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Abstract

The Survivable Network Design (SND) problem seeks a minimum-cost subgraph that

satisfies prescribed node-connectivity requirements. We consider SND on both directed

and undirected complete graphs with �-metric costs when c(xz) ≤ �[c(xy) + c(yz)] for

all x, y, z ∈ V , which varies from uniform costs (� = 1/2) to metric costs (� = 1).

For the k-Connected Subgraph (k-CS) problem our ratios are: 1 + 2�
k(1−�) − 1

2k−1 for

undirected graphs, and 1 + 4�3

k(1−3�2)
− 1

2k−1 for directed graphs and 1
2 ≤ � < 1√

3
. For

undirected graphs this improves the ratios �
1−�

of [2] and 2+� k
n
of [9] for all k ≥ 4 and

1
2 + 1

2k ≤ � ≤ k2

(k+1)2−2
. We also show that SND admits the approximation ratios 2�

1−�

for undirected graphs, and 4�3

1−3�2 for directed graphs and 1/2 ≤ � ≤ 1/
√
3. For two

important particular cases of SND, so called Rooted SND and Subset k-CS, our ratios

are 2�3

1−3�2 for directed graphs and �
1−�

for Subset k-CS on undirected graphs.

1 Introduction

1.1 Problems considered

For a graphH , let �H(u, v) denote the uv-connectivity of H , that is, the maximum number of

internally-disjoint uv-paths in H . We consider variants the following fundamental problem:

Survivable Network Design (SND)

Instance: A directed/undirected complete graph G = (V,E) with edge-cost {c(e) : e ∈ E},
and connectivity requirements {r(u, v) : u, v ∈ V }.

Objective: Find a min-cost subgraph H of G satisfying �H(u, v) ≥ r(u, v) for all u, v ∈ V .

∗This work was done as a part of author’s M.Sc. Thesis at The Open University of Israel.
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Let k = maxu,v∈V r(u, v) denote the maximum requirement of an SND instance. Impor-

tant particular cases of SND are:

∙ k-Connected Subgraph (k-CS), when r(u, v) = k for all u, v ∈ V .

∙ Subset k-CS, when r(u, v) = k for all u, v ∈ T ⊆ V and r(u, v) = 0 otherwise.

∙ Rooted SND, when there is a node s ∈ V so that r(u, v) > 0 implies u = s.

We consider instances of SND with �-metric costs, when the input graph is complete and

for some 1/2 ≤ � < 1 the costs satisfy the �-triangle inequality c(xz) ≤ �(c(xy) + c(yz)) for

all x, y, z ∈ V . When � = 1
2
the costs are uniform, and we have the “cardinality version”

of the problem (in a complete graph). If we allow the case � = 1, then the costs satisfy the

ordinary triangle inequality and we have the metric version of the problem. Many practical

instances of the problem may have costs which are between metric and uniform.

1.2 Previous work and our results

The k-CS problem (and thus also SND) with �-metric costs is APX-hard for k = 2 and any

� > 1/2 [1]. Approximation ratios and hardness of approximation results for SND and k-CS

are summarized in Table 1. In [2] is also given a (1 + 5(2�−1)
9(1−�)

)-approximation algorithm for

undirected 3-CS with �-metric costs. For a survey on various min-cost connectivity problems

see [10]. For recent work on SND problems see [7, 12, 13]. We mention a recent result [11]

that for k = n/2 + k′ the approximability of undirected SND is the same as that of directed

SND with maximum requirement k′. This is so also for k-CS. However, the reduction in [11]

does not preserve metric costs.

We analyze the algorithm of Cheriyan & Thurimella [4] originally suggested for k-CS

with 1,∞-costs, and show that for �-metric costs it achieves the following ratios:

Theorem 1 k-CS with �-metric costs admits the following approximation ratios:

∙ 1 + 2�
k(1−�)

− 1
2k−1

≤ 1 + 1
k

(

2�
1−�

− 1
2

)

for undirected graphs.

∙ 1 + 4�3

k(1−3�2)
− 1

2k−1
≤ 1 + 1

k

(

4�3

1−3�2 − 1
2

)

for directed graphs and 1/2 ≤ � ≤ 1/
√
3.

For undirected graphs, this improves the ratios �

1−�
of [2] and 2+ � k

n
of [9]1 for all k ≥ 4

and 1
2
+ 1

2k
≤ � ≤ k2

(k+1)2−2
.

1In [9] is given a (2 + (k − 1)/n)-approximation algorithm for metric costs; a slight adjustement of the

analysis of [9] shows that this algorithm has ratio 2 + � k

n
for �-metric costs.
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Costs Requirements Approximability

Undirected Directed

general general O(min{k3 logn, n2} [7], Ω(k") [6] Ω(2log
1−" n) for k = 1 [8]

general k-CS O(log n
n−k

log k) [12] O(log n
n−k

log k) [12]

general Subset k-CS O(min{k2 log k, n2}) [13], Ω(k") [6] O(n2)

general Rooted SND O(min{k2, n}) [13] O(n)

metric general O(log k) [5] Ω(2log
1−" n) for k = 1 [8]

metric k-CS 2 + (k − 1)/n [9] 2 + k/n [9]

�-metric general – –

�-metric k-CS 2 + � k
n
[9], �

1−�
[2], APX-hard [1] –

Table 1: Approximation ratios and hardness of approximation results for SND and k-CS

(recall that in the case of �-metric costs we assume 1/2 ≤ � < 1).

Graph Requirements Approximability Improvement Range

undirected general 2�
1−�

1/2 ≤ � < 1

undirected subset k-CS �

1−�
1/2 ≤ � < 1

undirected k-CS 1 + 2�
k(1−�)

− 1
2k−1

k ≥ 4, 1
2
+ 3k−2

2(4k2−7k+2)
< � < k2

(k+1)2−2

directed general 4�3

1−3�2

1
2
≤ � < 1√

3

directed subset k-CS 2�3

1−3�2

1
2
≤ � < 1√

3

directed rooted 2�3

1−3�2

1
2
≤ � < 1√

3

directed k-CS 1 + 4�3

k(1−3�2)
− 1

2k−1
1
2
≤ � < 1√

3

Table 2: Improvement ranges of our results.

For other versions of the problem our results are as follows.

Theorem 2 SND with �-metric costs admits approximation ratios 2�
1−�

for undirected graphs,

and 4�3

1−3�2 for directed graphs with 1/2 ≤ � < 1/
√
3. For Subset k-CS the ratios are �

1−�
for

undirected graphs and 2�3

1−3�2 for directed graphs with 1/2 ≤ � < 1/
√
3; for directed Rooted

SND the ratio is 2�3

1−3�2 , 1/2 ≤ � < 1/
√
3.

In our proofs, we will often use the following statement:

Lemma 3 ([1, 3]) Let e, e′ be a pair of edges in a complete graph G with �-metric costs.

(i) If G is undirected, and if e, e′ are adjacent then c(e) ≤ �

1−�
c(e′).

(ii) If G is directed, and if 1
2
≤ � ≤ 1√

3
, then c(e) ≤ 2�3

1−3�2 c(e
′).
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1.3 Notation

Given an instanceG = (V,E), c, r of SND we use the following notation. Let V = {v1, . . . , vn}.
For undirected graphs, the requirement ri of vi is the maximum requirement of a pair con-

taining vi. For directed graphs routi = maxvj∈V r(vi, vj) is the out-requirement of vi, and

rini = maxvj∈V r(vj, vi) is the in-requirement of vi. For an edge set F and a node v, let

degF (v) denote the degree of v in F . For directed graphs, let deginF (v) and degoutF (v) denote

the indegree and the outdegree of v in F .

2 Proof of Theorem 1

Definition 2.1 An edge set F on node set V is a k-cover if for all v ∈ V :

(i) degF (v) ≥ k if F is undirected.

(ii) deginF (v) ≥ k and degoutF (v) ≥ k if F is directed.

Lemma 4 For both directed and undirected graphs, any k-cover J contains a (k − 1)-cover

F of cost c(F ) ≤
(

1− 1
2k−1

)

c(J).

Proof: The following procedure finds M ⊆ J such that F = J − M is a (k − 1)-cover

and c(M) ≥ c(J)/(2k − 1). Start with M = ∅, F = J , and all edges in F unmarked,

and iteratively do the following, until all edges that remain in F are marked. Among all

unmarked edges in F , let e = uv be one of the maximum cost. Remove e from F and add it

to M . In the case of undirected graphs, if the degree in F of an endnode of e is exactly k−1,

mark all edges incident to this endnode. In the case of directed graphs, if degoutF (u) = k − 1

mark all edges leaving u, and if deginF (v) = k − 1 mark all edges entering v. It is easy to see

that at the end F = J −M is a (k − 1)-cover. At every iteration, at most 2k − 1 edges in

F are removed or marked, and each of them is cheaper than the edge e added to M . Hence

c(M) ≥ c(J)/(2k − 1). □

Let F ⊆ E be a minimum-cost (k−1)-cover. Such F of minimum-costs can be computed

in polynomial time, for both directed and undirected graphs, c.f. [14]. As any feasible

solution to k-CS is a k-cover, c(F ) ≤
(

1− 1
2k−1

)

opt, by Lemma 4. Now let I ⊆ E−F be an

inclusion-minimal augmenting edge set so that H = (V, F + I) is k-connected. It is known

that I is a forest in the case of undirected graphs, and ∣I∣ ≤ 2n− 1 in the case of directed

graphs, c.f. [4] and [10].
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In the case of undirected graphs, since I is a forest, there exists an orientation D of I

(namely, D is a directed graph obtained by directing every edge of I) so that the outdegree

of every node w.r.t. D is at most 1. Let Di be the set of edges in D leaving vi, so either

Di = ∅ or ∣Di∣ = 1 for all i. Let J be an optimal solution, and let Ji be the set of edges in

J incident to vi. As Ji ≥ k, we have c(Di) ≤ c(Ji)
�

k(1−�)
, by Lemma 3. Hence

c(I) =
n

∑

i=1

c(Di) ≤
�

k(1− �)

n
∑

i=1

c(Ji) ≤
2�

k(1− �)
c(J) =

2�

k(1− �)
⋅ opt .

Consequently,

c(H) = c(F )+ c(I) ≤
(

1− 1

2k − 1

)

⋅opt+ 2�

k(1− �)
⋅opt =

(

1 +
2�

k(1− �)
− 1

2k − 1

)

⋅opt .

In the case of directed graphs, ∣I∣ ≤ 2n − 1. As any feasible solution has at least kn

edges, we have

c(I) ≤ 2n− 1

kn
⋅ 2�3

1− 3�2
⋅ opt ≤ 4�3

k(1− 3�2)
⋅ opt .

Consequently,

c(H) = c(F )+c(I) ≤
(

1− 1

2k − 1

)

⋅opt+ 4�3

k(1− 3�2)
⋅opt =

(

1 +
4�3

k(1− 3�2)
− 1

2k − 1

)

⋅opt .

3 Proof of Theorem 2

Our strategy to prove Theorem 2 is to give an explicit construction of a graph H so that

the following holds. In the case of directed graphs, the number of edges in H is at least �

times a lower bound on the number of edges in any feasible solution. Using part (ii) from

Lemma 3, this immediately implies the ratio � ⋅ 2�3

1−3�2 . In the case of undirected graphs, we

will show that we can orient the edges of H so that the number of the edges leaving every

node v is at most � times the number of edges incident to v in any feasible solution. Using

part (i) from Lemma 3, this immediately implies the ratio � ⋅ �

1−�
. For both directed and

undirected graphs, we will have � = 2 for SND and � = 1 for Subset k-CS. For directed

Rooted SND we will also have � = 1.

3.1 General SND

For general SND we use the following simple construction.
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Lemma 5 Let V = {v1, . . . , vn} be a node set, and for i = 1, . . . , n let routi , rini ≤ n − 1

be non-negative integers. Let Aout
i be the set of edges from vi to the first rout(vi) nodes in

V −{vi}, and Ain
i be the set of edges from the first rout(vi) nodes in V −{vi} to vi. Namely:

Aout
i =

{

{vivj : 1 ≤ j ≤ r(vi)} if rout(vi) < i

{vivj : 1 ≤ j ≤ r(vi) + 1, j ∕= i} otherwise

Ain
i =

{

{vjvi : 1 ≤ j ≤ r(vi)} if rin(vi) < i

{vjvi : 1 ≤ j ≤ r(vi) + 1, j ∕= i} otherwise

Then for any i ∕= j, the graph Hij = (V,Aout
i ∪Ain

j ) contains at least min{routi , rinj } internally

disjoint vivj-paths.

Proof: Note that there is a set C of min{r(vi), r(vj)} − 1 nodes so that in Hij there is

an edge from vi to every node in C and from every node in C to vj ; furthermore, either

vivj ∈ Hij or vivj there is one more node that can be added to C. The statement follows. □

The algorithm is as follows. In the case of directed graphs, we compute the edge sets Aout
i

and Ain
i as in Lemma 5, and output their union graphH . In the case of undirected graphs, we

consider the directed problem on the bi-direction of G with the requirements rin(vi) = 0 for

all i, rout(vi, vj) = max{r(vi, vj), r(vj, vi)} for i > j and rout(vi, vj) = 0 otherwise. Hence we

will have Ain
i = ∅ for all i. The graph H is the underlying graph of the union of the sets Aout

i .

For both directed and undirected graphs we have �H(vi, vj) ≥ min{r(vi), r(vj)} ≥ r(vi, vj),

hence H is a feasible solution.

To establish the approximation ratio, we will use Lemma 3. Fix some optimal solution

J ; let Jout
i and J in

i be the sets of edges in J leaving and entering vi, respectively. In the case

of directed graphs, note that ∣Aout
i ∣ = routi and ∣Ain

i ∣ = rini while ∣Jout
i ∣ ≥ routi and ∣J in

i ∣ ≥ rini .

Hence the number of edges in the constructed solution is
∑n

i=1(r
out
i + rini ), while any feasible

solution has at least half this number of edges. Combined with part (ii) of Lemma 3, this

immediately implies the ratio 4�3

1−3�2 .

In the case of undirected graphs, let Ai be the set of undirected edges that corresponding

to Aout
i in the bi-direction of G. Let Ji be the set of edges incident to vi in an optimal

solution J . Note that ∣Ai∣ = r(vi) and that ∣Ji∣ ≥ ri for all i. Hence c(Ai) ≤ �

1−�
c(Ji), by

part (i) of Lemma 3. Thus

c(H) ≤
n

∑

i=1

c(Ai) ≤
�

1− �

n
∑

i=1

c(Ji) ≤
2�

1− �
c(J) =

2�

1− �
⋅ opt .
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3.2 Subset k-CS

Recall that Subset k-CS is the case of SND when for some T ⊆ V we have r(u, v) = k for all

u, v ∈ T . Let t = ∣T ∣. For the case t > k we can apply our algorithm for k-CS while ignoring

the nodes in V − T , thus obtaining ratios as in Theorem 1. We can also obtain the ratios as

in Theorem 2. Such an algorithm is described in [2] for undirected graphs, and we extend it

to directed graphs. We will use the following statement.

Lemma 6 For any integers k, n so that, n ≥ k + 1 there exist a directed k-connected graph

H on n nodes with exactly kn edges, and such H can be constructed in polynomial time.

Proof: Let V = {v0, . . . , vn−1}. Let Ai be the set of k edges from vi to vi+1, vi+2, . . . , vi+k,

where the indices are modulo k. Let A =
∪n−1

i=0 Ai and let H = (V,A). Then ∣A∣ = kn

by the construction; we will show that H is k-connected. A theorem of Whitney states

that a directed/undirected graph H = (V,A) is k-connected if, and only if, uv ∈ A or

�H(u, v) ≥ k for all u, v ∈ V . Since the construction is symmetric, it is sufficient to show

a set of k internally disjoint paths from v0 to any node u not adjacent to v0. Consider

the BFS layers Li with root v0. We have L0 = {v0}, and there are k nodes in every other

layer except of maybe the last one. Namely, L1 = {v1, . . . , vk}, L2 = {vk+1, . . . , v2k}, and
in general Lj = {v(j−1)k+1, . . . , vjk} (in the last layer the last index is n − 1). Let j ≥ 1

and let u ∈ Lj+1 be arbitrary, say u = vjk+i for some 1 ≤ i ≤ k. Let P ′
q be the path

v0 → vq → vk+q → ⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ v(j−1)k+q. Let Pq be the v0u path obtained by adding to P ′
q:

the edges v(j−1)k+q → vjk+q → u if q ≤ i, and the edge v(j−1)k+q → u otherwise; note that

the edges we add exist in A, by the definition of A. Now it is easy to see that P1, . . . , Pk is

a set of k intertnally disjoint v1u-paths, as required. □

Let ℓ ≤ t − 1 be an integer. Let Hℓ be an ℓ-connected graph on T with the following

property. In the case of directed graphs, we require that Hℓ has ℓn edges. In the case of

undirected graphs, we require that Hℓ has an orientation so that the outdegree of every node

is exactly k. By Lemma 6 such graphs exist, and can be constructed in polynomial time;

in the undirected case the underlying graph of the graph H as in Lemma 6 has the desired

property. If t ≥ k + 1 then our algorithm for k-CS returns any graph Hk as above. The

approximation ratio is shown as follows. In the case of undirected graphs, let Ai be the set of

edges corresponding to the edges leaving vi in the above orientation of Hk. For any feasible

solution, the degree of every node in T is at least k. The ratio of �

1−�
now immediately

follows from part (i) of Lemma 3. In the case of directed graphs, any feasible solution has

at least kt edges. The ratio of 2�3

1−3�2 now immediately follows from part (ii) of Lemma 3.
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Our construction for the case t ≤ k is a slight extension of this construction. Note that

∣V ∣ ≥ k + 1, as otherwise the problem has no feasible solution. We choose a set U ⊆ V − T

of arbitrary k− t+1 nodes, and obtain a graph H by adding all possible edges between Ht−1

and U . It is easy to see that H is a feasible solution. For the analysis of the approximation

ratio, we use the following simple observation.

Lemma 7 Let J be a feasible solution to a Subset k-CS instance. Then:

(i) For undirected graphs, every node in T has in J at least k − t+ 1 neighbors in V − T .

(ii) For directed graphs, J has at least t(t− 1) + 2t(k − t+ 1) edges.

Proof: In undirected J , every node in T has at least k neighbors. At most t − 1 of these

neighbors can lie in T , hence all the other at least k − t + 1 neighbors are in V − T . In

directed J , every node has outdegree and indegree at least k. At most t− 1 edges can enter

a node from nodes in T , or leave a node to a node in T . Hence for every v ∈ T , at least

k − t + 1 edges go from v to V − T , and at least k − t+ 1 edges go from V − T to v. Thus

the number of edges in J is at least t(t− 1) + 2t(k − t + 1), as claimed. □

For undirected graphs, we orient the edges of our solution H as follows. We can orient

the edges of Ht−1 so that the outdegree of every node is k, and we orient the edges between

Ht−1 and U from T to U . In this orientation, the outdegree of every node is exactly k− t+1.

For directed graphs our solution H has exactly t(t− 1)+2t(k− t+1) edges, Thus the ratios
�

1−�
for undirected graphs and 2�3

1−�2 for directed graphs follow from Lemmas 7 and 3.

3.3 Directed Rooted SND

Let G = (V,E), c, r, s be an instance of directed Rooted SND where s is the root. Let

T = {u ∈ V : r(s, u) > 0} be the set of nodes with positive in-requirements.

Lemma 8 Any feasible solution J for directed Rooted SND has at least
∑

v∈T rin(v) edges

if k ≤ ∣T ∣, and at least
∑

v∈T rin(v) + k − ∣T ∣ edges if k > ∣T ∣.

Proof: Clearly, deginJ (v) ≥ rin(v) and degoutJ (r) ≥ k. Now consider the edges in J leaving

r. At most ∣T ∣ of these edges can go to nodes in T , hence if k > ∣T ∣ then there are at least

k − ∣T ∣ edges that go to nodes in V − T . The statement follows. □

Now we show that the lower bound in Lemma 8 is achievable. Construct a graph H as

follows. Let U ⊆ V ∖ {s} be an arbitrary set of max{k, ∣T ∣} nodes containing T , so U = T if
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∣T ∣ ≥ k. Take an edge from s to every node in U , and for every v ∈ T take arbitrary rin(v)−1

edges entering v from any rin(v)− 1 nodes in U ∖ {v}. It is easy to see that H is a feasible

solution for the directed Rooted SND instance, and the number of edges in H coincides with

the lower bound in Lemma 8. Applying Lemma 3(ii) we obtain c(H) ≤ 2�3

1−3�2 ⋅ opt.
The proof of Theorem 2 is complete.
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