G′

V does not necessarily has uniform weights, nevertheless we use this
scaling in future developments.



A directed graph H is k-edge-outconnected from s if it contains k-edge disjoint
paths from s to any other node. By Edmond’s Theorem [18], a graph is k-
edge-outconnected from s if, and only if, it contains k edge-disjoint spanning
arborescences rooted at s. Let us introduce the following decision problem.

Problem 4 (Bound Constrained k-Outconnected Subgraph (BCkOS)).
Input: A directed graph G with a weight function w, bounds b : V (G)→ IR, a
source node s ∈ V (G), and a positive integer k.
Question: Does G have a k-edge-outconnected spanning subgraph H, so that
for all v ∈ V (G), βH(v) ≤ b(v).

Given a positive integer k, the problem of finding a sequence of broadcast
trees of length k in G′

V
can be reduced to the BCkOS problem as follows. As an

edge in E(G′
V
) may be used several times, we add k − 1 copies of each edge to

the graph.7 Call this graph Gk
V
. Then we solve the BCkOS problem for Gk

V
.

To solve the SSMLB problem, we need to search for the maximum value of k,
for which the BCkOS returns a positive answer given Gk

V
. This can be done by a

simple binary search in the range {1, . . . ,K}, where K = maxe∈δGV
(s) b(s)/w(e).

The upper bound is due to the source node battery constraint. The BCkOS
problem is NP-hard even for uniform weights and k = 1. We therefore consider
the optimization problem that seeks to minimize the factor of the weight-degree
bounds violation.

Problem 5 (Weighted-Degree Constrained k-Outconnected Subgraph (WDCkOS)).
Input: A directed graph G with a weight function w, bounds b : V (G) → IR,
a source node s ∈ V (G), and a positive integer k. Graph G has a k-edge-
outconnected spanning subgraph H∗ satisfying, for all v ∈ V (G), βH∗(v) ≤ b(v).
Output: Find a k-edge-outconnected spanning subgraph H of G, so that for all
v ∈ V (G), βH(v) ≤ γ · b(v).
Objective: Minimize γ.

Clearly, guaranteeing a factor of γ for the WDCkOS problem also guarantees
a γ violation in our case. Let the Degree Constrained k-Outconnected Subgraph
(DCkOS) problem be the restriction of WDCkOS problem to instances with
unit (or uniform) weights; in this case the bounds b(v) are just the degree con-
straints, and thus assumed to be integral. The following statement follows from
Theorems 1 and 4 in [19] (dH(v) is the outdegree of v in H).

Theorem 2 ([19]). There exists a polynomial time algorithm that given an
instance of DCkOS finds a k-edge-outconnected spanning subgraph H of G so
that dH(v) ≤ b(v) + 2 if k = 1 and dH(v) ≤ b(v) + 4 if k ≥ 2.

7 Instead of adding k − 1 copies of an edge, we may assign to every edge capacity
k, and consider the corresponding ”capacited” problems; this will give a polynomial
algorithm, rather than a pseudo-polynomial one. For simplicity of exposition, we will
present the algorithm in terms of multigraphs, but it can be easily adjusted to the
terms of capacitated graphs.



It is easy to verify that DCkOS admits a 3-approximation algorithm for k = 1
and a 5-approximation algorithm for k ≥ 2. For every node v with b(v) = 0,
remove from G the edges leaving v, and then compute a k-edge-outconnected
from s spanning subgraph H of G using the algorithm as in Theorem 2. Then
dH(v) = 0 for every v ∈ V (G) with b(v) = 0. For every v ∈ V with b(v) ≥ 1 we
have dH(v) ≤ b(v) + 2 ≤ 3b(v) if k = 1, and dH(v) ≤ b(v) + 4 ≤ 5b(v) if k ≥ 2.

The following lemma (proof is omitted due to lack of space), in conjunction
with the O(1)-approximation to DCkOS, proves part (ii) of Theorem 1.

Lemma 1. An α-approximation algorithm for the DCkOS problem implies an
α ·O(log(kn))-approximation algorithm for the WDCkOS problem.

2.3 The SSTMLB Problem

The single topology case of the MLB under the single source relaxation is to find
a spanning arborescence T of GV rooted at s, so that the number of transmissions
is maximized under the battery constraints. The problem can be reduced, similar
to the multiple topology case, to that of finding a 1-edge-outconnected from s
(namely, an arborescence rooted at s) spanning subgraph H of G, satisfying the
constraints k · βH(v) ≤ b(v) for all v ∈ V. By setting B(v)← b(v)/k, we obtain
the weighted-degree constraints βH(v) ≤ B(v). This defines an instance of the
WDCkOS problem with k = 1. Thus, we can compute in polynomial time a
1-outconnected from s spanning subgraph H of G so that for every v ∈ V (G)
we have βH(v) ≤ γ · B(v) = b(v)/k, namely, k · βH(v) ≤ γ · b(v). This means
that we can guarantee k transmissions using H with battery capacities γ · b(v).
Consequently, we can guarantee bk/γc transmissions with the original battery
capacities b(v), which proves part (i) of Theorem 1.

3 Omnidirectional Communication Model

In this section we consider the omnidirectional model. This model defines that
the transmission of some node v ∈ V is received by all the nodes within the
transmission range of v. Therefore, the power consumption of node v ∈ V due to
a single message transmission, in a directed tree T , is βT (v) = maxe∈δT (v) w(e).
We assume uniform initial battery charges, that is for all v ∈ V, b(v) = B.
Without loss of generality we may assume B = 1.

Recall the STMLB problem. We look for a spanning tree T of GV , so that the
number of broadcast messages routed by using its orientations is maximized. We
call T the broadcast backbone. In this section we show two different constructions
of T , each satisfying additional multi-criteria constraints. In the end, we state
that T can be used for convergecast (the STMLC problem) as well.

We are given a weighted, undirected graph GV , and a sequence S of m source
nodes. Let 〈T ∗, k∗〉 be an optimal solution for the SSMLB problem. We start by
deriving an upper bound on k∗.

Lemma 2. Let e∗ = (u, v) be the longest edge in T ∗. Then k∗ ≤ 2/w(e∗).



Proof. Let Ti, 1 ≤ i ≤ k∗, be a broadcast tree rooted at si, and obtained by
orienting the edges of T ∗. Note that either u transmits to v ((u, v) ∈ E(Ti)) or v
transmits to u ((v, u) ∈ E(Ti)), but not both. Out of the k∗ broadcast trees, let
ku be the number of trees in which u transmits to v. Without loss of generality, let
ku ≥ k∗/2 (otherwise we take v). Since e∗ is the longest edge in T ∗, we can lower

bound the total power consumption of u,
∑k∗

i=1 βTi
(u) ≥ kuw(e∗) ≥ w(e∗)k∗/2.

Due to the power consumption constraint,
∑k∗

i=1 βTi
(u) ≤ B = 1. As a result,

k∗ ≤ 2/w(e∗). ut

3.1 Multi-Criteria Broadcast Backbone

In this section we show that if we take T to be MST (GV), then we obtain a
2-approximation algorithm for the STMLB problem, as well as additional multi-
criteria.

Lemma 3. Let k be the maximum value, so that for all v ∈ V,
∑k

i=1 βTi
(v) ≤

b(v), where Ti, 1 ≤ i ≤ k, is a broadcast tree rooted at si, and is obtained by
orienting the edges of MST (GV). Then k ≥ k∗/2.

Proof. Let e′ = (u′, v′) be the longest edge in MST (GV). Since the longest
edge in any minimum spanning tree is not greater than the longest edge of any
spanning tree, w(e′) ≤ w(e∗). Clearly, nodes u′, v′ have the largest possible power
consumption w(e′) in any broadcast tree Ti, 1 ≤ i ≤ k. Therefore, k > 1/w(e′).
From Lemma 2, k∗ ≤ 2/w(e∗). We conclude k ≥ k∗/2. ut

Note that using MST (GV) as the broadcast backbone, also provides some
additional valuable multi-criteria guarantees, as concluded in the next theorem.

Theorem 3. Given a weighted, undirected graph GV , and a sequence of m
source nodes S. Setting T = MST (GV); (i) provides us with k successful broad-
cast message propagations, where k ≥ k∗/2; (ii) T has a bounded degree of 6;
(iii) the total energy consumption in one broadcast tree is at most c times of the
optimum, where 6 ≤ c ≤ 12.

Proof. (i) From Lemma 3, k ≥ k∗/2; (ii) the maximum degree of MST (GV) is
at most 6, since the minimum spanning tree of GV is identical to the Euclidean
minimum spanning tree on the node set V, and the latter has a bounded degree of
6; (iii) in [20] the authors prove that for any node set in the plane, the total energy
required by broadcasting from any node is at least 1

c

∑

e∈E(MST (GV)) w(e), where
6 ≤ c ≤ 12. Therefore the total energy consumption in one broadcast tree is of
a constant factor from the best possible.

3.2 Bounded Hop-Diameter Multi-Criteria Broadcast Backbone

Our construction is based on a Hamiltonian circuit. Sekanina [21] showed that
the cube of any tree, with at least 3 vertices, is Hamiltonian. Andrea and Bandelt
[22] give a linear time algorithm for the construction of the Hamiltonian circuit in
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Fig. 1. Bounded hop-diameter broadcast backbone for h = (u1, u2, . . . , u14) and ρ = 7.
There are 14/2 = 7 node sequences U1 = {u1, u2, . . . , u7} and U2 = {u8, u2, . . . , u14}.
The center nodes of U1 and U2 are u4 and u11, respectively. Each of the trees B1, B2

spans the corresponding nodes in U1 and U2, respectively.

T 3, given T . They also show that the weight of the Hamiltonian circuit is at most
( 3
2τ2 + 1

2τ) times the weight of the tree, where τ is the weak triangle inequality
parameter (under our assumption that α = 2, τ = 2α−1 = 2). Moreover, it can
be shown that the longest edge in the Hamiltonian circuit is at most O(1) times
the longest edge in T . The following theorem applies the above to MST (GV).

Theorem 4 ([22]). Let h = (u1, u2, . . . , un+1 = u1), where ui ∈ V for 1 ≤ i ≤
n, be the Hamiltonian circuit as a result of applying the construction in [22] on
MST (GV). Define e∗MST and e∗h to be the longest edges in MST (GV) and h,
respectively. Then C(h) = O(C(MST (GV)) and w(e∗h) = O(w(e∗MST )).

Next, we describe the construction of the broadcast backbone Th, based on
the Hamiltonian circuit h = (u1, u2, . . . , un+1 = u1) from Theorem 4. Let ρ be
an integer parameter, 1 ≤ ρ ≤ n. The node set of Th is V. We divide the sequence
of nodes Uh = {u1, u2, . . . , un} into n/ρ consecutive sequences Ui with ρ nodes
each, so that Ui = {uρ(i−1)+1, uρ(i−1)+2, . . . , uρi}, 1 ≤ i ≤ n/ρ.

The center node of a sequence U = {x1, x2, . . . , xj}, denoted c(U), is the
median node with an index b j+1

2 c. There are two types of edges in Th, E(Th) =
E1 ∪ E2. The first type of edges connects the center nodes of every two adja-

cent node sequences, E1 = {(c(Ui), c(Ui+1))}
n/ρ−1
i=1 . The second type of edges,

E2, induces n/ρ complete binary trees B1, . . . , Bn/ρ. Each tree Bi, 1 ≤ i ≤ n/ρ
spans the nodes in Ui and is rooted at c(Ui). The tree Bi is constructed re-
cursively. The children of c(Ui) are the center nodes in subsequences U 1

i =
{vρ(i−1)+1, . . . , vρ(i−1)+ ρ−1

2

} and U2
i = {vρ(i−1)+ ρ+3

2

, . . . , vρi}. We then continue

to construct a complete binary tree in each of the subsequences, U 1
i , U2

i , in a
similar way. Note that each tree Bi has log ρ levels (see example in Figure 1).

Denote by e∗Th
and e∗h the longest edges in Th and h, respectively. The next

lemma shows some valuable bounds for Th (the proof is omitted due to lack of
space).

Lemma 4. The graph Th is a spanning tree of GV and has a bounded hop-
diameter of O(n/ρ+log ρ), a bounded degree of 4, and it holds C(Th) = O(ρC(h))
and w(e∗Th

) = O(ρ2w(e∗h)).



Note that the tradeoff between the approximation of the longest edge and the
hop-diameter bound presented in Lemma 4 is optimal. Consider the unweighted
n-path: any tree of hop-diameter at most D for it, contains an edge with an
interval length of at least (n − 1)/D, and so its squared length is at least (n −
1)2/D2. Since the longest edge of the n-path has a squared length of 1, we get an
increase of the longest edge by a factor of at least Ω(n2/D2). Finally, substitute
D = n/ρ to obtain Ω(ρ2).

Similar to the first construction, the broadcast backbone Th satisfies multiple
constraints according to Lemma 4. We can therefore derive the next theorem.

Theorem 5. Given a weighted, undirected graph GV , and a sequence of m
source nodes S. Setting T = Th; (i) provides us with k successful broadcast
message propagations, where k ≥ k∗/2ρ2; (ii) T has a bounded hop-diameter of
n/ρ + log ρ; (iii) T has a bounded degree of 4; (iv) the total energy consumption
in one broadcast tree is at most O(ρ) times of the optimum.

Proof. Conditions (ii) and (iii) are immediate from Lemma 4. From the same
lemma in conjunction with Theorem 4, w(e∗Th

) = O(ρ2w(e∗MST )). By follow-
ing similar arguments as in the proof of Lemma 3, we obtain (i). Combining
Theorem 4 and Lemma 4 also yields the bound C(Th) = O(ρC(MST (GV))).
Following the same arguments as in Theorem 3 condition (iv) follows. ut

3.3 Applicability to the STMLC Problem.

The two constructions for the broadcast backbone may be used for converge-
cast, which will result in similar asymptotic bounds. The similarity follows from
Lemma 2, which can be applied for convergecast transmissions, since it does not
rely on any broadcast specific characteristics. This results in the same approxima-
tion ratios for the network lifetime (number of successful message propagations).
The hop-diameter and degree bounds follow immediately from the constructions.
Finally, we have to show that the total power consumption bound also holds.
In [23], the authors showed that the total power consumption needed for one
convergecast propagation is at least C(MST ).
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