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Abstract

The Survivable Network Design (SND) problem seeks a minimum-cost subgraph that

satisfies prescribed node-connectivity requirement. We consider SND on both directed

and undirected complete graphs with �-quasi-metric costs when c(xz) ≤ �[c(xy) +

c(yz)] for all x, y, z ∈ V , which varies from uniform costs (� = 1/2) to metric costs

(� = 1).

For the k-Connected Subgraph (k-CS) problem our ratios are: 1 + 2�
k(1−�) − 1

2k−1 for

undirected graphs, and 1 + 4�3

k(1−3�2)
− 1

2k−1 for directed graphs and 1
2 ≤ � < 1√

3
. For

undirected graphs this improves the ratios �
1−�

of [2] and 2 + � k
n
of [10] for all k ≥ 4

and 1
2 + 1

2k ≤ � ≤ k2

(k+1)2−2
. We also show that SND admits the approximation ratios

2�
1−�

for undirected graphs, and 4�3

1−3�2 for directed graphs and 1/2 ≤ � ≤ 1/
√
3. For

two important particular cases of SND, so called Rooted SND and Subset k-CS, our

ratios are 2�3

1−3�2 for directed graphs and �
1−�

for Subset k-CS on undirected graphs.
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1 Introduction

1.1 Problems considered

For a graph H let �H(u, v) denote the uv-connectivity of H , that is the maximum number

of internally node disjoint uv-paths in H . We consider variants the following fundamental

problem:

Survivable Network Design (SND)

Instance: A directed/undirected graph G = (V,E) with edge-cost {c(e) : e ∈ E}, and

connectivity requirements {r(u, v) : u, v ∈ V }.
Objective: Find a min-cost subgraph H of G satisfying �H(u, v) ≥ r(u, v) for all u, v ∈ V .

Let k = maxu,v∈V r(u, v) denote the maximum requirement of an SND instance. Impor-

tant particular cases of SND are:

∙ k-Connected Subgraph (k-CS), when r(u, v) = k for all u, v ∈ V .

∙ Subset k-CS, when r(u, v) = k for all u, v ∈ T ⊆ V and r(u, v) = 0 otherwise.

∙ Rooted SND, when there is a node s ∈ V so that r(u, v) > 0 implies u = s.

We consider instances of SND with �-quasi-metric costs, namely, when the input graph

is complete and the costs satisfy the �-triangle inequality c(xz) ≤ �(c(xy) + c(yz)) for all

x, y, z ∈ V . When � = 1
2
the costs are uniform, and we have the “cardinality version” of the

problem (in a complete graph). When � = 1 the costs satisfy the triangle inequality and we

have the metric version of the problem. Many practical instances of the problem may have

costs which are between metric and uniform.

1.2 Previous work on general and metric costs

k-CS with �-quasi-metric costs is APX-hard [1] for k = 2 and any � > 1/2, and thus

also Subset k-CS, and SND with with �-quasi-metric costs, metric costs, or general costs. No

previous result for general directed/undirected SND with �-quasi-metric cost. For undirected

SND with metric costs an O(log k)-approximation algorithm was given by Cheriyan and Vetta

[5]. This algorithm applies also for �-quasi-metric costs. On the other hand, the directed

SND with metric costs is unlikely to admit a polylogarithmic approximation ratio even for

k = 1 [8].
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Costs Requirements Approximability

Undirected Directed

general general O(min{k3 log n, n2} [7], Ω(k") [6] Ω(2log
1−" n) for k = 1 [8]

general k-CS O(log n
n−k

log k) [13] O(log n
n−k

log k) [13]

general Subset k-CS O(min{k2 log k, n2}) [14], Ω(k") [6] O(n2)

general Rooted SND O(min{k2, n}) [14] O(n)

metric general O(log k) [5] Ω(2log
1−" n) for k = 1 [8]

metric k-CS 2 + (k − 1)/n [10] 2 + k/n [10]

�-quasi-metric general – –

�-quasi-metric k-CS 2 + � k
n
[10], �

1−�
[2], APX-hard [1] –

Table 1: Approximation ratios and hardness of approximation results for SND and k-CS.

We now survey some recent work on SND problems with general costs from [7, 13, 14,

12]. For general costs, the currently best known ratio for undirected SND problems are:

O(min{k3 logn, n2}) due to chuzhoy and Khanna [7], O(min{k2, n}) for Rooted SND and

O(min{k2 log k, n2}) for Subset k-Connected Subgraph due to Nutov [14]; the latter problem

has an Ω(k")-approximation threshold [6]. For k-CS with general costs the currently best

known ratio is O(log n
n−k

log k) for both directed and undirected graphs due to Nutov [13].

In [12] it is proved that for k = n/2 + k′ the approximability of undirected SND is the same

as that of directed SND with maximum requirement k′. This is so also for k-CS. However,

the reduction in [12] does not preserve metric costs.

For further approximation ratios and hardness of approximation results for SND and k-

CS are summarized in Table 1. For a survey on various min-cost connectivity problems see

[11].

We note that in [2] is also given a (1 + 5(2�−1)
9(1−�)

)-approximation algorithm for undirected

3-CS with �-quasi-metric costs, however this approximation is for � < 2
3
, and our approxi-

mation improvment range is disjoint to this improvment range.

1.3 Our results

We analyze the algorithm of Cheriyan & Thurimella [4] originally suggested for k-CS with

1,∞-costs, and show that for �-quasi-metric costs it achieves the following ratios:

Theorem 1.1 k-CS with �-quasi-metric costs admits the following approximation ratios:
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Graph Requirements Approximability Improvement Range

undirected general 2�
1−�

1/2 ≤ � < 1

” subset k-CS �

1−�
”

” k-CS 1 + 2�
k(1−�)

− 1
2k−1

k ≥ 3, 1
2
+ 3k−2

2(4k2−7k+2)
< � < k2

(k+1)2−2

directed general 4�3

1−3�2

1
2
≤ � < 1√

3

” subset k-CS 2�3

1−3�2 ”

” rooted 2�3

1−3�2 ”

” k-CS 1 + 4�3

k(1−3�2)
− 1

2k−1
”

Table 2: Improvement ranges of our results.

∙ 1 + 2�
k(1−�)

− 1
2k−1

≤ 1 + 1
k

(

2�
1−�

− 1
2

)

for undirected graphs.

∙ 1 + 4�3

k(1−3�2)
− 1

2k−1
≤ 1 + 1

k

(

4�3

1−3�2 − 1
2

)

for directed graphs and 1/2 ≤ � ≤ 1/
√
3.

For directed k-CS we offered an approximation ratio of 1 + 4�3

k(1−3�2)
− 1

2k−1
in the range

1/2 ≤ � ≤ 1/
√
3, and improved previous approximation ration of O(log n

n−k
log k) [13] in this

entire range. For undirected k-CS we offered an approximation ratio of 1+ 2�
k(1−�)

− 1
2k−1

, this

result improves the approximation ration of �

1−�
[2] for all k ≥ 3 and 1

2
+ 3k−2

2(4k2−7k+2)
< �, and

improves the approximation ration of 2+� k
n
[10] for any1 � < k2

(k+1)2−2
. We note that [2] also

introducted an improvement for �

1−�
when k = 3, and � ≤ 2

3
, and thus their improvement

range is dosjoint to ours in this case.

For other versions of the problem our results are as follows.

Theorem 1.2 SND with �-quasi-metric costs admits approximation ratios 2�
1−�

for undi-

rected graphs and 4�3

1−3�2 for directed graphs and 1/2 ≤ � ≤ 1/
√
3. For Subset k-CS the ratios

are �

1−�
for undirected graphs and 2�3

1−3�2 for directed graphs; for directed Rooted SND the

ratio is 2�3

1−3�2 .

For directed SND no previous results existed, we introduce an approximation ratio of
4�3

1−3�2 for any 1
2
≤ � < 1√

3
. For both directed Subset k-CS and directed Rooted SND there

exists previous results of O(n2) and O(n) respectivly, we provide an approximation ratio of
2�3

1−3�2 and improve both results for any 1
2
≤ � < 1√

3
.

The improvement ranges of our results a summarized in Table 2.

1This calculation assumed k might be relevantly small and compared out results to a 2-approximation
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2 Harray graphs and �-quasi-metric costs

Our work relies on three important results. First is Cheriyan & Thurimella [4] approximation

for Subset k-CS. Second is the costs relations in �-quasi-metric as decribes in the following

statment:

Lemma 2.1 ([1, 3]) Let e, e′ be a pair of edges in a complete graph G with �-quasi-metric

costs.

(i) If G is undirected, and if e, e′ are adjacent then c(e) ≤ �

1−�
c(e′).

(ii) If G is directed, and if 1
2
≤ � ≤ 1√

3
, then c(e) ≤ 2�3

1−3�2 c(e
′).

And third Harrary Graphs. These graphs are explicit constructions for undirected k-CS

with uniform costs, that is a graph with minimum number of edges such that it is k-connected.

We extend this construction for the general case of SND. In this section we will introduce

the construction of Harrary, and summerize the results achived in [[1, 3]] on the relations

between costs in �-quasi-metric.

2.1 Harrary Graphs

In the sixties Harary [9] showed that for any k, n, and k < ∣V ∣ there exist a n-nodes, k-

connected undirected graph Hn,k = (V,E) such that ∣E∣ = ⌈ ∣V ∣⋅k
2

⌉, and that every n-nodes,

k-connected undirected graph have at least ⌈ ∣V ∣⋅k
2

⌉ edges. Given n nodes V = {v0, ⋅ ⋅ ⋅ , vn−1},
the construction of Hn,k is divided to three cases.

(i) If both n, k are even, then an edge (vi, vj) is in Hn,k if j − i ≤ k
2
mod n.

(ii) If both n is even, and k is odd, then an edge (vi, vj) is in Hn,k if j − i ≤ k
2
mod n or

j − i ≡ n
2
mod n.

(iii) If both n is even, and k is odd, then an edge (vi, vj) is in Hn,k if j − i ≤ k
2
mod n or

i ≤ n+1
2
, j − i ≡ n

2
mod n.

the follwing figure demonstrates the construction on small n, k.

For directed graph a similar construction exists, it is a well known simple construction

even tough we cannot find reference to it in the litreture.

Given n nodes V = {v0, ⋅ ⋅ ⋅ , vn−1}, we include all edges (vi, vj) such that j− i ≤ kmod n.

the follwing figure demonstrates the construction on small n, k.
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Figure 1: Harary Graphs
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Figure 2: Directed ”Harrary Graphs”

2.2 Proof of lemma 2.1

Part (i) is simple, given an undirected graph G = (V,E) with costs satisfying the �-triangle,

and two edges uv, uw. c(u, v) ≤ �[c(u, w) + c(w, v)] ≤ �c(u, w) + �2[c(u, w) + c(u, v)], rear-

ranging we have c(u, v) ≤ �+�2

1−�2 c(u, w) =
�

1−�
c(u, w).

In the rest of this section assumes that 1
2
≤ � < 1√

3
, and w.l.o.g. that the edge of

minimum cost cmin = 1. We will first introduce a proof for the following lemma, and then

use it to proof part (ii).

Lemma 2.2 Given a directed graph with �-quasi-metric. Assume w.l.o.g. that uv is an edge

of minimum cost and c(u, v) = 1, let w ∈ V , and let cmax be the maximum cost of an edge

in the subgraph induces by {u, v, w}. Then the following statement holds:

c(u, w) ≤ � + �2cmax

1− �2
, c(v, w) ≤ �2 + �cmax

1− �2
(1)

c(w, v) ≤ � + �2cmax

1− �2
, c(w, u) ≤ �2 + �cmax

1− �2
(2)

9



Proof: Let define a sequence: x0 = cmax, xi = �+�2cmax+�2xi−1 and show that c(u, w) ≤ xi

for all i, obviously c(u, w) ≤ x0 = cmax, now assume c(u, w) ≤ xi−1, then c(u, w) ≤ �(1 +

c(v, w)) ≤ �+ beta2cmax+�2xi−1 = xi. Now xi is monotone and limi→∞ xi =
�+�2cmax

1−�2 . Thus

C(u, w) ≤ �+�2cmax

1−�2 , and c(v, w) ≤ �[cmax + c(u, w)] = �2+�cmax

1−�2 . And the same arrguments

can be made to prove (2). □

Now given a directed graph G = (V,E) with costs satisfying the �-triangle inequality. If
cmax

cmin
≤ �2

1−�−�2 ≤ 2�3

1−3�2 the lemma follows immediatly, otherwise cmax

cmin
> �2

1−�−�2 .

In this case, let assume uv is a minimum cost edge, and c(u, v) = 1. For any edge e = xy

such that e is not incident to either u or v, c(x, y) ≤ �[c(x, u) + c(u, y)] and by lemma 2.2

≤ �2

1−�
(1 + cmax), from cmax > �2

1−�−�2 we can derive that cmax > �2

1−�
(1 + cmax), and thus

c(x, y) < cmax. Now if cmax > cmin then also cmax > �2+�cmax

1−�2 ≥ �+�2cmax

1−�2 , thus by lemma 2.2

for any node w ∕= u, v all edges uw,wu, wv, vw are strictly lower then cmax. Thus all edges in

G except vu are strictly lower then cmax, we means that vu is the unique edge of maximum

cost, and by lemma 2.2 (for some w ∈ V , cmax = c(v, u) = �[c(v, w)+ c(w, u)] ≤ 2�(�cmax+�2)
1−�2

rearranging, the lemma follows.
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3 Proof of Theorem 1.1

For an edge set F and a node v, let degF (v) denote the degree of v in F . For directed graphs,

let deginF (v) and degoutF (v) denote the indegree and the outdegree of v in F .

Definition 3.1 An edge set F on node set V is a k-cover if for all v ∈ V :

(i) degF (v) ≥ k if F is undirected.

(ii) deginF (v) ≥ k and degoutF (v) ≥ k if F is directed.

Lemma 3.1 For both directed and undirected graphs, any k-cover J contains a (k−1)-cover

F of cost c(F ) ≤
(

1− 1
2k−1

)

c(J).

Proof: The following procedure finds M ⊆ J such that F = J − M is a (k − 1)-cover

and c(M) ≥ c(J)/(2k − 1). Start with M = ∅, F = J , and all edges in F unmarked,

and iteratively do the following, until all edges that remain in F are marked. Among all

unmarked edges in F , let e = uv be one of the maximum cost. Remove e from F and add it

to M . In the case of undirected graphs, if the degree in F of an endnode of e is exactly k−1,

mark all edges incident to this endnode. In the case of directed graphs, if degoutF (u) = k − 1

mark all edges leaving u, and if deginF (v) = k − 1 mark all edges entering v. It is easy to see

that at the end F = J −M is a (k − 1)-cover. At every iteration, at most 2k − 1 edges in

F are removed or marked, and each of them is cheaper than the edge e added to M . Hence

c(M) ≥ c(J)/(2k − 1). □

Let F ⊆ E be a minimum cost (k − 1)-edge-cover. Such F of minimum costs can be

computed in polynomial time, for both directed and undirected graphs, c.f. [15]. As any

feasible solution to k-CS is a k-edge-cover, c(F ) ≤
(

1− 1
2k−1

)

opt, by Lemma 3.1. Now

let I ⊆ E − F be an inclusion minimal augmenting edge set so that H = (V, F + I) is

k-connected. It is known that I is a forest in the case of undirected graphs, and ∣I∣ ≤ 2n−1

in the case of directed graphs.

In the case of undirected graphs, since I is a forest, there exists an orientation D of I

so that the outdegree of every node w.r.t. D is at most 1. Let Di be the set of edges in D

leaving vi, so either Di = ∅ or ∣Di∣ = 1 for all i. As Ji ≥ k, we have c(Di) ≤ c(Ji)
�

k(1−�)
, by

Lemma 2.1. Hence

c(I) =

n
∑

i=1

c(Di) ≤
�

k(1− �)

n
∑

i=1

c(Ji) ≤
2�

k(1− �)
c(J) =

2�

k(1− �)
⋅ opt .
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Consequently,

c(H) = c(F )+ c(I) ≤
(

1− 1

2k − 1

)

⋅opt+ 2�

k(1− �)
⋅opt =

(

1 +
2�

k(1− �)
− 1

2k − 1

)

⋅opt .

In the case of directed graphs, ∣I∣ ≤ 2n − 1. As any feasible solution has at least kn

edges, we have

c(I) ≤ 2n− 1

kn
⋅ 2�3

1− 3�2
⋅ opt ≤ 4�3

k(1− 3�2)
⋅ opt .

Consequently,

c(H) = c(F )+c(I) ≤
(

1− 1

2k − 1

)

⋅opt+ 4�3

k(1− 3�2)
⋅opt =

(

1 +
4�3

k(1− 3�2)
− 1

2k − 1

)

⋅opt .
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4 Proof of Theorem 1.2

Our strategy to prove Theorem 1.2 is to give an explicit construction of a graph H so that

the following holds. In the case of directed graphs, the number of edges in H is at least �

times a lower bound on the number of edges in any feasible solution. Using part (ii) from

Lemma 2.1, this immediately implies the ratio � ⋅ 2�3

1−3�2 . In the case of undirected graphs, we

will show that we can orient the edges of H so that the number of the edges leaving every

node v is at most � times the number of edges incident to v in any feasible solution. Using

part (i) from Lemma 2.1, this immediately implies the ratio � ⋅ �

1−�
. For both directed and

undirected graphs, we will have � = 2 for SND and � = 1 for Subset k-CS. For directed

Rooted SND we will also have � = 1.

Given an instance G = (V,E), c, r of SND we use the following notation. Let V =

{v1, . . . , vn}. Let us fix some optimal solution J . For undirected graphs, the requirement

ri of vi is the maximum requirement of a pair containing vi, and Ji is the set of edges in

J incident to vi. For directed graphs routi = maxvj∈V r(vi, vj) is the out-requirement of vi,

and rini = maxvj∈V r(vj, vi) is the in-requirement of vi; J
out
i and J in

i be the set of edges in J

leaving and entering vi, respectively.

4.1 General SND

For general SND we use the following simple construction.

Lemma 4.1 Let V = {v1, . . . , vn} be a node set, and for i = 1, . . . , n let routi , rini ≤ n − 1

be non-negative integers. Let Aout
i be the set of edges from vi to the first rout(vi) nodes in

V −{vi}, and Ain
i be the set of edges from the first rout(vi) nodes in V −{vi} to vi. Namely:

Aout
i =

{

{vivj : 1 ≤ j ≤ r(vi)} if rout(vi) < i

{vivj : 1 ≤ j ≤ r(vi) + 1, j ∕= i} otherwise

Ain
i =

{

{vjvi : 1 ≤ j ≤ r(vi)} if rin(vi) < i

{vjvi : 1 ≤ j ≤ r(vi) + 1, j ∕= i} otherwise

Then for any i ∕= j, the graph Hij = (V,Aout
i ∪Ain

j ) contains at least min{routi , rinj } internally

disjoint vivj-paths.

Proof: Note that there is a set C of min{r(vi), r(vj)} − 1 nodes so that in Hij there is

an edge from vi to every node in C and from every node in C to vj ; furthermore, either

vivj ∈ Hij or vivj there is one more node that can be added to C. The statement follows. □

13



The algorithm is as follows. In the case of directed graphs, we compute the edge sets Aout
i

and Ain
i as in Lemma 4.1, and output their union graph H . In the case of undirected graphs,

we consider the directed problem on the bi-direction of G with the requirements rin(vi) = 0

for all i, rout(vi, vj) = max{r(vi, vj), r(vj, vi)} for i > j and rout(vi, vj) = 0 otherwise. Hence

we will have Ain
i = ∅ for all i. The graph H is the underlying graph of the union of the

sets Aout
i . For both directed and undirected graphs we have �H(vi, vj) ≥ min{r(vi), r(vj)} ≥

r(vi, vj), hence H is a feasible solution.

To establish the approximation ratio, we will use Lemma 2.1. In the case of directed

graphs, note that ∣Aout
i ∣ = routi and ∣Ain

i ∣ = rini while ∣Jout
i ∣ ≥ routi and ∣J in

i ∣ ≥ rini . Hence the

number of edges in the constructed solution is
∑n

i=1(r
out
i +rini ), while any feasible solution has

at least half this number of edges. Combined with part (ii) of Lemma 2.1, this immediately

implies the ratio 4�3

1−3�2 .

In the case of undirected graphs, let Ai be the set of undirected edges that corresponding

to Aout
i in the bi-direction of G. Note that ∣Ai∣ = r(vi) and that ∣Ji∣ ≥ ri for all i. Hence

c(Ai) ≤ �

1−�
c(Ji), by part (i) of Lemma 2.1. Thus

c(H) ≤
n

∑

i=1

c(Ai) ≤
�

1− �

n
∑

i=1

c(Ji) ≤
2�

1− �
c(J) =

2�

1− �
⋅ opt .

4.2 Subset k-CS

Recall that Subset k-CS is the case of SND when for some T ⊆ V we have r(u, v) = k for

all u, v ∈ T . Let t = ∣T ∣. For the case t > k we can apply our algorithm for k-CS while

ignoring the nodes in V − T , thus obtaining ratios as in Theorem 1.1. We can also obtain

the ratios as in Theorem 1.2. Such an algorithm is described in [2] for undirected graphs,

and we extend it to directed graphs.

Let ℓ ≤ t− 1 be an integer. Let H(ℓ) be an ℓ-connected graph on T with the following

property. In the case of undirected graphs, we require that H(ℓ) has an orientation so that

the outdegree of every node is exactly k. In the case of directed graphs, we require that

H(ℓ) has ℓn edges. Such graphs are known to exist. If t ≥ k + 1 then our algorithm for

k-CS returns any graph H(k) as above. The approximation ratio is shown as follows. In the

case of undirected graphs, let Ai be the set of edges corresponding to the edges leaving vi

in the above orientation of H(k). For any feasible solution, the degree of every node in T

is at least k. The ratio of �

1−�
now immediately follows from part (i) of Lemma 2.1. In the

case of directed graphs, any feasible solution has at least kt edges. The ratio of 2�3

1−3�2 now

immediately follows from part (ii) of Lemma 2.1.
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Our construction for the case t ≤ k is a slight extension of this construction. Note that

∣V ∣ ≥ k+1, as otherwise the problem has no feasible solution. We choose a set U ⊆ V −T of

arbitrary k−t+1 nodes, and obtain a graph H by adding all possible edges between H(t−1)

and U . It is easy to see that H is a feasible solution. For the analysis of the approximation

ratio, we use the following simple observation.

Lemma 4.2 Let J be a feasible solution to a Subset k-CS instance. Then:

(i) For undirected graphs, every node in T has in J at least k − t+ 1 neighbors in V − T .

(ii) For directed graphs, J has at least t(t− 1) + 2t(k − t+ 1) edges.

Proof: In undirected J , every node in T has at least k neighbors. At most t − 1 of these

neighbors can lie in T , hence all the other at least k − t + 1 neighbors are in V − T . In

directed J , every node has outdegree and indegree at least k. At most t− 1 edges can enter

a node from nodes in T , or leave a node to a node in T . Hence for every v ∈ T , at least

k − t + 1 edges go from v to V − T , and at least k − t+ 1 edges go from V − T to v. Thus

the number of edges in J is at least t(t− 1) + 2t(k − t + 1), as claimed. □

For undirected graphs, we orient the edges of our solution H as follows. We can orient

the edges of H(t − 1) so that the outdegree of every node is k, and we orient the edges

between H(t − 1) and U from T to U . In this orientation, the outdegree of every node is

exactly k − t + 1. For directed graphs our solution H has exactly t(t − 1) + 2t(k − t + 1)

edges, Thus the ratios �

1−�
for undirected graphs and 2�3

1−�2 for directed graphs follow from

Lemmas 4.2 and 2.1.

4.3 Directed Rooted SND

Let G = (V,E), c, r, s be an instance of directed Rooted SND where s is the root. Let

T = {u ∈ V : r(s, u) > 0} be the set of nodes with positive in-requirements.

Lemma 4.3 Any feasible solution J for directed Rooted SND has at least
∑

v∈T rin(v) edges,

and at least
∑

v∈T rin(v) + k − ∣T ∣ edges if k > ∣T ∣.

Proof: Clearly, deginJ (v) ≥ rin(v) and degoutJ (r) ≥ k. Now consider the edges in J leaving

r. At most ∣T ∣ of these edges can go to nodes in T , hence if k > ∣T ∣ then there are at least

k − ∣T ∣ edges that go to nodes in V − T . The statement follows. □

Now we show that the lower bound in Lemma 4.3 is achievable. Construct a graph H as

follows. Let U ⊆ V ∖ {s} be an arbitrary set of max{k, ∣T ∣} nodes containing T , so U = T if

15



∣T ∣ ≥ k. Take an edge from s to every node in U , and for every v ∈ T take arbitrary rin(v)−1

edges entering v from any rin(v)− 1 nodes in U ∖ {v}. It is easy to see that H is a feasible

solution for the directed Rooted SND instance, and the number of edges in H coincides with

the lower bound in Lemma 4.3. Applying Lemma 2.1(ii) we obtain c(H) ≤ 2�3

1−3�2 ⋅ opt.
The proof of Theorem 1.2 is complete.
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5 Conclusions

We have analized and shown that the algorithm of Cheriyan & Thurimella [4] achives 1 +
2�

k(1−�)
− 12k − 1, and 1 + 4�3

k(1−3�2)
− 12k − 1 for undirected and directed k-CS with �-quasi-

metric costs.

We used Harrary construction for undirected k-CS, and provided explicit construction

for directed k-CS, undirected subset k-CS, directed subset k-CS. and directed rooted SND.

All of which gives an optimal solution when the edge costs are uniform. For the general case

of SND we provided an explicit consturction that achives 2-approximation for unifrom costs.

Using those construction, and properties of �-quasi-metric we provided approximation

ratios for subset k-CS, SND, and an improvment for rooted SND with directed graphs.

Still some questions remains unanswered. Is there any explicit construction for SND with

uniform costs that provide an optimal solution?, and if not is there a better approximation

then 2?. Are there any better approximation for the problems of subset k-CS, k-CS, and

SND?. And for the directed SND, is there any approximation for � > 1√
3
?, note that for

� = 1 there is a lower bound of Ω(2log
1−� n).
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