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Abstract. We consider the problem of finding a minimum edge cost subgraph of a graph sat-
isfying both given node-connectivity requirements and degree upper bounds on nodes. We present
an iterative rounding algorithm of the biset LP relaxation for this problem. For directed graphs
and k-out-connectivity requirements from a root, our algorithm computes a solution that is a 2-
approximation on the cost, and the degree of each node v in the solution is at most 2b(v) + O(k)
where b(v) is the degree upper bound on v. For undirected graphs and element-connectivity re-
quirements with maximum connectivity requirement k, our algorithm computes a solution that is a
4-approximation on the cost, and the degree of each node v in the solution is at most 4b(v) + O(k).
These ratios improve the previous O(log k)-approximation on the cost and O(2kb(v)) approxima-
tion on the degrees. Our algorithms can be used to improve approximation ratios for other node-
connectivity problems such as undirected k-out-connectivity, directed and undirected k-connectivity,
and undirected rooted k-connectivity and subset k-connectivity.

1. Introduction.

1.1. Problem definition. We consider the problem of finding a minimum edge
cost subgraph that satisfies both degree-bounds on nodes and certain connectivity
requirements between nodes. More formally, the problem is defined as follows.

Degree-Bounded Survivable Network
A directed/undirected graph G = (V,E) with edge costs c : E → R+, connectivity
requirements r : V × V → Z+, and degree-bounds b : B → Z+ on a subset B of V
are given. The goal is to find a minimum cost edge set F ⊆ E such that in the
subgraph (V, F ) of G, the uv-connectivity is at least r(u, v) for any (u, v) ∈ V ×V ,
and the out-degree/degree of each v ∈ B is at most b(v).

In the case of digraphs, our algorithms easily extend to the case when we also
have in-degree bounds b− : B− → Z+ on B− ⊆ V , and require that the in-degree of
each v ∈ B− is at most b−(v).

A node v ∈ V is called terminal if there exists u ∈ V \ {v} such that r(u, v) > 0
or r(v, u) > 0. We let T denote the set of terminals. We represent maxu,v∈V r(u, v)
by k and |V | by n throughout the paper.

If G is an undirected graph, B = V , b(v) = 2 for all v ∈ B, and a solution
is required to be a connected spanning subgraph, then we get the Hamiltonian Path
problem, and hence it is NP-hard even to find a feasible solution. Therefore we
consider bi-criteria approximations by relaxing the degree-bounds. We say that an
algorithm for Degree Bounded Survivable Network is (α, β(b(v)))-approximation, or
that it has ratio (α, β(b(v))), for α ∈ R+ and a function β : Z+ → R+, if it always
outputs a solution such that its cost is at most α times the optimal value, and the
degree (the out-degree, in the case of directed graphs) of each v ∈ B is at most β(b(v)),
for any instance which admits a feasible solution.

Notice that Degree Bounded Survivable Network includes the problem of finding
a minimum cost subgraph of required connectivity minimizing the maximum degree.
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This can be done by letting B = V , and defining b(v) as the uniform bound on
the optimal value for all v ∈ B, which can be computed by the binary search. For
LP based algorithms, such as ours, when a lower bound is obtained by solving an
LP relaxation, these algorithms also establish a ”relaxed” integrality gap for the LP
relaxation (relaxed since the solutions violate the exact degree requirements).

In this paper, we are interested in node-connectivity and element-connectivity
requirements. The node-connectivity κ(u, v) is the maximum number of (u, v)-paths
that are pair-wise internally (node) disjoint. The definition of element-connectivity
assumes that a terminal set T is given. The element-connectivity λT (u, v) between
two terminals u, v ∈ T is the maximum number of (u, v)-paths that are pair-wise
disjoint in edges and in non-terminal nodes. The main two problems we consider are
as follows.

Degree Bounded k-Out-connected Subgraph
This is a particular case of Degree Bounded Survivable Network when it is required
that (V, F ) is k-outconnected from a given root s, namely, when κ(s, v) ≥ k for
each v ∈ V \ {s}.

Degree Bounded Element-Connectivity Survivable Network
This is a particular case of Degree Bounded Survivable Network when the input
graph is undirected, and it is required that λT (u, v) ≥ r(u, v) for each u, v ∈ T ,
where T ⊆ V is a given terminal set.

Our main results for Degree Bounded k-Out-connected Subgraph is for directed
graphs. We also present similar results for undirected graphs, but these are derived
from the ones for the directed case. Another fundamental problem that we consider
for both directed and undirected graphs is as follows.

Degree Bounded k-Connected Subgraph
This is a particular case of Degree Bounded Survivable Network where it is required
that (V, F ) is k-connected, namely, that κ(u, v) ≥ k for each u, v ∈ V .

Other special cases of Degree Bounded Survivable Network on undirected graphs
are defined according to the connectivity requirements, as follows.
• Degree Bounded Node-Connectivity Survivable Network requires κ(u, v) ≥
r(u, v) for each u, v ∈ V .

• Degree Bounded Rooted Survivable Network is a special case of Degree
Bounded Node-Connectivity Survivable Network where a root node s is specified,
and r(u, v) = 0 holds if u 6= s and v 6= s.

• Degree Bounded Subset k-Connected Subgraph is a special case of Degree
Bounded Node-Connectivity Survivable Network where r(u, v) = k if {u, v} ⊆ T ,
and r(u, v) = 0 otherwise, for a given terminal set T ⊆ V .

1.2. Previous work. Survivable Network without degree-bounds is a typical
combinatorial optimization problem, that was studies extensively; c.f. [14] for a
survey on exact algorithms, and [23] for a survey on approximation algorithms for
various Survivable Network problems and their classification w.r.t. costs and require-
ments. One of the most important methods for these problems is iterative rounding,
that was invented in the context of a 2-approximation algorithm by Jain [17]. He
showed that every basic optimal solution to an LP relaxation for the undirected Edge-
Connectivity Survivable Network always has a variable of value at least 1/2; see [31] for
a simplified proof. The 2-approximation algorithm is obtained by repeatedly rounding
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up such variables and iterating the procedure until the rounded subgraph is feasible.

Degree Bounded Survivable Network, even with edge-connectivity requirements,
was regarded as a difficult problem for a long time because of the above-mentioned
hardness on feasibility. A breakthrough was given by Lau, Naor, Salavatipour and
Singh [26] and Singh and Lau [36]. They gave a (2, 2b(v) + 3)-approximation for the
Degree-Bounded Edge-Connectivity Survivable Network problem, and a (1, b(v) + 1)-
approximation algorithm for the Degree-Bounded Spanning Tree problem. The former
result was improved (for large b(v)) to a (2, b(v) + 6k+ 3)-approximation by Lau and
Singh [28] afterwards. After their work, many efficient algorithms have been proposed
for various types of Degree Bounded Edge-Connectivity Survivable Network problems,
such as directed Degree Bounded k-Out-connected Subgraph problems [4], matroid
base and submodular flow problems [22], and matroid intersection and optimization
over lattice polyhedra [3]. All of them are based on iterative rounding. For applying
iterative rounding to a problem with degree-bounds, we need to show that every basic
optimal solution to an LP relaxation has a high fractional variable or the subgraph
induced by its support has a low degree node on which a degree-bound is given. Once
this property is proven, a bi-criteria approximation algorithm can be obtained by
repeating rounding up the high fractional variable or dropping the degree-bound on
the low degree node. See [27] for a survey on the iterative rounding method.

Despite the success of iterative rounding for edge-connectivity requirements, De-
gree Bounded Survivable Network with node- and element-connectivity requirements
still remain difficult to address with this method. Both [26] and [28] mention that
their algorithms for edge-connectivity extend to element-connectivity, but they as-
sumed that degree-bounds were given on terminals only. In [26] it is also shown
that undirected Degree Bounded Subset k-Connected Subgraph with k = Ω(n) ad-

mits no 2log
1−ε nb(v) degree approximation unless NP ⊆ DTIME(npolylog(n)). For the

Degree Bounded k-Connected Subgraph problem without costs, Feder, Motwani and
Zhu [10] presented an O(k log n · b(v))-approximation algorithm, which runs in nO(k)

time. Khandekar, Kortsarz and Nutov [21] proposed a (4, 6b(v) + 6)-approximation
algorithm for Degree Bounded 2-Connected Subgraph, using iterative rounding. [35]
extended the idea of [21] to obtain ratio (O(log k), O(2k) · b(v)) for Degree Bounded
k-Out-connected Subgraph and Degree Bounded Element-Connectivity Survivable Net-
work.

As for Survivable Network without degree bounds, an iterative rounding algorithm
computes optimal solutions for Degree Bounded k-Out-connected Subgraph on directed
graphs. Fleischer, Jain and Williamson [11] showed that iterative rounding achieves
ratio 2 for Element-Connectivity Survivable Network, and also for Node-Connectivity
Survivable Network with k = 2. Aazami, Cheriyan and Laekhanukit [1] presented
an instance of undirected k-Connected Subgraph (without degree-bounds) for which
the basic optimal solution to the standard LP relaxation has all variables of value

O
(

1√
k

)
. Their instance belongs to a special case called augmentation version, in

which the given graph has a (k − 1)-connected subgraph of cost zero. On the other
hand, several works showed that this augmentation version can be decomposed into
a small number p of problems similar to k-Out-connected Subgraph each. The bound
on p was subsequently improved [5, 9, 20], culminating in the currently best known

bound O
(

log n
n−k

)
[32], that applies for both directed and undirected graphs. When

one applies this method for the general version, an additional factor of O(log k) is

invoked, giving the approximation ratio O
(

log k log n
n−k

)
[32]. Cheriyan and Vegh
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[7] showed that for undirected graphs with n ≥ k3(k−1)+k this O(log k) factor can be
saved: After solving only two k-Out-connected Subgraph instances, iterative rounding
gives a 2-approximation by the work of [11, 18]. This gives ratio 6 for undirected
graphs with n ≥ k3(k − 1) + k.

The decomposition approach was also used for other Survivable Network problems.
In [33] it is shown that the augmentation version of Rooted Node-Connectivity Surviv-
able Network is decomposed into p = O(k) instances of a problem that is similar to
Element-Connectivity Survivable Network, while in [8] it is shown that Node-Connectivity
Survivable Network is decomposed into p = O(k3 log n) instances of Element-Connectivity
Survivable Network. In [25, 34], it is shown that the augmentation version of Subset
k-Connected Subgraph with k ≤ (1− ε)T and 0 < ε < 1 is decomposed into 1

εO(log k)
instances of Rooted Survivable Network.

Summarizing, many connectivity problems are decomposed into k-Out-connected
Subgraph and Element-Connectivity Survivable Network problems. Hence it is sufficient
to consider these two problems in the degree bounded setting. However, as is indi-
cated in [35], compared to edge-connectivity problems, there is a substantial difficulty
in proving that iterative rounding achieves a good result for these problems. We
resolve this difficulty by introducing several novel ideas. Moreover, we believe that
it is worthwhile investigating the iterative rounding approach for node-connectivity
requirements. One reason is that iterative rounding seems to be a promising approach
for Degree Bounded Survivable Network problems, as we demonstrate in this paper. A
second reason is that it may give new insights for improving the approximability of
Node-Connectivity Survivable Network problems (without degree-bounds) with rooted
requirements, subset k-connectivity requirements, and general requirements.

1.3. Our results. In this paper, we show that iterative rounding works well for
Degree Bounded k-Out-connected Subgraph and Degree Bounded Element-Connectivity
Survivable Network problems. Our main results for these two problems are summarized
in the following two theorems.

Theorem 1.1. Degree Bounded Directed k-Out-connected Subgraph admits ap-

proximation ratio
(
α, αb(v) +

⌈
2(k−1)
α−1

⌉
+ 1
)

for any integer α ≥ 2.

Theorem 1.2. Degree Bounded Element-Connectivity Survivable Network admits
the following approximation ratios.

(i)
(
α, αb(v) +

⌈
4 k+1
α−2

⌉
+ 4
)

for any integer α ≥ 4.

(ii) (∞, 2b(v) + 1.5k2 + 4.5k + 9).
Note that in Theorem 1.2, the degree approximation in part (ii) may be better

than the one in part (i) if b(v) > k2.
The ratios in Theorems 1.1 and 1.2 improve the ratio (O(log k), O(2kb(v))) of [35].
In [35] it is shown that ratio (α, β(b(v))) for Degree Bounded Directed k-Out-

connected Subgraph implies ratio (2α, β(b(v)) + k) for the undirected case. Thus
Theorem 1.1 implies for the undirected case the ratio (2α, αb(v) + O(k)) for any
integer α ≥ 2. In particular, for α = 2 the ratio is (4, 2b(v) +O(k)).

Next, we consider the Degree Bounded k-Connected Subgraph problem. In [35]
it is shown that if Degree Bounded k-Out-connected Subgraph admits approximation
ratio (α, β(b(v))), then Degree Bounded k-Connected Subgraph admits approximation
ratio (α+O(k), β(b(v)) +O(k2)). We improve this as follows.

Theorem 1.3. If Degree Bounded k-Out-connected Subgraph admits approxima-
tion ratio (α, β(b(v))), then Degree Bounded k-Connected Subgraph admits approxi-
mation ratio (µα + O(k), β(b(v)) + O(k

√
k)), where µ = 1 for undirected graphs and
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µ = 2 for digraphs. Consequently, Degree Bounded k-Connected Subgraph admits
approximation ratio (2µ+O(k), 2b(v) +O(k

√
k)).

Cheriyan and Vegh [7] showed that for undirected graphs, an instance of k-
Connected Subgraph with n > k3(k − 1) + k, can be decomposed into two instances
of k-Out-connected Subgraph and a problem similar to Element-Connectivity Survivable
Network. We improve their bound n > k3(k − 1) + k to n ≥ k(k − 1)(k − 1.5) + k,
thus obtaining the following result.

Theorem 1.4. For undirected graphs with n ≥ k(k−1)(k−1.5)+k, k-Connected
Subgraph admits a 6-approximation algorithm, and if n ≥ 2k(k− 1)(k− 0.5) + k then
Degree Bounded k-Connected Subgraph admits approximation ratio (12, 8b(v)+O(k)).

Finally, using known decompositions, we obtain results for other undirected vari-
ants of Survivable Network problems, as follows.

Theorem 1.5. Survivable Network problems on undirected graphs admits the
following approximation ratios for any integer α ≥ 1.

(i) O(k3 log |T |) · (α, αb(v) + k/α) for Degree Bounded Node-Connectivity Surviv-
able Network.

(ii) O(k log k) · (α, αb(v) + k/α) for Degree Bounded Rooted Survivable Network.
(iii) 1

εO(k log2 k) · (α, αb(v) + k/α) for Degree Bounded Subset k-Connected Sub-
graph with k ≤ (1− ε)|T | and 0 < ε < 1.

The rest of this paper is organized as follows. In Section 2 we formulate Theorems
1.1 and 1.2 in terms of biset functions, see Theorems 2.1 and 2.2, respectively. In
Section 3 we describe the iterative rounding algorithm that we use, and formulate
the latter two theorems in terms of extreme points of appropriate polytopes; see
Theorems 3.1 and 3.2, respectively. These two theorems are the key ingredients in
proving Theorems 1.1 and 1.2, respectively; we prepare some tools for proving them
in Section 4 and prove them formally in Section 5. In the subsequent three Sections
6, 7, and 8, we employ all the tools developed to complete the proofs of Theorems
1.3, 1.4, and 1.5, respectively.

2. Biset edge-covering formulation of Survivable Network problems (The-
orems 1.1 and 1.2). We use a standard setpair LP relaxation, due to Frank and
Jordan [12], but we formulate it in equivalent but more convenient terms of bisets, as
was suggested by Frank [13], and used in several other recent papers [32, 33, 34, 35].

A biset is an ordered pair Ŝ = (S, S+) of subsets of V such that S ⊆ S+. S is
called the inner-part of Ŝ and S+ is called the outer-part of Ŝ. We call S+ \ S the
boundary of Ŝ, denoted by Γ(Ŝ). In the case of undirected graphs, an edge e covers a
biset Ŝ if it has one end-node in S and the other in V \ S+, and we denote by δE(Ŝ)
the set of edges in E covering Ŝ. In the case of directed graphs, an edge e covers Ŝ if
it enters Ŝ, namely, if e has tail in V \S+ and head in S; we denote by δ−E (Ŝ) the set

of edges in E that cover Ŝ. We also denote by δ+E(Ŝ) the set of edges in E that leave

Ŝ, namely, edges in E with tail in S and head in V \ S+.
Let V denote the set of all bisets of a groundset V . A graph (V, F ) satisfies the

connectivity requirements if |δF (Ŝ)| ≥ f(Ŝ) for each Ŝ ∈ V in undirected graphs,
and |δ−F (Ŝ)| ≥ f(Ŝ) for each Ŝ ∈ V in directed graphs, where f is the biset function
derived from the connectivity requirements; in this case we say that the graph (V, F )
is f -connected.

Every set S can be considered as the biset (S, S). Hence degree constraints can
be represented by using bisets. For a node v, define a biset Ŝv = ({v}, {v}). Then the
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degree constraint on a node v in undirected graphs is represented by |δF (Ŝv)| ≤ b(v).
In digraphs, the out-degree constraint on v is |δ+F (Ŝv)| ≤ b(v), and the in-degree

constraint on v is |δ−F (Ŝv)| ≤ b−(v). We sometimes abuse the notation to identify a
node v ∈ V as the biset ({v}, {v}).

We consider the following generic problem.

Degree Bounded f-Connected Subgraph
A graph G = (V,E) with edge/arc costs c : E → R+, a biset function f on V,
and degree-bounds b : B → Z+ on a subset B of V are given. The goal is to
find a minimum cost edge set F ⊆ E such that (V, F ) is f -connected, and the
degree/out-degree of each v ∈ B is at most b(v).

Let X̂ = (X,X+) and Ŷ = (Y, Y +) be two bisets. Define

X̂ ∩ Ŷ = (X ∩Y,X+ ∩Y +), X̂ ∪ Ŷ = (X ∪Y,X+ ∪Y +), X̂ \ Ŷ = (X \Y +, X+ \Y ) .

For a biset function f and bisets X̂, Ŷ , the supermodular inequality and the posi-
modular inequality, respectively, are defined as follows

f(X̂) + f(Ŷ ) ≤ f(X̂ ∩ Ŷ ) + f(X̂ ∪ Ŷ ) (2.1)

f(X̂) + f(Ŷ ) ≤ f(X̂ \ Ŷ ) + f(Ŷ \ X̂) (2.2)

A biset function f : V → Z is intersecting supermodular if any X̂, Ŷ with X ∩ Y 6= ∅
satisfy the supermodular inequality (2.1); f is skew supermodular if any X̂, Ŷ satisfy
the supermodular inequality (2.1) or the posimodular inequality (2.2).

For s ∈ V and an integer k ≥ 1 define a biset function g : V → Z as

g(Ŝ) =

{
k − |Γ(Ŝ)| if S 6= ∅ and s 6∈ S+

0 otherwise.

Then a digraph (V, F ) is k-outconnected from s (namely, satisfies κ(s, v) ≥ k for each
v ∈ V \ {s}) if and only if |δ−F (Ŝ)| ≥ g(Ŝ) for each Ŝ ∈ V, namely if and only if (V, F )
is g-connected. Thus g represents the k-out-connectivity requirements. It is known
that g is intersecting supermodular [13].

For T ⊆ V and r : T × T → Z+ define a biset function h : V → Z as

h(Ŝ) =

 max
u∈S∩T,v∈T\S+

r(u, v)− |Γ(Ŝ)| if S ∩ T 6= ∅ 6= T \ S+ and T ∩ Γ(Ŝ) = ∅

0 otherwise.

By a “mixed-connectivity” version of Menger’s Theorem (see, e.g. [23]), an undirected
graph (V, F ) satisfies λT (u, v) ≥ r(u, v) for each u, v ∈ T if and only if |δF (Ŝ)| ≥ h(Ŝ)
for each Ŝ ∈ V, namely, if and only if (V, F ) is h-connected. Thus h represents
element-connectivity requirements. By [11], h is skew supermodular.

Let x(e) ∈ [0, 1] be a variable indicating whether an edge e ∈ E is chosen or
not. Given an edge-set F let x(F ) =

∑
e∈F x(e). Our LP relaxation for the degree-

bounded f -connected subgraph problem is min{c ·x : x ∈ P (f, b, E)}, where P (f, b, E)
is a polytope defined as follows. In the case of directed graphs P (f, b, E) is defined
by the constraints

x(δ−E (Ŝ)) ≥ f(Ŝ) for each Ŝ ∈ V,
x(δ+E(v)) ≤ b(v) for each v ∈ B,
0 ≤ x(e) ≤ 1 for each e ∈ E.
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In the case of undirected graphs, P (f, b, E) is defined by the same constraints with
replacing both δ−E (Ŝ) and δ+E(Ŝ) by δE(Ŝ).

Given a biset function f we denote γ = γf = maxf(Ŝ)>0 |Γ(Ŝ)|. Observe that if
f is g or h as above, then γ ≤ k − 1. Given a biset function f and an edge-set J the
residual biset function of f is fJ(Ŝ) = f(Ŝ) − |δ−J (Ŝ)| in the case of directed graphs

and fJ(Ŝ) = f(Ŝ) − |δJ(Ŝ)| in the case of undirected graphs. Given a parameter
α ≥ 1 the residual degree bounds are bαJ (v) = b(v)− |δ+J (v)|/α in the case of directed
graphs and bαJ (v) = b(v) − |δJ(v)|/α in the case of undirected graphs. We assume
that for any G = (V,E), J , and α ≥ 1, one can find an extreme point solution to
min{c · x : x ∈ P (fj , b

α
J , E)}; this assumption holds for the functions g and h above,

and we omit the somewhat standard implementation details. Under this assumption,
the following two theorems imply Theorems 1.1 and 1.2.

Theorem 2.1 (Implies Theorem 1.1). If f is intersecting supermodular then
directed Degree Bounded f -Connected Subgraph admits approximation ratio (α, αb(v)+⌈

2γ
α−1

⌉
+ 1) for any integer α ≥ 2.

Theorem 2.2 (Implies Theorem 1.2). If f is skew supermodular then undirected
Degree Bounded f -Connected Subgraph admits the following approximation ratios.

(i)
(
α, αb(v) +

⌈
4 γ+2
α−2

⌉
+ 4
)

for any integer α ≥ 4.

(ii) (∞, 2b(v) + 1.5γ2 + 7.5γ + 15).

3. Iterative rounding algorithms (Theorems 2.1 and 2.2). Here we de-
scribe the version of the iterative rounding method we use, and formulate Theorems
2.1 and 2.2 in terms of extreme points of appropriate polytopes. To apply itera-
tive rounding, we define J ⊆ E as the set of edges that have already been chosen
as a part of the current solution by the algorithm. We also denote by degE(v) the
out-degree/degree of v w.r.t. E, so degE(v) = |δ+E(v)| in the case of digraphs and
degE(v) = |δE(v)| in the case of undirected graphs.

Algorithm IteRounding
Input: A graph G = (V,E), B ⊆ V , degree-bounds b : B → Z+, edge costs

c : E → Z+, a biset function f : V → Z, and integers α ≥ 1, β ≥ 0 and
σ ≤ α.

Output: An f -connected subgraph (V, J) of G.
Step 1: J := ∅.
Step 2: Compute a basic optimal solution x∗ to min{c · x : x ∈ P (fJ , b

α
J , E)}.

Step 3: If there is e ∈ E such that x∗(e) = 0 then remove e from E.
Step 4: If there is e ∈ E such that x∗(e) ≥ 1/α then move e from E to J .
Step 5: If there is v ∈ B such that degE(v) ≤ σbαJ (v) + β then remove v from B.
Step 6: If E 6= ∅, return to Step 2. Otherwise, output (V, J).

The performance of various versions of this algorithm are analyzed in several
papers, c.f. [4, 26, 27, 28, 35]. Assume that at each iteration, there exists an edge
e ∈ E as in Steps 3 or 4, or a node v ∈ B as in Step 5. Then the algorithm
IteRounding computes an edge set J of cost at most α times the optimal, such that
degJ(v) ≤ αb(v)+β for every v ∈ B and if σ = 0 then degJ(v) ≤ αb(v)+max{β−1, 0}
for every v ∈ B (since b(v) ≥ 1 for v ∈ B; for details see e.g. [35]). Note that if we
care only about the degree approximation, as in part (ii) of Theorems 1.2 and 2.2,
then at Step 4 we can also move from E to J any edge e that has no tail/end-node
in B, without changing the approximability of the degrees.
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Note that an arbitrary set F of directed edges satisfies |δ−F (X̂)| + |δ−F (Ŷ )| ≥
|δ−F (X̂ ∩ Ŷ )| + |δ−F (X̂ ∪ Ŷ )| for any X̂, Ŷ ∈ V. Similarly, note that an arbitrary set

F of undirected edges satisfies both |δF (X̂)|+ |δF (Ŷ )| ≥ |δF (X̂ ∩ Ŷ )|+ |δF (X̂ ∪ Ŷ )|
and |δF (X̂)| + |δF (Ŷ )| ≥ |δF (X̂ \ Ŷ )| + |δF (Ŷ \ X̂)| for any X̂, Ŷ ∈ V. Hence if f is
intersecting supermodular, or if f is skew supermodular, so is its residual function fJ .

We will prove the following property of extreme points solutions.
Theorem 3.1 (Implies Theorem 2.1). Let x∗ be an extreme point of P (f, b, E)

where G is a directed graph and f is an intersecting supermodular biset function on
V . Then for any integer α ≥ 2, there is e ∈ E with x∗(e) = 0 or x∗(e) ≥ 1/α, or

there is v ∈ B with |δ+E(v)| ≤ αb(v) +
⌈

2γ
α−1

⌉
+ 1.

Theorem 3.2 (Implies Theorem 2.2). Let x∗ be an extreme point of P (f, b, E)
where G = (V,E) is an undirected graph and f is a skew supermodular biset function
on V . Then the following holds.

• For any integer α ≥ 4, there is e ∈ E with x∗(e) = 0 or x∗(e) ≥ 1/α, or there

is v ∈ B with |δE(v)| ≤
⌈
4 γ+2
α−2

⌉
+ 5.

• If every edge in E is incident to some node in B, then there is e ∈ E with
x∗(e) = 0 or x∗(e) ≥ 1/2, or there is v ∈ B with |δE(v)| ≤ 1.5γ2 + 7.5γ + 16.

In the next section we prepare some tools needed to prove Theorems 3.1 and 3.2,
and prove the theorems in Section 5.

4. Laminar biset families. A set family F is laminar if for any X,Y ∈ F ,
either X ⊆ Y , Y ⊆ X, or X ∩Y = ∅. Note that X ⊆ Y or Y ⊆ X holds if and only if
{X ∩ Y,X ∪ Y } = {X,Y }, and that X ∩ Y = ∅ holds if and only if {X \ Y, Y \X} =
{X,Y }. Our aim is to establish that any extreme point of P (f, b, E) with intersecting
supermodular f or with skew supermodular f is defined by a “laminar” family of
bisets. But how to define “laminarity” of bisets?

In the case of an intersecting supermodular f , it is natural to say that F is laminar
if {X̂ ∩ Ŷ , X̂ ∪ Ŷ } = {X̂, Ŷ } for any X̂, Ŷ ∈ F with X ∩ Y 6= ∅. In the case of a skew
supermodular f , it is natural to say that F is laminar if {X̂ ∩ Ŷ , X̂ ∪ Ŷ } = {X̂, Ŷ }
or {X̂ \ Ŷ , Ŷ \ X̂} = {X̂, Ŷ } for any X̂, Ŷ ∈ F ; we refer to this property as “strong
laminarity”. Laminar biset families are used in [13], while strongly laminar biset
families are defined in [11] in terms of setpairs. Following [35], we formulate both
these concepts in terms of bisets, by establishing an inclusion order (namely, a partial
order) on bisets.

Definition 4.1. We say that a biset Ŷ contains a biset X̂ and write X̂ ⊆ Ŷ if
X ⊆ Y and X+ ⊆ Y +; if also X̂ 6= Ŷ then X̂ ⊂ Ŷ and Ŷ properly contains X̂. A
biset family F is laminar (resp., strongly laminar) if for any X̂, Ŷ ∈ L either X̂ ⊆ Ŷ ,
Ŷ ⊆ X̂, or X ∩ Y = ∅ (resp., X ∩ Y + = ∅ and Y ∩X+ = ∅).

Note that a strongly laminar biset family is laminar, and that the family of inner
parts of a laminar biset family is a laminar set family. The above inclusion order on
bisets defines a forest structure of a laminar biset family. In the rest of this paper,
“minimal” and “maximal” are defined with respect to this inclusion order. For a
laminar biset family F and X̂, Ŷ ∈ F , we say that Ŷ is the parent of X̂ and X̂ is a
child of Ŷ if Ŷ is the minimal biset with X̂ ⊂ Ŷ . A minimal biset in F is called a
leaf.

Let G = (V,E) be a graph, and let F be a biset family on V . For E′ ⊆ E the
incidence vector of E′ is an |E|-dimensional vector whose component corresponding to
e ∈ E is 1 if e ∈ E′, and 0 otherwise. If G is a directed graph, then let χ+

E(F) denote

the set of incidence vectors of the edge sets in {δ+E(Ŝ) : Ŝ ∈ F} and χ−E(F) is the set
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of incidence vectors of the edge sets in {δ−E (Ŝ) : Ŝ ∈ F}. If G is an undirected graph,

let χE(F) denote the set of incidence vectors of the edge sets in {δE(Ŝ) : Ŝ ∈ F}. For
C ⊆ V , χE(C) = χE({(v, v) : v ∈ C}), and similarly χ+

E(C) and χ−E(C) are defined.
The following statement was proved for set-functions in [4, 26], and the proof for biset
functions is similar (e.g., see [35] for the case of a skew supermodular f).

Lemma 4.2. Let x be an extreme point of P (f, b, E) with 0 < xe < 1 for all
e ∈ E 6= ∅. Then there exists a family L of bisets and C ⊆ B such that |L|+ |C| = |E|
and such that the following holds:

(i) If G is a directed graph, then x(δ−E (Ŝ)) = f(Ŝ) ≥ 1 for all Ŝ ∈ L, x(δ+E(v)) =
b(v) for all v ∈ C, and the vectors in χ−E(L)∪χ+

E(C) are linearly independent.
Furthermore, if f is intersecting supermodular, then there exists such L that
is laminar.

(ii) If G is an undirected graph, then x(δE(Ŝ)) = f(Ŝ) ≥ 1 for all Ŝ ∈ L,
x(δE(v)) = b(v) for all v ∈ C, and the vectors in χE(L) ∪ χE(C) are lin-
early independent. Furthermore, if f is skew supermodular, then there exists
such L that is strongly laminar.

The following parameter is defined in [35].
Definition 4.3. Let L be a laminar biset family on V , let Ŝ ∈ L and let v ∈ V .

We say that Ŝ owns v if Ŝ is the minimal biset in L with v ∈ S. We say that Ŝ shares
v if Ŝ is a minimal biset in L with v ∈ Γ(Ŝ). Let ∆L(v) denote the number of bisets
in L that share v.

From the definition it follows that every node v is owned by at most one biset, and
that if X̂, Ŷ share the same node v then they are incomparable, namely, that none of
them contains the other. From the definition of laminarity and strong laminarity we
have the following.

Lemma 4.4. Let L be a laminar biset family, and let v ∈ V . Let X be a sub-
family of L such that v ∈ Γ(X̂) for each X̂ ∈ X , and the bisets in X are pair-wise
incomparable. For each X̂ ∈ X , let X̂ ′ be a biset in L such that X̂ ⊆ X̂ ′ and X̂ ′

contains no biset in X \ {X̂}. Then v ∈ Γ(X̂ ′) or v ∈ X ′ holds, and the latter holds
for at most one biset in X ′ = {X̂ ′ | X̂ ∈ X}. Furthermore, if L is strongly laminar
then the former holds for all bisets in X ′.

Proof. Since Γ(X̂) is contained by the outer-part of X̂ ′, v ∈ Γ(X̂) is either in Γ(X̂ ′)
or in X ′. Any two bisets X̂ ′ and Ŷ ′ in X ′ are incomparable, and hence X ′ ∩ Y ′ = ∅
by the laminarity of L. It follows from this fact that v is contained by the inner-part
of at most one biset in X ′. When L is strongly laminar, X ′ ∩Γ(Ŷ ′) = Γ(X̂ ′)∩Y ′ = ∅
holds for any X̂ ′, Ŷ ′ ∈ X ′, and hence v ∈ Γ(X ′) holds for all X̂ ′ ∈ X ′.

Lemma 4.5. Let L be a biset family on V , let C ⊆ V , let E be the set of leaves
of L, and let γ = maxŜ∈L |Γ(Ŝ)|. Then∑

v∈C
max{∆L(v), 1} ≤ 2γ(|E| − 1) + |C| if L is laminar, (4.1)∑

v∈C
max{∆L(v), 1} ≤ γ|E|+ |C| if L is strongly laminar. (4.2)

Proof. We may assume that |∆L(v)| ≥ 2 for every v ∈ C, as if ∆L(v) ≤ 1 for
some v ∈ C, then excluding v from C decreases both sides of each of (4.1) and (4.2)
by exactly 1.

We prove (4.1). Let L′ be the family of bisets in L whose parent has at least 2
children. It is known and easy to prove by induction that |L′| ≤ 2|E| − 2. There are
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∆L(v) incomparable bisets Ŝ in the tree with v ∈ Γ(Ŝ). By walking up to a biset that
owns v until the first biset in L′ is reached, we see that v belongs to the boundary of
at least ∆L(v)− 1 bisets in L′. This implies∑

v∈C
max{∆L(v), 1} − |C| =

∑
v∈C

(max{∆L(v), 1} − 1) ≤ γ|L′| ≤ 2γ(|E| − 1) .

We prove (4.2) by induction on |E|. Assume therefore that |E| ≥ 2, as otherwise
|∆L(v)| ≤ 1 for every v ∈ C. Then there exists Ŝ ∈ L such that Ŝ has at least 2
children, but every proper descendant of Ŝ has at most one child. Let R̂ be a child of
Ŝ, let Ẑ ⊆ R̂ be a leaf of L, and let P = {Ŷ ∈ L : Ẑ ⊆ Ŷ ⊆ R̂} be the “chain” from
the child R̂ of Ŝ to Ẑ (possibly R̂ = Ẑ). Since we assume that |∆L(v)| ≥ 2 for every
v ∈ C, then by Lemma 4.4, every node that is shared by some biset in P belongs to
Γ(R̂), so there are at most |Γ(R̂)| ≤ γ such nodes. Hence excluding the bisets in P
from L decreases the left hand side of (4.2) by at most γ, while |E| decreases by 1,
hence the right hand side of (4.2) decreases by γ.

5. Proof of Theorems 3.1 and 3.2. Let x = x∗ be an extreme point solution
to the corresponding biset LP relaxation, and let L and C be as in Lemma 4.2. Let
E be the set of leaf bisets in L. For a biset Ŝ ∈ L denote by CS the set of children of
Ŝ, by E+

S the set of edges in E that cover Ŝ but not a child of Ŝ, and by E−S the set

of edges in E that cover a child of Ŝ but not Ŝ. If Ŝ ∈ E , then E+
S = δ−E (Ŝ) when

E is the set of arcs, and E+
S = δE(Ŝ) when E is the set of undirected edges. Hence

E+
S 6= ∅ in this case. If Ŝ ∈ L \ E , then E+

S ∪ E
−
S 6= ∅ since otherwise the vectors in

χE({Ŝ} ∪ CS) are linearly dependent.

5.1. Intersecting supermodular f and directed graphs (Theorem 3.1).
Assume to the contrary that 0 < x(e) < 1/α for every e ∈ E. Assign 1 token to
every edge e = uv ∈ E, putting 1 − αx(e) > 0 “tail-tokens” at u and αx(e) > 0
“head-tokens” at v. We will show that these tokens can be distributed such that
every member of L ∪ C gets 1 token, and some tokens are not assigned. This gives
the contradiction |E| > |L|+ |C|.

For every Ŝ ∈ L, the amount of head-tokens of edges in E+
S and tail-tokens of

edges in E−S is αx(E+
S ) + |E−S | − αx(E−S ). Note that this is an integer, since α is an

integer, and since x(E+
S )−x(E−S ) = f(R̂)−

∑
R̂∈CS f(R̂). It is a positive integer since

x(E+
S ) > 0 if E+

S 6= ∅, and |E−S | − αx(E−S ) > 0 if E−S 6= ∅. Thus if we assign to every

Ŝ ∈ L the head-tokens of edges in E+
S and the tail-tokens of edges in E−S , then every

member of L will get at least one token, and the tail-tokens entering the maximal
members of L are not assigned. It is easy to see that no token is assigned twice. We
note that if C = ∅, and in particular if there are no degree bounds, then this implies
that the extreme points of the polytope P (f, b, E) are all integral. Every leaf Ŝ gets
αx(δ−E (Ŝ)) = αf(Ŝ) ≥ α head-tokens from edges in E+

S . Hence we have α|E| tokens
at leaves.

Lemma 5.1. If (α− 1)|E| ≥ |C| then there is e ∈ E with x(e) ≥ 1/α.
Proof. By the assumption (α − 1)|E| ≥ |C| we have |E| + |C| ≤ α|E|, hence the

α|E| tokens at leaves suffice to give 1 token to each member of E ∪C. Every non-leaf
biset Ŝ ∈ L gets the head-tokens from edges in E+

S and the tail-tokens from edges in
E−S , so at least 1 token. Consequently, every members of L∪C gets 1 token, and the
tail-tokens of the edges entering the maximal members of L are not assigned. This
gives the contradiction |E| > |L|+ |C|.
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Lemma 5.2. If |C| > (α− 1)|E|, then there is e ∈ E with x(e) ≥ 1/α or there is

v ∈ C with |δ+E(v)| ≤ αb(v) + β, where β =
⌈

2γ
α−1

⌉
+ 1.

Proof. Assume that |δ+E(v)| ≥ αb(v) + β + 1 for every v ∈ C. Then the amount
of tail-tokens at each v ∈ C is at least αb(v) + β + 1− αx(δ+E(v)) = β + 1. Hence we
have at least α|E| + (β + 1)|C| tokens at leaves and nodes in C. From these tokens,
we give 1 token to every leaf and ∆L(v) + 2 tokens to every v ∈ C, and spare tokens
remain. This is possible, since by Lemma 4.5 and the assumption |C| > (α− 1)|E|

|E|+
∑
v∈C

(∆L(v) + 2) ≤ |E|+ 3|C|+ 2γ(|E| − 1)

= α|E|+ (2γ + 1− α)|E|+ 3|C| − 2γ

= α|E|+ |C|
(

(2γ + 1− α)
|E|
|C|

+ 3

)
− 2γ

< α|E|+ |C|
(

2γ

α− 1
+ 2

)
− 2γ

≤ α|E|+ |C|(β + 1) .

Every v ∈ C will keep one token, and from the remaining at least ∆L(v) + 1
tokens v will give 1 token to every biset that owns or shares v. Now let Ŝ ∈ L be a
biset that is not a leaf and that does not own or share a node in C. Then Ŝ gets the
head-tokens from edges in E+

S and the tail tokens from edges in E−S , so at least one
token as argued above. Consequently, every members of L ∪ C gets 1 token. This
gives the contradiction |E| > |L|+ |C|.

Theorem 3.1 follows by combining Lemmas 5.1 and 5.2.

5.2. Skew supermodular f and undirected graphs (Part (i) of Theo-
rem 3.2). We deduce part (i) of Theorem 3.2 from the following two lemmas.

Lemma 5.3. If (θ − 1)|E| ≥ |C| for an integer θ ≥ 2, then there is e ∈ E with
x(e) ≥ 1

2θ .

Proof. We generalize the approach from [31]. Assume to the contrary that 0 <
x(e) < 1

2θ for every e ∈ E. Assign 1 token to every e = uv ∈ E, putting θx(e) > 0
“end-tokens” at each of u, v and 1 − 2θx(e) > 0 “middle-tokens” at e. We will show
that these tokens can be distributed such that every member of L∪C gets 1 token, and
the middle-tokens of the edges entering the maximal members of L are not assigned.
This gives the contradiction |E| > |L|+ |C|.

Every leaf Ŝ gets θx(δE(Ŝ)) = θf(Ŝ) ≥ θ end-tokens from edges in E+
S . Hence we

have θ|E| tokens at leaves. By the assumption (θ−1)|E| ≥ |C| we have |E|+|C| ≤ θ|E|,
so these tokens suffice to give 1 token to each member of E ∪ C.

Now let Ŝ ∈ L be a non-leaf biset. Denote by t(Ŝ) the amount of end-tokens
of edges in E+

S at nodes owned by Ŝ and middle-tokens of edges in E−S . Note that

t(Ŝ) > 0, by the linear independence. We claim that t(Ŝ) is an integer, hence t(Ŝ) ≥ 1.
Let E1 be the set of edges in E−S that cover exactly one child of Ŝ and let E2 = E−S \E1

be the set of edges in E−S that cover two distinct children of Ŝ. Let E′ be the set of
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edges in E that cover both Ŝ and some child of Ŝ. Then

t(Ŝ) = θx(E+
S ) + (|E1| − θx(E1)) + (|E2| − 2θx(E2))

= θ[x(E+
S ) + x(E′)]− θ[x(E1) + 2x(E2) + x(E′)] + |E1|+ |E2|

= θx(δE(Ŝ))− θ
∑
R̂∈CS

x(δE(R̂)) + |E−S | = θ

f(Ŝ)−
∑
R̂∈CS

f(R̂)

+ |E−S | .

Consequently, every members of L∪C gets 1 token, and the middle-tokens of the edges
entering the maximal members of L are not assigned. This gives the contradiction
|E| > |L|+ |C|.

We note that if C = ∅, i.e., if there are no degree bounds, then the same proof
applies for θ = 1 to show that any extreme point of P (f, b, E) has an edge e ∈ E with
x(e) ≥ 1/2. This gives a simple proof of the result of [11], using the idea of [31].

Lemma 5.4. If |C| > (α/2− 1)|E|, then there is e ∈ E with x(e) ≥ 1/α or there

is v ∈ C with |δE(v)| ≤ β, where β =
⌈
4 γ+2
α−2

⌉
+ 5.

Proof. Assume to the contrary that 0 < x(e) < 1/α for every e ∈ E and that
|δE(v)| ≥ β+1 for every v ∈ C. We give 1 token to each end-node of every e ∈ E. We
will show that these tokens can be distributed such that every member of L∪C gets
2 tokens, and each maximal member of L gets 4 tokens leading to the contradiction
that |E| > |L|+ |C|.

The amount of tokens at each v ∈ C is at least β + 1. Hence we have at least
(β+ 1)|C| tokens at the nodes in C. From these tokens, we give 4 tokens to every leaf
and 2(∆L(v) + 2) tokens to every v ∈ C. This is possible since by Lemma 4.5 and the
assumption |C| > (α/2− 1)|E|, as we verify below.

4|E|+ 2
∑
v∈C

(∆L(v) + 2) ≤ 4|E|+ 2(γ|E|+ 3|C|) = 2|E|(γ + 2) + 6|C|

= |C|
(

6 + 2
|E|
|C|

(γ + 2)

)
≤ |C|

(
6 + 2(γ + 2)

2

α− 2

)
≤ |C|(1 + β).

Every v ∈ C will keep 2 tokens, and from the remaining 2(∆L(v) + 1) tokens v
will give 2 tokens to every biset that owns or shares v. Now let Ŝ ∈ L be a biset that
is not a leaf. Then Ŝ gets 2 tokens from each child. If Ŝ has at least 2 children then
we are done. If Ŝ has 1 child and owns or shares a node v ∈ C, then Ŝ gets 2 tokens
from its child and 2 tokens from v. Otherwise, Ŝ gets 2 tokens from its child and 2
tokens from edges in E+

S ∪E
−
S ; note that |E+

S ∪E
−
S | ≥ 2, by linear independence and

the integrality of f . Consequently, every member of L ∪ C gets 2 tokens, and each
maximal member of L gets 4 tokens. This gives the contradiction |E| > |L|+ |C|.

Applying Lemma 5.3 with θ = bα/2c, we get that if (bα/2c − 1)|E| ≥ |C|, and in
particular if (α/2−1)|E| ≥ |C|, then there is e ∈ E with x(e) ≥ 1

2bα/2c ≥
1
α . Together

with Lemma 5.4 this implies Theorem 3.2.

5.3. Degree approximation only (Part (ii) of Theorem 3.2). We call a
biset in L strictly black if it owns a node in C, black if one of its descendents is strictly
black (i.e., its inner-part contains a node in C), and white otherwise (i.e., its inner-
part contains no node in C). Let Eb and Ew denote the family of strictly black bisets
and white bisets in E , respectively.

Lemma 5.5. If |E| ≤ (γ + 4)|C|, then there is e ∈ E with x(e) ≥ 1/2, or there is
v ∈ C with |δE(v)| ≤ 1.5γ2 + 7.5γ + 16.
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Proof. Assume to the contrary that 0 < x(e) < 1/2 for every e ∈ E and |δE(v)| ≥
1.5γ2 + 7.5γ + 17 for every v ∈ C. Identifying a node v ∈ C as a biset ({v}, {v}), we
regard L∪C as a biset family. L∪C may not be strongly laminar, but it is laminar.
Therefore we can define the inclusion order on L ∪ C.

We assign two tokens to every edge in E, putting one end-token at each of its end-
nodes. We will show that these tokens can be distributed such that every members
of L ∪ C gets two tokens, and an extra token remains. This gives the contradiction
that |E| > |L|+ |C|.

Let e = uv ∈ E. Note that there always exists a biset X̂ ∈ L ∪ C such that
e ∈ δE(X̂). Suppose that X̂ is a minimal one among such bisets. Without loss of
generality, let u ∈ X. We give the end-token of e at u to X̂. If there also exists a
biset Ŷ ∈ L ∪ C such that e ∈ δE(Ŷ ) and v ∈ Y , then we give the end-token of e
at v to the minimal such biset Ŷ . Otherwise, the end-token of e at v is given to the
minimal biset X̂ ′ such that X̂ ⊂ X̂ ′ and e 6∈ δE(X̂ ′).

Since bisets in Ew and nodes in C are leaves of L∪C, they obtain one token from
each edge incident to them after this distribution. Hence each biset Ŝ ∈ Ew has 3
tokens and each node v ∈ C has |δE(v)| tokens. We make each v ∈ C keep only two
tokens, return back 1/3 tokens to each edge in δE(v), and release the other tokens.
Then the total number of released tokens is∑

v∈C

(
2

3
|δE(v)| − 2

)
> |C|(γ2 + 5γ + 9) ≥ (1 + γ)|E|+ 5|C|,

where the first inequality follows from |δE(v)| > 1.5γ2 + 7.5γ + 16.5, v ∈ C and the
last one follows from |E| ≤ (γ+ 4)|C|. We redistribute these tokens so that one token
is given to each biset in Ew, 4 tokens to each in Eb, one token to each biset that shares
or owns a node in C. Note that if a biset owns or shares more than one node in C, it
obtains tokens from each of those nodes in C. This is possible because the number of
tokens we need is

|Ew|+4|Eb|+
∑
v∈C

(1+∆L(v)) ≤ (|E|−|C|)+4|C|+ |C|+γ|E|+ |C| = (1+γ)|E|+5|C|,

where the above inequality follows from |Ew|+ |Eb| = |E|, |Eb| ≤ |C| and (4.2).
Now all tokens given to bisets in E and nodes in C have been redistributed so

that each node in C has 2 tokens, each biset in E has 4 tokens, each pair of v ∈ C
and e ∈ δE(v) has 1/3 tokens, and each biset L has one token from each owning or
sharing node in C. In what follows, we prove by induction that each biset in L can
have at least two tokens, and each maximal biset in L can have 4 tokens.

It is obvious to see that the claim holds in the base case where the height of the
forest defined from L is one. Let us consider the case where the height of the forest is
more than one, and let Ŝ be a biset that is not a leaf. By the induction hypothesis,
each descendent has at least two tokens, and each child of Ŝ has 4 tokens. Ŝ can
obtain 2 tokens from each of its child. Hence if Ŝ has more than one child, if Ŝ owns
a node in C, or if Ŝ shares at least two nodes in C, then Ŝ can collect 4 tokens.

By the linear independence, |E+
S ∪ E

−
S | ≥ 2 always holds, and |E+

S ∪ E
−
S | ≥ 3

holds when either E+
S or E−S is empty by the assumption that x(e) < 1/2, e ∈ E. Let

e = uv ∈ E+
S ∪ E

−
S . If e ∈ E+

S , we let u ∈ S and v ∈ V \ S+. If e ∈ E−S , we let u ∈ S
be an end-node which is within the inner-part of a child of S, and v ∈ S+. Notice
that v ∈ S+ implies that no biset X̂ ∈ L with e ∈ δE(X̂) contains v in its inner-part
since L is strongly laminar.
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Ŝ obtains the end-token of e at u if e ∈ E+
S and u 6∈ C. If e ∈ E+

S and u ∈ C,

then Ŝ owns u, and hence Ŝ obtains one token corresponding to u. On the other
hand, when e ∈ E−S , Ŝ obtains the end-token of e at v if v 6∈ C, and obtains one

token corresponding to v if v ∈ C since Ŝ owns or shares v. Therefore Ŝ can collect
4 tokens unless E−S = ∅ and all nodes in E+

S are incident to the same node in C ∩ S,
or unless E+

S = ∅ and all nodes in E−S are incident to the same node in C ∩ S+. In
both of these two cases, |E+

S ∪ E
−
S | ≥ 3, and each of the edges in E+

S ∪ E
−
S has 1/3

tokens corresponding to the end-node to which all the edges are incident. Therefore
Ŝ collects 4 tokens even in these cases.

We next discuss the case where |E| ≥ (γ + 4)|C|, and prove the following lemma.
Lemma 5.6. If every edge in E is incident to some node in B and |E| ≥ (γ+4)|C|,

then there is e ∈ E with x(e) ≥ 1/2.
Under the assumption in Lemma 5.6, each edge e ∈ E is incident to a node in

{v ∈ B | x∗(δE(v)) = b(v)} since otherwise we can decrease x∗(e). Recall that C is
a maximal subset of {v ∈ B | x∗(δE(v)) = b(v)} such that the vectors in χE(C) are
linearly independent. If C contains no end-node of e ∈ E, then the incidence vector
of δE(v) defined from an end-node v of e is linearly independent from those in χE(C).
Since this contradicts the maximality of C, we can observe that each edge e ∈ E is
incident to at least one node in C.

We again count bisets in L and nodes in C for proving Lemma 5.6, but the way
of distributing tokens is different here. Let e = uv ∈ E. By the assumption, at least
one of the end-nodes of e is in C. If C contains both end-nodes of e, then we assign
no token to e. If C contains exactly one end-node, say v, of e, then we assign one
token. This token will be given to a biset in L as follows. If L contains a biset Ŝ such
that e ∈ δE(Ŝ) and u ∈ S, then the token is given to such a minimal biset. If there
exists no such bisets and L contains a biset X̂ such that e ∈ δE(X̂) and v ∈ X, then
the token is given to the minimal biset in {Ŷ ∈ L | X̂ ⊂ Ŷ , u ∈ Y +}. Since the total
number of tokens is at most |E|, it suffices to show that an extra token remains after
redistributing tokens so that each biset in L and each node in C owns one token.

Let Ŝ ∈ Ew. Since x∗(e) < 1/2 for each e ∈ E, |δE(Ŝ)| ≥ 2f(Ŝ) + 1. Since
S contains no nodes in C, each edge in δE(Ŝ) gives a token to Ŝ. Thus Ŝ has
2f(Ŝ) + 1 ≥ f(Ŝ) + 2 tokens. We make each Ŝ ∈ Ew release one token. Then the
number of released tokens is at least |Ew| ≥ |E| − |C| ≥ (γ + 3)|C|. Recall that the
number of strictly black bisets is at most |C|. We redistribute the released token to
the nodes in C and the strictly black bisets so that each v ∈ C has 1 token, and each
strictly black biset has γ+ 2 tokens. Note that each Ŝ ∈ Ew still has at least f(Ŝ) + 1
tokens after this redistribution.

We first count tokens in a tree which consists of only white bisets.
Lemma 5.7. Let R̂ ∈ L be a white biset, and L′ = {Ŝ ∈ L | Ŝ ⊆ R̂}. We can

distribute tokens owned by bisets in L′ so that each biset in L′ has at least one token,
and R̂ has at least 1 + f(R̂) tokens when 0 < x(e) < 1/2 for each e ∈ E.

Proof. We prove by the induction on the height of the tree representing L′. If the
height is one, then L′ = {R̂} and R̂ ∈ Ew. Thus the lemma follows in this case.

Assume that the height is at least 2. Applying the induction hypothesis to the
trees rooted at the children of R̂, we can allocate tokens so that each biset below the
children of R̂ has one token, and each child Ŝ of R̂ has 1 + f(Ŝ) tokens. We can move∑
Ŝ∈CR f(Ŝ) tokens from the children to R̂.

If
∑
Ŝ∈CR f(Ŝ) > f(R̂), then we are done. Hence consider the other case. When∑

Ŝ∈CR f(Ŝ) = f(R̂), |E+
R | ≥ 1 holds by the linear independence. When

∑
Ŝ∈CR f(Ŝ) <
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f(R̂), |E+
R | ≥ 1 + 2(f(R̂)−

∑
Ŝ∈CR f(Ŝ)) holds by x∗(e) < 1/2, e ∈ E. In either case,

|E+
R | ≥ 1 + f(R̂)−

∑
Ŝ∈CR f(Ŝ). R̂ is given a token from each e ∈ E+

R because e has

an end-node v ∈ R such that R̂ is a minimal biset with e ∈ δE(R̂) and v ∈ R, and
v 6∈ C by R ∩ C = ∅. Thus R̂ has already owned 1 + f(R̂)−

∑
Ŝ∈CR f(Ŝ). With the

tokens from the children, R̂ obtains 1 + f(R̂) tokens.

We next give a token distribution scheme for trees in which the maximal bisets
are black. Together with Lemma 5.7, this finishes the proof of Lemma 5.6.

Lemma 5.8. Let R̂ ∈ L be a black biset, and L′ = {Ŝ ∈ L | Ŝ ⊆ R̂}. We can
distribute tokens owned by bisets in L′ so that each biset in L′ has at least one token,
and R̂ has at least 2 tokens when 0 < x(e) < 1/2 for each e ∈ E.

Proof. We show how to rearrange the tokens so that each biset in L′ obtains at
least one token, and R̂ obtains at least 2 + γ − |Γ(R̂) ∩ C| ≥ 2 tokens. Our proof is
by the induction on the height of the tree. If the height is one, then the claim holds
because it consists of a strictly black biset. Hence suppose that the height is at least
two.

Let B be the set of black children of R̂, and W be the set of white children of
R̂. Apply the induction hypothesis to the subtrees rooted at the black children, and
Lemma 5.7 to the subtrees rooted at the white children. Then each biset below the
children has one token, each X̂ ∈ B has 2 + γ − |Γ(X̂) ∩ C| tokens, and each Ŷ ∈ W
has 1 + f(Ŷ ) ≥ 2 tokens. If B = ∅, then R̂ is strictly black, and it has already given
γ + 2 tokens. Since this finishes the claim, suppose that B 6= ∅. Since each child of R̂
needs only one token, we can move extra tokens from the children to R̂. The number
of tokens R̂ obtains is at least

|W|+
∑
X̂∈B

(1 + γ − |Γ(X̂) ∩ C|). (5.1)

Let Ŝ be an arbitrary biset in B. A node v ∈ Γ(Ŝ) ∩ C is either in R or Γ(R̂). If
v is in R, then we are done because R is a strictly black biset that owns v. Therefore
assume that each v ∈ Γ(Ŝ) ∩ C is in Γ(R̂). This means that Γ(Ŝ) ∩ C ⊆ Γ(R̂) ∩ C,
and hence |Γ(Ŝ) ∩ C| ≤ |Γ(R̂) ∩ C|. Hence (5.1) is at least the required number of
tokens if |W| ≥ 1, if |B| ≥ 2, or if Γ(Ŝ) ∩ C ⊂ Γ(R̂) ∩ C.

Let |B| = 1, |W| = 0 and Γ(Ŝ) ∩ C = Γ(R̂) ∩ C. Notice that Ŝ is the only child
of R̂ in this case. It suffices to find one more token for R̂. The linear independence
between χE(R̂) and χE(Ŝ) implies that at least one of E+

R and E−R is not empty.

Let e ∈ E+
R . Then e has an end-node v in R \ S. If v ∈ C, then R̂ is a strictly

black biset that owns v, and hence R̂ has the required number of tokens in this case
as mentioned above. If v 6∈ C, then e gives a token to R̂. Thus we are done when
E+
R 6= ∅.

Let e′ = u′v′ ∈ E−R . Then e′ has an end-node, say u′, in R+ \S+. If u′ ∈ C, then

Γ(Ŝ) ∩ C = Γ(R̂) ∩ C implies that u′ ∈ R, and hence R̂ is a strictly black biset. Let
u′ 6∈ C. Then v′ ∈ C. L has no biset Ẑ with e′ ∈ δE(Ẑ) and u′ ∈ Z by the strong
laminarity of L. e′ ∈ δE(Ŝ), v′ ∈ S ∩ C, and R̂ is the minimal biset such that Ŝ ⊂ R̂
and u′ ∈ R+. Hence e′ gives 1 token to R̂ in this case, which completes the proof.

6. Proof of Theorem 1.3. We need to describe the algorithm of [35] for Degree
Bounded k-Connected Subgraph. The algorithm uses the following procedure due to
Khuller and Raghavachari [24], that is also used in the next section.
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Procedure External k-Out-connectivity
Input: A graph G = (V,E), an integer k, and R ⊆ V with |R| = k.
Output: A subgraph J of G.
Step 1: Let G′ be obtained from G by adding a new node s and all edges between

s and R, of cost zero each.
Step 2: Compute a k-outconnected from s spanning subgraph J ′ of G′.
Step 3: Return J = (J ′ \ {s}).

Assume that Degree Bounded k-Out-connected Subgraph admits an (α, β(b(v)))-
approximation algorithm. For undirected graphs, the algorithm of [35] is as follows.

Algorithm Degree Bounded k-Connectivity
Step 1: Apply Procedure External k-Out-connectivity, where J ′ is com-

puted using the (α, β(b(v)))-approximation algorithm for Degree Bounded
k-Out-connected Subgraph with degree bounds b′(v) = b(v) + 1 if v ∈ R
and b′(v) = b(v) otherwise.

Step 2: Let F be a set of edges on V such that J ∪ F is k-connected.
Step 3: For every ut ∈ F compute a minimum-cost inclusion-minimal edge-set

Iut ⊆ E \ J such that J ∪ Iut contains k internally disjoint ut-paths.
Step 4: Return J ∪ I, where I = ∪ut∈F Iut.

In the case of directed graphs, Procedure External k-Out-connectivity com-
putes a subgraph J ′ = J−∪J+, where: J+ is k-outconnected from s and is computed
by the (α, β(b(v)))-approximation algorithm, while J− is a minimum cost subgraph
which is k-inconnected to s, namely, κJ−(v, s) ≥ k for each v ∈ V \ {s}.

Lemma 6.1 ([35]). Algorithm Degree Bounded k-Connectivity has ratio
(α+|F |, β(b(v))+2|F |+kd/2) for undirected graphs, and (α+1+|F |, β(b(v))+k+|F |+
kd/2) for digraphs, where F is the edge set computed at Step 2, d = maxv∈V |δF (v)|
for undirected graphs, and d = maxv∈V |δ+F (v)| for digraphs.

In [19, 35] it is shown that at Step 2 there exists an edge set F on R such that
(J ′ \ {s}) ∪ F is k-connected, and if F is an inclusion minimal such edge set, then:
in the undirected case, F is a forest, and in the directed case, F is a forest in the
corresponding bipartite graph. The latter property is a known consequence from the
undirected and directed Critical Cycle Theorems of Mader [29, 30]. Hence we can
find in polynomial time F with |F | ≤ |R| − 1 = k − 1 in the undirected case, and
|F | ≤ 2|R| − 1 = 2k − 1 in the directed case. We improve this by showing that F as
above can be converted in polynomial time into an edge set F ′ such that |F ′| = |F |,
maxv∈V |δF ′(v)| = O(

√
k) for undirected graphs, and maxv∈V |δ+F ′(v)| = O(

√
k) for

digraphs.

6.1. Undirected graphs. We start by proving the following.
Lemma 6.2. Let G = (V,E ∪ F ) be a simple k-connected undirected graph

such that |δE(v)| ≥ p for all v ∈ V and such that every edge in F is critical for
k-connectivity of G. Let d = max

v∈V
|δF (v)| ≥ 4, let u ∈ V with |δF (u)| = d, and

let e = ut ∈ δF (u). Suppose that for every v ∈ V with |δF (v)| ≤ d − 2 the graph
G \ {ut} ∪ {vt} is not k-connected. Then d(d+ p− k − 2) ≤ 3p− k + 1.

Proof. Since every edge in F is critical for k-connectivity of G, F is a forest, by
Mader’s Critical Cycle Theorem for undirected graphs. Consider the graph G \ {e}
and the biset family

F = {Ŝ ∈ V : u ∈ S, t ∈ V \ S+, |Γ(Ŝ)| = k − 1, δE∪F (Ŝ) = {e}} .
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It is known that F is a ring biset family, namely, that the intersection of the inner
parts of the members of F is non-empty, and X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F .
This implies that F has a unique inclusion minimal member Ŝ, and that for every
v ∈ S the graph G \ {ut} ∪ {vt} is k-connected. Thus |δF (v)| ≥ d− 1 for every v ∈ S,
implying that |δE∪F (v)| ≥ p+ d− 1.

Let K = Γ(Ŝ), so |K| = k−1. Let I be the set of edges in F with at least one end-
node in S. Every edge in I\{e} has its both end-nodes in S∪K. In G, every v ∈ S\{u}
has at least p+d−1 neighbors in (S\{v})∪K, implying (|S|−1)+(k−1) ≥ p+d−1, so
p+d−k+1 ≤ |S|. Since I is a forest on a set S∪K∪{t} of |S|+k nodes, |I| ≤ |S|+k−1.
Let ζI(S) be the set of edges in I with both end-nodes in S, so I is a disjoint union
of δI(S) and ζI(S). Hence |δI(S)| + |ζI(S)| = |I| ≤ |S| + k − 1. On the other hand,
(d− 1)|S| ≤

∑
v∈S |δI(v)| = |δI(S)|+ 2|ζI(S)|. Summarizing, we have the following:

p+ d− k + 1 ≤ |S|, (6.1)

|δI(S)|+ |ζI(S)| ≤ |S|+ k − 1, (6.2)

|δI(S)|+ 2|ζI(S)| ≥ (d− 1)|S|. (6.3)

Subtracting (6.2) from (6.3) gives |ζI(S)| ≥ (d − 2)|S| − k + 1 and thus |δI(S)| ≤
2k − 2 − (d − 3)|S|. Since |δI(S)| ≥ 0 we get (d − 3)|S| ≤ 2k − 2. Combining with
(6.1) we get

p+ d− k + 1 ≤ |S| ≤ 2k − 2

d− 3
.

Multiplying by d− 3 and rearranging terms we obtain d(d+ p− k − 2) ≤ 3p− k + 1,
as claimed.

Corollary 6.3. Let G = (V,E ∪ F ) be a simple k-connected undirected graph
such that |δE(v)| ≥ k−1 for all v ∈ V . Then there exists a polynomial time algorithm
that finds a set F ′ of edges on V with |F ′| ≤ |F | such that G′ = (V,E ∪ F ′) is

k-connected and such that |δF ′(v)| ≤ max
{

3, 32 +
√

2k + 1
4

}
for all v ∈ V .

Proof. Let u ∈ V be a node that maximizes |δF (u)|. Lemma 6.2 with p = k − 1
implies that if |δF (u)| is larger than the required value, then we can replace an edge
ut ∈ δF (u) by another edge vt such that |δF (v)| is at most |δF (u)| − 2, keeping the
graph being k-connected. By repeating this replacement, we can obtain a required
edge set F ′.

The undirected part of Theorem 1.3 follows from Lemma 6.1, Corollary 6.3, and
our ability to find in polynomial time an edge set F with |F | ≤ k− 1 at Step 3 of the
algorithm.

6.2. Digraphs. We start by proving the directed counterpart of Lemma 6.2.
Lemma 6.4. Let G = (V,E ∪ F ) be a simple k-connected digraph such that

|δ+E(v)| ≥ p for all v ∈ V , and suppose that every arc in F is critical for k-connectivity
of G. Let d = max

v∈V
|δ+F (v)| ≥ 4, let u ∈ V with |δ+F (u)| = d and let e = ut ∈ δ+F (u).

Suppose that for every v ∈ V with |δ+F (v)| ≤ d − 2 the graph G \ {e} ∪ {vt} is not
k-connected. Then d(d+ p− k − 2) ≤ 3p− k + 2.

Proof. Since every arc in F is critical for k-connectivity of G, F has no alternating
cycle, and thus F is a forest in the corresponding bipartite graph, by Mader’s Critical
Cycle Theorem for digraphs. Consider the graph G \ {e} and the biset family

F = {Ŝ ∈ V : u ∈ S, t ∈ V \ S+, |Γ(Ŝ)| = k − 1, δ+E∪F (Ŝ) = {e}} .
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It is known that F is a ring biset family, so F has a unique inclusion minimal
member Ŝ, and that for every v ∈ S the graph G \ {ut} ∪ {vt} is k-connected. Thus
|δ+F (v)| ≥ d− 1 for every v ∈ S, implying that |δ+E∪F (v)| ≥ p+ d− 1 for every v ∈ S.

Let K = Γ(Ŝ), so |K| = k− 1. Let I be the set of arcs in F with tail in S. Every
edge in I \ {e} has its head in S ∪K. In G, every v ∈ S \ {u} has at least p+ d− 1
neighbors in (S\{v})∪K, implying (|S|−1)+(k−1) ≥ p+d−1, so d−k+p+1 ≤ |S|.
Since I is an arc set without alternating cycle on a set S ∪K ∪ {t} of |S|+ k nodes,
|I| ≤ 2(|S|+k)−1. On the other hand, (d−1)|S| ≤

∑
v∈S |δ

+
I (v)| = |I| Summarizing,

we have the following:

d− k + p+ 1 ≤ |S|, (6.4)

|I| ≤ 2(|S|+ k)− 1, (6.5)

|I| ≥ (d− 1)|S|. (6.6)

From (6.5) and (6.6) we get (d−1)|S| ≤ 2(|S|+k)−1 so |S|(d−3) ≤ 2k−1. Combining
with (6.4) we get

d− k + p+ 1 ≤ |S| ≤ 2k − 1

d− 3
.

Multiplying by d− 3 and rearranging terms we obtain d(d+ p− k − 2) ≤ 3p− k + 2,
as claimed.

Corollary 6.5. Let G = (V,E ∪ F ) be a simple k-connected digraph such
that minv∈V |δ−E (v)| ≥ k − 1 and minv∈V |δ+E(v)| ≥ k − 1. Then there exists a poly-
nomial time algorithm that finds a set F ′ of arcs on V with |F ′| ≤ |F | such that
G′ = (V,E ∪ F ′) is k-connected and such that |δ+F ′(v)| and |δ−F ′(v)| are both at most
max

{
3, 1.5 +

√
2k + 1.25

}
for all v ∈ V .

Proof. Let u ∈ V be a node that maximizes |δ+F (u)|. Lemma 6.4 with p = k − 1
implies that if |δ+F (u)| is larger than the required value, then we can replace an edge
ut ∈ δ+F (u) by another edge vt such that |δ+F (v)| is at most |δ+F (u)| − 2, keeping
the graph being k-connected. By repeating this replacement, we can obtain F ′′ that
satisfies the conditions on connectivity and out-degree. Notice that |δ−F ′′(v)| = |δ−F (v)|
for all v ∈ V . Similarly we can decrease the in-degree of a node in V if it is larger
than the required value, by applying Lemma 6.4 to the graph obtained by reversing
the directions of all arcs. This gives the required edge set F ′.

The directed part of Theorem 1.3 follows from Lemma 6.1, Corollary 6.5, and our
ability to find in polynomial time an edge set F with |F | ≤ 2k − 1 at Step 3 of the
algorithm.

7. Proof of Theorem 1.4. Define a biset function fk : V → Z as

fk(Ŝ) =

{
k − |Γ(Ŝ)| if S 6= ∅ and S+ 6= V

0 otherwise.

By the node-connectivity version of Menger’s Theorem, an undirected graph (V, F )
is k-connected if and only if |δF (Ŝ)| ≥ fk(Ŝ) for each Ŝ ∈ V. Now suppose that our
goal is to augment a given graph J by a minimum-cost edge set F such that J ∪F is
k-connected. A natural LP relaxation for this problem is as follows (see [12]).

τ∗ = min

{∑
e∈E

c(e)x(e) | x(δE(Ŝ)) ≥ fJ(Ŝ), 0 ≤ x(e) ≤ 1

}
(7.1)
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where fJ(Ŝ) = fk(Ŝ) − |δJ(Ŝ)| is the residual biset function of fk. We will denote
SJ = {Ŝ | fJ(Ŝ) > 0}. Recall also that we denote γ = maxf(Ŝ)>0 |Γ(Ŝ)|, and note
that γ ≤ k − 1 for f = fJ . In what follows, we assume that k ≥ 2.

Two bisets X̂, Ŷ cross if X∩Y 6= ∅ and X+∪Y + 6= V , and posi-cross if X\Y + 6= ∅
and Y \ X+ 6= ∅. A biset function f is crossing supermodular if any X̂, Ŷ ∈ V
that cross satisfy the supermodular inequality (2.1). f is symmetric if f(S, S+) =
f(V \ S+, V \ S) for any biset Ŝ = (S, S+) ∈ V. It is known that the function fJ is
crossing supermodular and symmetric for any edge set J .

A biset function f is positively skew supermodular if any X̂, Ŷ with f(X̂), f(Ŷ ) > 0
satisfy the supermodular inequality (2.1) or the posimodular inequality (2.2). Note
that we add the prefix “positively” if we enforce the requirement only when the two
participating bisets obey f(X̂), f(Ŷ ) > 0. However, it is straightforward to verify that
the 2-approximation algorithm of Fleischer, Jain and Williamson [11] for f -Connected
Subgraph, as well as our algorithm for Degree Bounded f -Connected Subgraph in The-
orem 2.2, apply for positively skew supermodular biset functions as well.

A biset family F is independence-free if any X̂, Ŷ ∈ F cross or posi-cross. We
say that a biset function f is independence-free if the family {Ŝ ∈ V | f(Ŝ) > 0}
is independence free, and that a graph J is independence-free if the biset function
fJ is independence free (namely, if the family SJ is independence free). It was ob-
served by Jackson and Jordán [18] that if f is crossing supermodular, symmetric,
and independence-free, then the biset function defined by f ′(Ŝ) = max{f(Ŝ), 0} is
positively skew supermodular. Clearly, a graph (V, F ) is f -connected if and only if it
is f ′-connected. Hence in this case we can apply the iterative rounding algorithm of
[11] to compute an edge set F ⊆ E with c(F ) ≤ 2τ∗ such that J ∪ F is k-connected.
The idea of the algorithm of Cheriyan and Vegh [7] is to find a “cheap” graph J such
that fJ is independence free. More precisely, the algorithm is based on the following
two statements.

Lemma 7.1 ([24]). Let J ′ be an undirected graph such that J ′ is k-outconnected
from some node s, let R be the set of neighbors of s in J ′, and let J = J ′ \ {s}. Then
S ∩R 6= ∅ for any Ŝ ∈ SJ .

Lemma 7.2 ([7]). Let J ′ be an undirected graph such that J ′ is k-outconnected
from some node s, let R be the set of neighbors of s, and let J = J ′ \ {s}. Let
U =

⋃
{S | Ŝ ∈ SJ , |S| ≤ k − 1}. Then |U | ≤ |R|k2(k − 1). Furthermore, if

|V | ≥ |U |+ k, then there exists a polynomial time algorithm that given an edge set E
on V with costs returns one of the following:

(i) An edge set F ⊆ E with c(F ) ≤ 2τ∗ such that J ∪ F is k-connected.
(ii) The set U .

Frank and Tardos [15] gave a polynomial-time algorithm for computing a sub-
graph that is spanning k-outconnected from a root node in a directed graph. This
implies a 2-approximation algorithm for the same problem in undirected graphs [24].
Furthermore, if Procedure External k-Out-connectivity from the beginning of
Section 6 uses this 2-approximation algorithm, then it computes a subgraph of cost
at most 2τ∗.

The algorithm of Cheriyan and Vegh has four steps. At every step, a certain edge
set of cost at most 2τ∗ is computed. If the algorithm terminates at Step 2, then it
returns the union of the edge-sets computed at Steps 1 and 2, of overall cost at most
4τ∗. Else, the algorithm returns the union of the edge-sets computed at Steps 1,3,
and 4, of overall cost at most 6τ∗.
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Algorithm of Cheriyan and Vegh
Step 1: Compute a subgraph JCV of G by applying Procedure External k-

Out-connectivity for some R ⊆ V with |R| = k.
Step 2: Apply the algorithm from Lemma 7.2. If the algorithm return an edge

set F as in Lemma 7.2(i) then return JCV ∪ F and STOP.
Step 3: If the algorithm from Lemma 7.2 return UCV , then apply Procedure

External k-Out-connectivity for some R ⊆ V \ UCV and add the
computed edge set to JCV .

Step 4: The graph JCV is independence free, by Lemma 7.1. Apply the iterative
rounding algorithm of [11] to compute an edge set F ⊆ E such that
JCV ∪ F is k-connected.

We prove the following.
Lemma 7.3. Let J ′ be an undirected graph such that J ′ is k-outconnected from

some node s with |δJ′(s)| = k and let J = J ′ \ {s}. Let U ′ =
⋃
{S : Ŝ ∈ SJ′ , |S| ≤ p}

and U =
⋃
{S : Ŝ ∈ SJ , |S| ≤ p}. Then |U ′| ≤ pk(k − 1.5) and |U | ≤ 2pk(k − 0.5). In

particular, for p = k − 1,

|U ′|+ k ≤ k(k − 1)(k − 1.5) + k and |U |+ k ≤ 2k(k − 1)(k − 0.5) + k .

Lemma 7.3 will be proved later. Now we use it to finish the proof of Theorem 1.4.
Let us consider the k-Connected Subgraph problem, without degree bounds. In the

case of undirected graphs, Auletta et al. [2] gave a procedure for computing a spanning
subgraph J ′ of G such that J ′ is k-outconnected from some node r, |δJ′(r)| = k, and
c(J ′) ≤ 2τ∗ (this procedure does not apply in the degree bounded setting, if we care
about the cost). We apply this procedure at Step 1, instead of the External k-
Out-connectivity procedure to finally obtain a subgraph J and a set U (instead
of JCV and UCV respectively). By Lemma 7.3, |U ′| + k ≤ k(k − 1)(k − 1.5) + k for
p = k − 1. We apply Steps 2,3,4 with J ′ and U ′ instead of JCV and UCV , achieving
the same performance for |V | ≥ k(k − 1)(k − 1.5) + k.

Now let us consider the degree bounded setting. At Steps 1,3 we apply Procedure
External k-Out-connectivity with degree bounds b′(v) = b(v) + 1 if v ∈ R
and b′(v) = b(v) otherwise, using our algorithm for undirected Degree Bounded k-
Out-connected Subgraph. At Steps 2,4 we use our algorithm for Degree Bounded f -
Connected Subgraph with positively skew supermodular f . If |V | ≥ |U | + k, then
following [7], we can design a polynomial time algorithm that either returns the set
U , or an edge set F ⊆ E such that J ∪ F is k-connected, within the same ratio
as our algorithm for Degree Bounded f -Connected Subgraph with skew supermodular
f (with γ = k − 1). Summarizing, we have the following corollary, that combined
with Theorem 1.1 and Theorem 1.2 (the version with positively skew supermodular
function f), concludes the proof of Theorem 1.4.

Corollary 7.4. Suppose that for undirected graphs Degree Bounded k-Out-
connected Subgraph admits ratio (α, β(b(v))) and Degree Bounded f -Connected Sub-
graph with positively skew supermodular f admits ratio (α′, β′(b(v))). Then for |V | ≥
2k(k − 1)(k − 0.5) + k Degree Bounded k-Connected Subgraph admits ratio (2α +
α′, 2β(b(v)) + β′(b(v))), with the correspondence γ = k − 1.

In the rest of this section we prove Lemma 7.3. Two bisets X̂, Ŷ are strongly
disjoint if X̂ \ Ŷ = X̂ or Ŷ \ X̂ = Ŷ (note that this is equivalent to X̂ \ Ŷ = X̂ and
Ŷ \ X̂ = Ŷ ; in particular, X ⊆ V \ Y + and Y ⊆ V \X+). Given a biset family F let
νF denote the maximum number of pairwise strongly disjoint bisets in F .
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Let us say that a biset family F is weakly posi-uncrossable if for any X̂, Ŷ ∈ F
with X \ Y +, Y \ X+ 6= ∅, one of the bisets X̂ \ Ŷ , Ŷ \ X̂ is in F . If f is crossing
supermodular and symmetric then the biset family F = {Ŝ | f(Ŝ) > 0} is weakly
posi-uncrossable. This is because any X̂, Ŷ ∈ F with X \ Y +, Y \ X+ 6= ∅ satisfy
f(X̂ \ Ŷ ) + f(Ŷ \ X̂) ≥ f(V \ X+, V \ X) + f(Y ) = f(X̂) + f(Ŷ ) > 0, and hence
f(X̂ \ Ŷ ) > 0 or f(Ŷ \ X̂) > 0 holds.

Lemma 7.5. Let F be a weakly posi-uncrossable biset family. Denote p =
maxŜ∈F |S| and γ = maxŜ∈F |Γ(Ŝ)|. Then

∣∣⋃
Ŝ∈F S

∣∣ ≤ p(2γ + 1)νF .

Proof. Let F ′ = {Ŝ1, Ŝ2, . . . , Ŝ`} be a minimum size sub-family of F such that⋃`
i=1 Si =

⋃
Ŝ∈F S. We prove that |F ′| ≤ (2γ + 1)νF . For every Ŝi ∈ F ′ there is

vi ∈ Si such that vi /∈ Sj for every j 6= i. Among all bisets in F contained in Ŝi
for which the inner part contains vi, let Ĉi be an inclusion minimal one. Since F is
weakly posi-uncrossable, the minimality of Ĉi implies that one of the following must
hold for any distinct Ĉi, Ĉj :

• vi ∈ Γ(Ĉj) or vj ∈ Γ(Ĉi);

• Ĉi = Ĉi \ Ĉj or Ĉj = Ĉj \ Ĉi, namely, Ĉi, Ĉj are strongly disjoint.

Construct an auxiliary directed graph J on node set C = {Ĉ1, Ĉ2, . . . , Ĉ`}. Add an
arc ĈiĈj if vi ∈ Γ(Ĉj). The in-degree in J of a node Ĉi is at most |Γ(Ĉi)| ≤ γ. This
implies that every subgraph of the underlying graph of J has a node of degree ≤ 2γ.
A graph is d-degenerate if every subgraph of it has a node of degree ≤ d. It is known
that any d-degenerate graph is (d + 1)-colorable. Hence J is (2γ + 1)-colorable, so
its node set can be partitioned into 2γ + 1 independent sets. The members of each
independent set are pairwise strongly disjoint, hence their number is at most νC .
Consequently, ` ≤ (2γ + 1)νC ≤ (2γ + 1)νF , as claimed.

The following version of Lemma 7.1 is proved in [2]; we provide a proof-sketch for
completeness of exposition.

Lemma 7.6. Let J ′ be an undirected graph such that J ′ is k-outconnected from
some node s and let R be the set of neighbors of s in J ′. Then s ∈ Γ(Ŝ) and |S∩R| ≥ 2
for any Ŝ ∈ SJ′ . Hence νSJ′ ≤ b|R|/2c.

Proof. Let Ŝ ∈ SJ′ . If s /∈ Γ(Ŝ) then s ∈ S or s ∈ V \ S+. Since S 6= ∅ and S+ 6=
V , and since J ′ is k-outconnected from s, we easily obtain a contradiction to Menger’s
Theorem. We prove that |S ∩R| ≥ 2. Let v ∈ S and let ` = |δJ′(Ŝ)|+ |Γ(Ŝ)| ≤ k− 1.
Consider a set of k internally disjoint paths from s to v and the set C = δJ′(Ŝ)∪Γ(Ŝ).
At most |S ∩ R| of these paths may not contain a member in C. This implies that
every one of the other at least k−|S∩R| of these paths must contain each at least one
element from C \{s}. Hence `−1 ≥ k−|S∩R|. This implies |S∩R| ≥ k−(`−1) ≥ 2.

Now let us get back to the proof of Lemma 7.3. Let SpJ = {Ŝ : Ŝ ∈ SJ , |S| ≤ p}.
Since SJ′ ,SJ are weakly posi-uncrossable, so are SpJ′ ,S

p
J . By Lemmas 7.6 and 7.1,

νSp
J′
≤ bk2 c and νSpJ ≤ k. Furthermore, in the setting of Lemma 7.5 we may assume

that γ ≤ k − 2 for SpJ′ , since by Lemma 7.6 s ∈ Γ(Ŝ) for any Ŝ ∈ SJ′ , so we can
apply Lemma 7.5 after removing s from the boundary of every biset in SpJ′ . Hence by
Lemma 7.5 we have

|U ′| ≤ p(2(k − 2) + 1)νSp
J′
≤ p(2k − 3)bk/2c ≤ pk(k − 1.5),

|U | ≤ p(2(k − 1) + 1)νSpJ ≤ p(2k − 1)k = 2pk(k − 0.5).

This concludes the proof of Lemma 7.3, and thus also the proof of Theorem 1.4
is complete.
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8. Proof of Theorem 1.5. Here we prove Theorem 1.5, stating that Surviv-
able Network on undirected graphs admits the following approximation ratios for any
integer α ≥ 1.

(i) O(k3 log |T |)·(α, αb(v)+k/α) for Degree Bounded Node-Connectivity Survivable
Network.

(ii) O(k log k) · (α, αb(v) + k/α) for Degree Bounded Rooted Survivable Network.
(iii) 1

εO(k log2 k) · (α, αb(v) + k/α) for Degree Bounded Subset k-Connected Sub-
graph with k ≤ (1− ε)|T | and 0 < ε < 1.

Part (i) follows from Theorem 1.2 and the decomposition of Node-Connectivity
Survivable Network into O(k3 log |T |) instances of Element-Connectivity Survivable Net-
work due to Chuzhoy and Khanna [8].

For proving (ii), we need to explain the algorithm of [33] for Rooted Survivable
Network without degree-bounds. Augmenting version denotes instances of the problem
in which G contains a subgraph J of zero edge cost such that κ(s, v) ≥ r(s, v)− 1 for
every v ∈ T . In [33] it is shown that the augmentation version can be decomposed
into O(k) instances of Degree Bounded f -Connected Subgraph with skew supermodular
f . The algorithm for the general version has k iterations. At iteration `, one adds
to J an edge set that increases the connectivity by one for each node v such that
κ(s, v) = r(s, v)−k+`−1. After iteration ` we have κ(s, v) ≥ r(s, v)−k+`, hence after
k iterations the solution becomes feasible. In [33] it is shown that if the augmentation
version admits an algorithm that computes a solution of cost at most α times the
optimal value of the corresponding biset LP relaxation, then the general version admits
ratioO(α log k). This is because if x is a feasible solution to LP relaxation derived from
an instance of Rooted Survivable Network, then x

k−`+1 is feasible to the LP relaxation
derived from the augmentation version. For the case with degree-bounds, we act in
the same way. When we solve an augmentation version instance, the degree-bounds

b′ is defined by b′(v) = d b(v)
k−`+1e for v ∈ B. Then we can claim that if there exists an

(α, β(b(v)))-approximation algorithm for Degree Bounded f -Connected Subgraph with
skew supermodular f , then Degree Bounded Rooted Survivable Network admits ratio
O(k log k) · (α, β(b(v))). This and Theorem 2.2 prove (ii).

We prove (iii). In the augmentation version of Subset k-Connected Subgraph, the
goal is to increase the connectivity between the terminals from k − 1 to k, namely,
G contains a subgraph J of zero edge cost such that κ(u, v) ≥ k − 1 for all u, v ∈ T .
We use a result of [34] that the augmentation version of Subset k-Connected Subgraph
with k ≤ (1− ε)|T | is decomposed into 1

εO(log k) instances of augmentation versions
of Rooted Survivable Network with r(s, v) = k for all v ∈ T . To solve the general
version of Subset k-Connected Subgraph, we repeatedly solve k augmentation versions,
at iteration ` increasing the connectivity between the nodes in T from ` − 1 to `.
As in the rooted case, if x is a feasible solution to LP relaxation derived from an
instance of Subset k-Connected Subgraph, then x

k−`+1 is feasible to the LP relaxation
derived from the augmentation version. Hence if the augmentation version admits an
algorithm that computes a solution of cost at most α times the optimal value of the
corresponding biset LP relaxation, then the general version admits ratio O(α log k).
This extends to the degree bounded setting, if at iteration ` we scale the degree bounds

to b′(v) = d b(v)
k−`+1e for each v ∈ B. Then we can claim that if the augmentation

version of Degree Bounded Rooted Survivable Network admits ratio (α, β(b(v))) then
Degree Bounded Subset k-Connected Subgraph admits ratio 1

εO(log2 k) · (α, β(b(v))).
By [33] the augmentation version of Rooted Survivable Network can be decomposed
into O(k) instances of f -Connected Subgraph with skew supermodular f , and this also
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extends to the degree bounded setting. Overall, we obtain that Degree Bounded f -
Connected Subgraph with skew supermodular f admits ratio (α, β(b(v))) then Degree
Bounded Subset k-Connected Subgraph admits ratio 1

εO(k log2 k) · (α, β(b(v))). This
and Theorem 2.2 prove (iii).

Part (iii) does not mention the case k > (1 − ε)|T |. In this case, compute a
minimum cost set of k internally disjoint (u, v)-paths for each pair of u, v ∈ T , and
define a solution as the union of these paths. Note that the k internally disjoint
(u, v)-paths can be computed by a minimum cost flow algorithms. This solution has
the edge cost at most O(k2) times the optimal, and the degree of each node is at most
O(k2) because |T | = O(k).

9. Conclusion. We have presented iterative rounding algorithms and decompo-
sition results for various Degree Bounded Survivable Network problems. We introduced
several novel ideas in the field, which may be applicable also to Node-Connectivity Sur-
vivable Network problems without degree bounds. We believe that this is an important
future work.
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