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Abstract. Let G = (V,E) be a k-edge-connected graph with edge-costs
{c(e) : e ∈ E} and minimum degree d. We show by a simple and short
proof, that for any integer ℓ with d

k
≤ ℓ ≤ d

(

1− 1

k

)

, G contains an ℓ-edge

cover I such that: c(I) ≤ ℓ

d
c(E) if G is bipartite, or if ℓ|V | is even, or if

|E| ≥ d|V |
2

+ d

2ℓ
; otherwise, c(I) ≤

(

ℓ

d
+ 1

d|V |

)

c(E). The particular case

d = k = ℓ + 1 and unit costs already includes a result of Cheriyan and
Thurimella [1], that G contains a (k−1)-edge-cover of size |E|−⌊|V |/2⌋.
Using our result, we slightly improve the approximation ratios for the
k-Connected Subgraph problem (the node-connectivity version) with uni-
form and β-metric costs. We then consider the dual problem of finding a
spanning subgraph of maximum connectivity k∗ with a prescribed num-
ber of edges. We give an algorithm that computes a (k∗ − 1)-connected
subgraph, which is tight, since the problem is NP-hard.

1 Introduction

Let G = (V,E) be an undirected graph, possibly with parallel edges. Let n = |V |.
For S ⊆ V let δ(S) denote the set of edges in E with exactly one endnode in S.
An edge set I ⊆ E is a d-edge-cover (of V ) if the graph (V, I) has minimum
degree ≥ d. For x ∈ R

E and F ⊆ E let x(F ) =
∑

e∈F x(e). Let P f
cov(G, d)

denote the fractional d-edge-cover polytope determined by the linear constraints

x(δ(v)) ≥ d v ∈ V (1)

1 ≥ xe ≥ 0 e ∈ E (2)

Clearly, for any 1 ≤ ℓ ≤ d − 1, if x ∈ P f
cov(G, d) then ℓ

d · x ∈ P f
cov(G, ℓ). Let

Pcov(G, ℓ) denote the integral ℓ-edge-cover polytope, which is the convex hull of
the characteristic vectors of of the ℓ-edge-covers in G. It is known that if G is
bipartite then P f

cov(G, ℓ) = Pcov(G, ℓ) (see [5], (31.7) on page 340). This implies
the following.

Proposition 1. Let G = (V,E) be a bipartite graph, let 1 ≤ ℓ ≤ d− 1, and let
x ∈ Pcov(G, d). Then ℓ

d · x ∈ Pcov(G, ℓ).

Corollary 1. Let G = (V,E) be a bipartite graph with edge costs {c(e) : e ∈ E}
and minimum degree ≥ d ≥ 2. Then for any 1 ≤ ℓ ≤ d−1, G contains an ℓ-edge
cover I ⊆ E of cost c(I) ≤ ℓ

dc(E).



Cheriyan an Thurimella [1] showed that if G is bipartite and has minimum
degree ≥ d, then G contains a (d−1)-edge-cover I such that |I| ≤ |E|−n/2. Note
that this bound follows from Corollary 1 by assuming unit costs, substituting
ℓ = d − 1, and observing that |E| ≥ dn

2 . Unfortunately, Corollary 1 does not
extend to the general (non-bipartite) case, e.g., if G is a cycle of length 3, d = 2,
and ℓ = 1. On the positive side, it is proved in [2] that if G has minimum degree
≥ d, then G contains a (d − 1)-edge-cover I of cost c(I) ≤ 2d−2

2d−1c(E). Let ζ(S)
denote the set of edges in E with at least one endnode in S. It is known that
in the general case, Pcov(G, d) is determined by adding to the constraints of
P f
cov(G, d) the following inequalities (see [5], page 581, Theorem 34.13):

x(ζ(S))− x(F ) ≥
d|S|

2
−

|F | − 1

2
S ⊆ V, F ⊆ δ(S), d|S| − |F | ≥ 1 odd (3)

A graph G is k-edge-connected if |δ(S)| ≥ k for all ∅ 6= S ⊂ V . Cheriyan
and Thurimella [1] showed that if G is k-edge-connected, then G contains a
(k − 1)-edge-cover I such that |I| ≤ |E| − ⌊n/2⌋. We present an analogue of
Proposition 1 and Corollary 1 for general graphs, with simple and short proof,
that also implies this bound of [1]. Let P f

con(G, k) denote the fractional k-edge-
connectivity polytope, determined by

x(δ(S)) ≥ k ∅ 6= S ⊂ V

1 ≥ xe ≥ 0 e ∈ E

Note that P f
cov(G, k) ⊆ P f

con(G, k), and that if x ∈ P f
cov(G, d) then x(E) ≥ dn

2 .
The main result of this paper is the following analogue of Proposition 1.

Theorem 1. Let G = (V,E) be a graph, let 1 ≤ ℓ ≤ d − 1 and d ≥ k, and
let x ∈ P f

cov(G, d) ∩ P f
con(G, k). Then µ · x ∈ Pcov(G, ℓ), where µ is defined as

follows.

(i) Suppose that k ≥ max
{

d
ℓ ,

d
d−ℓ

}

(namely, that d
k ≤ ℓ ≤ d

(

1− 1
k

)

, which in-

cludes the case k = d). Then µ = ℓ/d if ℓ|V | is even or if x(E) ≥ d
2

(

|V |+ 1
ℓ

)

;

otherwise, µ = ℓ|V |+1
2x(E) ≤ ℓ

d + 1
d|V | .

(ii) Suppose that k < max
{

d
ℓ ,

d
d−ℓ

}

.

(a) Suppose that k < d/ℓ and that d ≥ 2ℓ+1. Then µ = 2ℓ+1
2d+k if ℓ|V | is even

or if x(E) ≥ d
2

(

|V |+ 1
ℓ

)

; otherwise, µ = max
{

ℓ|V |+1
2x(E) ,

2ℓ+1
2d+k

}

.

(b) Suppose that k < d
d−ℓ and that d ≤ 2ℓ. Then µ = 2ℓ+1−k

2d−k if ℓ|V | is even

or if x(E) ≥ d
2

(

|V |+ 1
ℓ

)

; otherwise, µ = max
{

ℓ|V |+1
2x(E) ,

2ℓ+1−k
2d−k

}

.

Clearly, the cases of the theorem are exclusive, and it is not hard to verify
that they cover all relevant values of d, ℓ, k. To see this, note that if k < d/ℓ and
d ≤ 2ℓ, then k ≤ d

d−ℓ ; hence this case is included in part (iib) of the theorem.

Similarly, if k < d
d−ℓ and d ≥ 2ℓ + 1, then k ≤ d

ℓ hence this case is included in
part (iia) of the theorem.



Note that for the case k = 0 and ℓ = d − 1 considered in [2], part (iib) of
Theorem 1 gives µ = 2d−1

2d , which is slightly worse than the bound 2d−2
2d−1 of [2].

However, the bound of [2] uses a stronger assumption that x ∈ Pcov(G, d), while
we assume only that x ∈ P f

cov(G, d).
Theorem 1 immediately implies the following.

Corollary 2. Let G = (V,E) be a k-edge-connected graph with edge costs {c(e) :
e ∈ E} and let 1 ≤ ℓ ≤ d−1 and d ≥ k. Then G contains an ℓ-edge cover I ⊆ E
such that c(I) ≤ µ · c(E), where µ is as in Theorem 1.

Note that the bound |I| ≤ |E|−⌊n/2⌋ of Cheriyan and Thurimella [1] follows
from Corollary 2 by assuming unit costs, substituting d = k = ℓ+ 1, and obser-
ving that |E| ≥ kn

2 . Indeed, by Corollary 2, |E| − |I| ≥ |E|/k ≥ n/2 if (k − 1)n

is even or if |E| ≥ kn
2 + 1. Otherwise, k is even, n is odd, |E| = kn

2 , and then,
by Corollary 2, |E| − |I| ≥ n−1

kn |E| = n−1
2 = ⌊n/2⌋.

We now discuss some applications of Corollaries 1 and 2 for both directed
and undirected graphs, for the following classic NP-hard problem. A (simple)
directed or undirected graph is k-connected if it contains k internally disjoint
paths from every node to the other.

k-Connected Subgraph

Instance: A graph G′ = (V,E′) with edge costs and an integer k.
Objective: Find a minimum cost k-connected spanning subgraph G of G′.

The case of unit costs is the Minimum Size k-Connected Subgraph problem.
Cheriyan and Thurimella [1] suggested and analyzed the following algorithm for
the Minimum Size k-Connected Subgraph problem, for both directed and undi-
rected graphs; in the case of a directed graph G = (V,E), we say that I ⊆ E is
an ℓ-edge-cover if (V, I) has minimum outdegree and minimum indegree ≥ ℓ.

Algorithm 1

1. Find a minimum size (k − 1)-edge cover I ⊆ E′.
2. Find an inclusion minimal edge set F ⊆ E′ \ I such that (V, I ∪ F ) is

k-connected.
3. Return I ∪ F .

They showed that this algorithm has approximation ratios

• 1 + n
opt

≤ 1 + 1
k for directed graphs;

• 1 + n
2opt ≤ 1 + 1

k for undirected graphs.

Here opt denotes the optimum solution value of a problem instance at hand.
Step 1 in the algorithm can be implemented in polynomial time, c.f. [5]. Recently,
the performance of this algorithm was also analyzed in [2] for so called β-metric
costs, when the input graph is complete and for some 1/2 ≤ β < 1 the costs
satisfy the β-triangle inequality c(uv) ≤ β[c(ua) + c(av)] for all u, a, v ∈ V .
When β = 1/2, the costs are uniform, and we have the min-size version of the



problem. If we allow the case β = 1, then the costs satisfy the ordinary triangle
inequality and we have the metric version of the problem. In [2] it is shown
that for undirected graphs with β-metric costs the above algorithm has ratio
1− 1

2k−1 + 2β
k(1−β) . We prove the following.

Theorem 2. (i) For the Minimum Size k-Connected Subgraph problem, Algo-
rithm 1 has approximation ratios
• 1− 1

k + 2n/opt ≤ 1 + n
opt

for directed graphs;

• 1− 1
k + n/opt ≤ 1 + n

2opt for undirected graphs.
(ii) In the case of undirected graphs and β-metric costs, Algorithm 1 has approxi-

mation ratio 1− 1
k + 1

kn + 2β
k(1−β) .

(iii) There exists a polynomial time algorithm that given an instance of the Mini-

mum Size k-Connected Subgraph problem returns a (k−1)-connected spanning
subgraph G of G′ with at most opt edges.

Note that in part (i) of Theorem 2 we do not improve the worse performance
guarantee 1+ 1

k of [1]. However, the ratio 1+ 1
k applies only if opt = kn in the case

of directed graphs and opt = kn/2 in the case of undirected graphs. Otherwise,
if opt is larger than these minimum possible values, then both our analysis and
that of [1] give better ratios. But the ratios provided by our analysis are smaller,
since 2n/opt− 1

k ≤ n/opt in the case of directed graphs, and n/opt− 1
k ≤ n/2opt

in the case of undirected graphs. For example, in the case of directed graphs, if
opt = 3

2kn then our ratio is 1 + 1
3k , while that of [1] is 1 + 2

3k .
Part (iii) of Theorem 2 can be used to obtain a tight approximation algorithm

to the Maximum Connectivity m-Edge Subgraph problem: given a graph G′ and
an integer m, find a spanning subgraph G of G′ with at most m edges and
maximum connectivity k∗. We can apply the algorithm in part (iii) to find the
maximum integer k for which the algorithm returns a subgraph with at most
m edges. Then k ≥ k∗ − 1, hence we obtain a polynomial time algorithm that
computes a (k∗ − 1)-connected spanning subgraph with at most m edges. Note
that this is tight, since the problem is NP-hard.

2 Proof of Theorem 1

Let x ∈ P f
cov(G, d) ∩ P f

con(G, k). We need to show that then µ · x ∈ Pcov(G, ℓ),
namely, that

µx(δ(v)) ≥ ℓ v ∈ V (4)

µ(x(ζ(S))− x(F )) ≥
ℓ|S|

2
−

|F | − 1

2
S ⊆ V, F ⊆ δ(S), ℓ|S| − |F | ≥ 1 odd(5)

1 ≥ µxe ≥ 0 e ∈ E (6)

Recall that for 1 ≤ ℓ ≤ d−1 and d ≥ k, the parameter µ is defined as follows.

(i) Suppose that k ≥ max
{

d
ℓ ,

d
d−ℓ

}

. Then µ = ℓ/d if ℓn is even or if x(E) ≥
d
2

(

n+ 1
ℓ

)

; otherwise, µ = ℓn+1
2x(E) ≤

ℓ
d + 1

dn .



(ii) Suppose that k < max
{

d
ℓ ,

d
d−ℓ

}

.

(a) Suppose that k < d/ℓ and that d ≥ 2ℓ+ 1. Then µ = 2ℓ+1
2d+k if ℓn is even

or if x(E) ≥ d
2

(

n+ 1
ℓ

)

; otherwise, µ = max
{

ℓn+1
2x(E) ,

2ℓ+1
2d+k

}

.

(b) Suppose that k < d
d−ℓ and that d ≤ 2ℓ. Then µ = 2ℓ+1−k

2d−k if ℓn is even

or if x(E) ≥ d
2

(

n+ 1
ℓ

)

; otherwise, µ = max
{

ℓn+1
2x(E) ,

2ℓ+1−k
2d−k

}

.

It is not hard to verify that ℓ
d ≤ µ ≤ 1 for all ℓ, k, d. The following statement

is also easily verified.

Lemma 1. Let x ∈ P f
cov(G, d). Then for any ℓ

d ≤ µ ≤ 1, (4) and (6) hold.

We therefore focus on the inequalities in (5). Let ∅ 6= S ⊆ V and let F ⊆ δ(S)
such that ℓ|S| − |F | ≥ 1 is odd. In the following three lemmas 2, 3, and 4, we
prove that (5) holds for certain values of µ, and then deduce Theorem 1 from
these lemmas.

Lemma 2. Let x ∈ P f
cov(G, d). If S = V , then (5) holds for µ = ℓ/d if ℓn is

even or if x(E) ≥ d
2

(

n+ 1
ℓ

)

; otherwise, (5) holds for µ = ℓn+1
2x(E) ≤

ℓ
d + 1

dn .

Proof. If S = V then ζ(S) = E and F = ∅. Then (5) reduces to a void condition
if ℓ|V | is even, and to the condition µx(E) ≥ ℓn+1

2 otherwise, which holds by the

definition of µ. The inequality ℓn+1
2x(E) ≤

ℓ
d + 1

dn is since x(E) ≥ dn
2 . ⊓⊔

Henceforth assume that S is a proper subset of V . Note that then

d|S| ≤
∑

v∈S

x(δ(v)) = 2x(E(S)) + x(δ(S)) = 2x(ζ(S))− x(δ(S)) .

Thus x(ζ(S)) ≥ d|S|
2 + x(δ(S))

2 . Also note that x(F ) ≤ |F |. Substituting in (5)
and rearranging terms, we obtain that it is sufficient to prove the following

µ

(

d|S|

2
+

x(δ(S))

2
− x(F )

)

≥
ℓ|S|

2
−

|F | − 1

2
.

Finally, multiplying both sides by 2 and rearranging terms we obtain

|S|(µd− ℓ) + (|F | − µx(F )) + µ(x(δ(S))− x(F )) ≥ 1 . (7)

Lemma 3. For µ = ℓ/d, (7) holds if k ≥ d
ℓ and d ≥ 2ℓ, or if k ≥ d

d−ℓ and

d ≤ 2ℓ. Consequently, (7) holds for µ = ℓ/d if k ≥ max
{

d
ℓ ,

d
d−ℓ

}

.

Proof. Substituting in (7) µ = ℓ/d, multiplying both sides by d, and observing
that x(F ) ≤ |F |, we obtain that it is sufficient to prove that

|F |(d− ℓ) + ℓ(x(δ(S))− x(F )) ≥ d . (8)



If |F | ≥ d
d−ℓ then (8) holds since x(δ(S)) − x(F ) ≥ 0. Henceforth assume

that |F | < d
d−ℓ , and let us consider the cases of the lemma. If d ≥ 2ℓ and k ≥ d

ℓ
then

|F |(d− ℓ) + ℓ(x(δ(S))− x(F )) ≥ |F |(d− 2ℓ) + kℓ ≥ d

In the case d ≤ 2ℓ and k ≥ d
d−ℓ , since we assume that |F | < d

d−ℓ , we have

|F |(d− 2ℓ)+kℓ ≥
d

d− ℓ
(d− 2ℓ)+kℓ = d−

ℓd

d− ℓ
+kℓ = d+ ℓ

(

k −
d

d− ℓ

)

≥ d .

The proof of the lemma is complete. ⊓⊔

Part (i) of Theorem 1 follows from Lemmas 1, 2, and 3, after observing that
x(E) < d

2

(

n+ 1
ℓ

)

implies ℓn+1
2x(E) >

ℓ
d .

Now we will use Lemmas 1, 2, and the Lemma 4 to follow, to prove part (ii)
of Theorem 1. Before that we observe that in the polyhedral description of
Pcov(G, d), we may skip the inequalities in (3) with |S| = 1, since they are
implied by the inequalities in (1); the same applies for inequalities in (5). Say,

S = {v}. Then (3) reduces to x(δ(v)) ≥ x(F ) + d
2 − |F |

2 + 1
2 for F ⊆ δ(v),

d − |F | ≥ 1 odd. In particular, |F | ≤ d − 1. However, x(F ) ≤ |F |, hence by (1)
we have

x(F ) +
d

2
−

|F |

2
+

1

2
≤

|F |+ d+ 1

2
≤ d ≤ x(δ(v)) .

Lemma 4. If |S| ≥ 2, then (7) holds in each one of the following cases:

(a) µ = 2ℓ+1
2d+k and k ≥ 2(2ℓ+ 1− d).

(b) µ = 2ℓ+1−k
2d−k and k ≤ 2(2ℓ+ 1− d).

Proof. Since |S| ≥ 2 and x(F ) ≤ |F |, then to prove that (7) holds, it is sufficient
to prove that

2(µd− ℓ) + |F |(1− µ) + µ(x(δ(S))− x(F )) ≥ 1 . (9)

If |F | ≥ k then the l.h.s. of (9) is at least 2(µd−ℓ)+k(1−µ) = µ(2d−k)+k−2ℓ.
Hence if |F | ≥ k, then (9) holds if µ ≥ 2ℓ+1−k

2d−k .
Suppose that |F | ≤ k. Then the l.h.s. of (9) is at least

2(µd− ℓ) + |F |(1− µ) + µ(k − |F |) = µ(2d+ k − 2|F |) + |F | − 2ℓ .

Hence (9) holds if µ ≥ 2ℓ+1−|F |
2d+k−2|F | . Observe that for any a, b, f with f ≥ 0 and

b− 2f > 0, we have a−f
b−2f ≥ a

b if 2a ≥ b, and a−f
b−2f ≤ a

b if 2a ≤ b. Consequently,

we obtain that if |F | ≤ k, then (9) holds if one of the following holds:

(a) µ ≥ 2ℓ+1
2d+k and 2(2ℓ+ 1) ≤ 2d+ k.

(b) µ ≥ 2ℓ+1−k
2d−k and 2(2ℓ+ 1) ≥ 2d+ k.

The lemma now follows by observing that 2ℓ+1
2d+k ≥ 2ℓ+1−k

2d−k if k ≥ 2(2ℓ+1−d). ⊓⊔



Now we prove part (ii) of Theorem 1. In what follows, note that for d = 2ℓ
and k = 2, the values of µ in parts (a) and (b) of Lemma 4 coincide, and that
x(E) ≥ d

2

(

n+ 1
ℓ

)

implies ℓ
d ≥ ℓn+1

2x(E) .

Suppose that k < d/ℓ and that d ≥ 2ℓ+1. Then the condition k ≥ 2(2ℓ+1−d)
in part (a) of Lemma 4 reduces to the void condition k ≥ 0. The result in this
case follows by combining part (a) of Lemma 4 with Lemmas 1 and 2, after
observing that if k < d

ℓ then 2ℓ+1
2d+k > 2ℓ+1

2d+d/ℓ = ℓ
d .

Now suppose that k < d
d−ℓ = ℓ

d−ℓ + 1 and that d ≤ 2ℓ. If the condition
k ≤ 2(2ℓ + 1 − d) in part (b) of Lemma 4 holds, then the result follows by
combining part (a) of Lemma 4 with Lemmas 1 and 2, after observing that if
k < d

d−ℓ then 2ℓ+1−k
2d−k > ℓ

d . Else, k > 2(2ℓ + 1 − d). Denoting p = d − ℓ ≥ 1, we
obtain the following inequalities:

k <
ℓ

p
+ 1 p ≤ ℓ k > 2(ℓ+ 1− p)

This implies ℓ
p + 1 > 2(ℓ + 1 − p), which gives ℓ < 2p2

2p−1 . Thus we obtain that

k < ℓ
p + 1 < 2p

2p−1 + 1 = 2 + 1
2p−1 ≤ 3. Since k ≥ 2(ℓ + 1 − p), we obtain

ℓ − p ≤ k
2 − 1. Since ℓ − p ≥ 0, we must have k = 2 and p = ℓ, namely, k = 2

and d = 2ℓ. Then µ = 2ℓ+1
2d+k = 2ℓ+1

4ℓ+2 = 1
2 . This case is included in case (a) of

Lemma 4, and then the result follows by combining part (a) of Lemma 4 with
Lemmas 1 and 2. This finishes the proof of part (ii) of Theorem 1.

The proof of Theorem 1 is complete.

3 Proof of Theorem 2

Let I and F denote the set of edges computed by Algorithm 1 at steps 1 and
2, respectively. We prove part (i), starting with the case of directed graphs.
For a directed graph G, the corresponding bipartite graph G′ = (V ∪ V ′, E′) is
obtained by adding a copy V ′ of V and replacing every directed edge uv ∈ E
by the undirected edge uv′, where v′ ∈ V ′ is the copy of v. It is not hard to
verify that I is an ℓ-edge-cover in G if, and only if, the set I ′ of edges that
corresponds to I is an ℓ-edge-cover in G′. Thus |I| ≤ k−1

k opt, by Corollary 1.
On the other hand, by the directed Critical Cycle Theorem of Mader [4] (see [1]
for details), the set of edges of G′ that corresponds to F ′ forms a forest in G′,

hence |F | ≤ 2n− 1. Consequently, |I|+|F |
opt

≤ 1− 1
k + 2n−1

opt
.

Let us consider undirected graphs. If (k−1)n is even or if opt ≥ kn
2 + k

2(k−1) ≥
kn
2 + 1, then |I| ≤ k−1

k opt, by Corollary 2. By the undirected Critical Cycle
Theorem of Mader [3] (see [1] for details), F is a forest, hence |F | ≤ n − 1.

Consequently, |I|+|F |
opt

≤ 1− 1
k + n−1

opt
. If (k − 1)n is odd and opt < kn

2 + 1, then

an optimal solution is k-regular and hence |I| ≤ (k−1)n+1
2 ≤

(

1− 1
k

)

(opt + 1).

Combining we get |I|+|F |
opt

≤ 1− 1
k + 1−1/k

opt
+ n−1

opt
< 1− 1

k + n
opt

.

Now let us consider part (ii), the case of β-metric costs. In [2] it is proved
that c(F ) ≤ 2β

k(1−β)opt. If (k − 1)n is even, or if there exists an optimal solution



with at least kn
2 + k

2(k−1) ≤ kn
2 + 1 edges, then Corollary 2 gives the bound

c(I) ≤
(

1− 1
k

)

opt. Else, Corollary 2 gives the bound c(I) ≤
(

1− 1
k + 1

kn

)

opt,
and the result follows.

We prove part (iii). We apply Algorithm 1 with k replaced by k− 1, namely,
I ⊆ E is a minimum size (k − 2)-edge cover and F ⊆ E \ I is an inclusion
minimal edge set such that (V, I ∪ F ) is (k − 1)-connected. Now we use the
bounds in Corollary 2. In the case of directed graphs we have |I| ≤ k−2

k opt,
|F | ≤ 2n − 1 ≤ 2

kopt, and the result follows. In the case of undirected graphs

we have |I| ≤
(

k−2
k + 1

kn

)

opt and |F | ≤ n − 1 ≤
(

2
k − 2

kn

)

opt, and the result
follows.

The proof of Theorem 2 is complete.
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