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Abstract

Let G be a simple digraph. The dicycle packing number of G, denoted νc(G), is the maximum

size of a set of arc-disjoint directed cycles in G. Let G be a digraph with a nonnegative arc-

weight function w. A function ψ from the set C of directed cycles in G to R+ is a fractional

dicycle packing of G if
∑

e∈C∈C
ψ(C) ≤ w(e) for each e ∈ E(G). The fractional dicycle packing

number, denoted ν∗c (G,w), is the maximum value of
∑

C∈C
ψ(C) taken over all fractional dicycle

packings ψ. In case w ≡ 1 we denote the latter parameter by ν∗c (G).

Our main result is that ν∗c (G) − νc(G) = o(n2) where n = |V (G)|. Our proof is algorithmic

and generates a set of arc-disjoint directed cycles whose size is at least νc(G) − o(n2) in ran-

domized polynomial time. Since computing νc(G) is an NP-Hard problem, and since almost all

digraphs have νc(G) = Θ(n2) our result is a FPTAS for computing νc(G) for almost all digraphs.

The latter result uses as its main lemma a much more general result. Let F be any fixed

family of oriented graphs. For an oriented graph G, let νF(G) denote the maximum number of

arc-disjoint copies of elements of F that can be found in G, and let ν∗
F

(G) denote the fractional

relaxation. Then, ν∗
F

(G) − νF(G) = o(n2). This lemma uses the recently discovered directed

regularity lemma as its main tool.

It is well known that ν∗c (G,w) can be computed in polynomial time by considering the dual

problem. We present a polynomial algorithm that finds an optimal fractional dicycle packing

ψ yielding ν∗c (G,w). Our algorithm consists of a solution to a simple linear program and some

minor modifications, and avoids using the ellipsoid method. In fact, the algorithm shows that

a maximum fractional dicycle packing yielding ν∗c (G,w) with at most O(n2) dicycles receiving

nonzero weight can be found in polynomial time.

1 Introduction

All graphs and digraphs considered here are finite and have no loops, parallel arcs or isolated

vertices. For the standard terminology used the reader is referred to [5]. We use the terms digraph

and dicycle to refer to a directed graph and a directed cycle, respectively.
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We consider the following fundamental problem in algorithmic graph-theory. Given a digraphG,

how many arc-disjoint cycles can be packed into G? Define the dicycle packing number of G, denoted

νc(G), to be the maximum size of a set of arc-disjoint dicycles in G. We also consider the fractional

relaxation of this problem. Let R+ denote the set of nonnegative reals. A fractional dicycle packing

of G is a function ψ from the set C of dicycles in G to R+, satisfying
∑

e∈C∈C ψ(C) ≤ 1 for each

e ∈ E(G). Letting |ψ| =
∑

C∈C ψ(C), the fractional dicycle packing number, denoted ν∗c (G), is

defined to be the maximum of |ψ| taken over all fractional dicycle packings ψ. Since a dicycle

packing is also a fractional dicycle packing, we always have ν ∗c (G) ≥ νc(G). The notion of a

fractional dicycle packing can be extended to digraphs with nonnegative arc weights. In this case

we require that
∑

e∈C∈C ψ(C) ≤ w(e) for each e ∈ E(G) where w(e) is the weight of e. We denote

by ν∗c (G,w) the corresponding fractional dicycle packing number where w : E → R+ is the weight

function.

Problems concerning packing arc-disjoint or vertex-disjoint dicycles in digraphs have been stud-

ied extensively (see, e.g., [4, 14]). It is well known that computing νc(G) (and hence finding a

maximum dicycle packing) is an NP-Hard problem. Even the very special case of deciding whether

a digraph has a triangle decomposition is known to be NP-Complete (see, e.g. [6] for a more general

theorem on the NP-Completeness of such decomposition problems). Currently, the best approxi-

mation algorithm for this problem [12] has an approximation ratio of O(n1/2) which is also an upper

bound for the integrality gap. Thus, it is interesting to find out when νc(G) and ν∗c (G) are “close”

as this immediately yields an efficient approximation algorithm for this NP-Hard problem. Our

main result shows that the two parameters differ by at most o(n2), thus giving an approximation

algorithm with an o(n2) additive error term.

Theorem 1.1 If G is an n-vertex digraph then ν∗c (G)−νc(G) = o(n2) and a set of at least νc(G)−
o(n2) arc-disjoint dicycles can be generated in randomized polynomial time. There are n-vertex

graphs G for which ν∗c (G) − νc(G) = Ω(n3/2).

The o(n2) additive error term is only interesting if the graph G is dense and νc(G) = Θ(n2).

This, however, is the case for almost all digraphs, as it is known (and easy) that the directed

random graph G(n, p) has νc(G) = Θ(n2) for any constant p, 0 < p < 1 (in this model each of the

n(n− 1) arcs has probability p of being selected). There are also many other explicit constructions

of digraphs with νc(G) = Θ(n2) which do not resemble a typical element of G(n, p). The second

part of Theorem 1.1 shows that the o(n2) error term in Theorem 1.1 cannot be replaced with

o(n1.5).

The first part of Theorem 1.1 uses as its main lemma a much more general result concerning

packings of oriented graphs. Recall that an oriented graph is a directed graph without 2-cycles. Let

F be any given (finite or infinite) family of oriented graphs. For an oriented graph G, let νF (G)

denote the maximum number of arc-disjoint copies of elements of F that can be found in G, and

let ν∗F (G) denote the respective fractional relaxation. We prove the following.
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Theorem 1.2 For any given family of oriented graphs, if G is an n-vertex oriented graph then

ν∗F (G) − νF (G) = o(n2). Furthermore, a set of at least νF (G) − o(n2) arc-disjoint elements of F
can be generated in randomized polynomial time.

The first part of Theorem 1.1 is a consequence of Theorem 1.2 by considering the family F of all

directed cycles of length at least 3. An initial preprocessing step allows us to get rid of the 2-cycles

of G.

We note that an undirected version of Theorem 1.2 has been recently proved by the second

author [17] extending an earlier result of Haxell and Rödl [10] dealing with single element families.

The proof of Theorem 1.2 makes use of the recently discovered directed regularity lemma which has

been proved by Alon and Shapira in [2], and which enables us to overcome several difficulties that

do not occur in the undirected case.

It is well known that ν∗c (G,w) can be computed in polynomial time by considering the dual

problem whose solution is known to be computable in polynomial time [13]. This follows from

the strong duality theorem. It also follows from the same method used in [11] that, using the

ellipsoid method and a separation oracle which exists for the dual problem, an optimal fractional

dicycle packing ψ yielding ν∗c (G,w) can also be generated in polynomial time. However, we present

a much simpler algorithm which avoids using the ellipsoid method and merely consists of solving

some related simple linear program and slightly modifying the solution. In particular, we prove the

following result.

Theorem 1.3 If G is an n-vertex digraph associated with a nonnegative arc-weight function w,

then a maximum fractional dicycle packing yielding ν∗c (G,w) can be computed in polynomial time.

Furthermore, a maximum fractional dicycle packing with at most O(n2) (resp. O(n3)) dicycles

receiving nonzero weight can be found in (resp. strongly) polynomial time.

In the next two sections we prove our results.

2 Proofs of Theorem 1.1 and Theorem 1.2

2.1 Reducing the first part of Theorem 1.1 to a special case of Theorem 1.2

The following simple lemma shows that the problem of finding a maximum dicycle packing in a

digraph G is equivalent to the problem of finding a maximum dicycle packing in the spanning

subgraph G′ of G obtained from G by deleting all 2-cycles. In particular, it shows that if ν ∗
c (G

′)−
νc(G

′) = o(n2) then ν∗c (G) − νc(G) = o(n2).

Lemma 2.1 If G is a digraph then there is always a maximum dicycle packing of G that contains

all the 2-cycles.
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Proof: Assume that L is the set of dicycles of a maximal dicycle packing of G, containing the

maximum possible number of 2-cycles. We claim that L contains all 2-cycles. Assume that some

2-cycle {(u, v), (v, u)} is missing from L. Clearly, some C ∈ L contains one of (u, v) or (v, u).

Assume (u, v) ∈ C. Clearly, C is not a 2-cycle. If no element of L contains (v, u) we can replace C

with the 2-cycle and obtain a maximum dicycle packing with more 2-cycles than there are in L, a

contradiction. If some C ′ ∈ L contains (v, u) we can replace C and C ′ with the 2-cycle and with a

dicycle in the closed walk (C − (u, v)) ∪ (C ′ − (v, u)) and obtain a maximum dicycle packing with

more 2-cycles than there are in L, a contradiction.

Notice that Lemma 2.1 together with Theorem 1.2 applied to the family of all directed cycles

of length at least 3 yields the first part of Theorem 1.1.

2.2 Tools used in the proof of Theorem 1.2

An important tool used in the proof of Theorem 1.2 is the following directed version of Szemerédi’s

regularity lemma. The proof, which is a modified version of the proof of the standard regularity

lemma given in [15], can be found in [2]. We now give the definitions necessary in order to state

the directed regularity lemma.

Let G = (V,E) be a digraph, and let A and B be two disjoint subsets of V (G). If A and B are

non-empty and e(A,B) is the number of arcs from A to B, the density of arcs from A to B is

d(A,B) =
e(A,B)

|A||B| .

For γ > 0 the pair (A,B) is called γ-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > γ|A|
and |Y | > γ|B| we have

|d(X,Y ) − d(A,B)| < γ |d(Y,X) − d(B,A)| < γ.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vm whose

sizes are as equal as possible. An equitable partition of the set of vertices V of a digraph G into

the classes V1, . . . , Vm is called γ-regular if |Vi| ≤ γ|V | for every i and all but at most γ
(m

2

)

of the

pairs (Vi, Vj) are γ-regular. The directed regularity lemma states the following:

Lemma 2.2 For every γ > 0, there is an integer M(γ) > 0 such that every digraph G with n > M

vertices has a γ-regular partition of the vertex set into m classes, for some 1/γ ≤ m ≤M .

Let H0 be a fixed oriented graph with the vertices {1, . . . , k}, k ≥ 3. Let W be a k-partite

oriented graph with vertex classes V1, . . . , Vk. A subgraph J of W with ordered vertex set v1, . . . , vk

is partite-isomorphic to H0 if vi ∈ Vi and the map vi → i is an isomorphism from J to H0. The

following lemma is almost identical to the proof of Lemma 15 in [10] and hence the proof is omitted.
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Lemma 2.3 Let δ and ζ be positive reals. There exist γ = γ(δ, ζ, k) and T = T (δ, ζ, k) such

that the following holds. Let W be a k-partite oriented graph with vertex classes V1, . . . , Vk and

|Vi| = t > T for i = 1, . . . , k. Furthermore, for each arc (i, j) ∈ E(H0), (Vi, Vj) is a γ-regular

pair with density d(i, j) ≥ δ and for each arc (i, j) /∈ E(H0), E(Vi, Vj) = ∅. Then, there exists a

spanning subgraph W ′ of W , consisting of at least (1− ζ)|E(W )| arcs such that the following holds.

For an arc e ∈ E(W ′), let c(e) denote the number of subgraphs of W ′ that are partite isomorphic

to H0 and that contain e. Then, for all e ∈ E(W ′), if e ∈ E(Vi, Vj) then

∣

∣

∣

∣

∣

c(e) − tk−2

∏

(s,p)∈E(H0)
d(s, p)

d(i, j)

∣

∣

∣

∣

∣

< ζtk−2.

Finally, we need to state the seminal result of Frankl and Rödl [7] on near perfect coverings and

matchings of uniform hypergraphs. Recall that if x, y are two vertices of a hypergraph then deg(x)

denotes the degree of x and deg(x, y) denotes the number of hyperedges that contain both x and y

(their co-degree). We use the stronger version of the Frankl and Rödl Theorem due to Pippenger

(see, e.g., [8]).

Lemma 2.4 For an integer r ≥ 2 and a real β > 0 there exists a real µ > 0 so that: If the

r-uniform hypergraph L on q vertices has the following properties for some d:

(i) (1 − µ)d < deg(x) < (1 + µ)d holds for all vertices,

(ii) deg(x, y) < µd for all distinct x and y,

then L has a matching of size at least (q/r)(1 − β).

2.3 Proof of Theorem 1.2

Let F be a family of oriented graphs, and let ε > 0. To avoid the trivial case we assume that each

element of F has at least three vertices. We shall prove there exists N = N(F , ε) such that for all

n > N , if G is an n-vertex oriented graph then ν∗F (G) − νF (G) < εn2.

The idea of the proof is as follows. Given an n-vertex graph G and a maximum fractional

F -packing ψ of G, we apply Lemma 2.2 to G and define a fractional F -packing ψ ′ on the resulting

m-vertex cluster graph of the partition (the graph whose vertices are the vertex classes of the

partition and whose arcs connect appropriately defined dense pairs of vertex classes). We show

that |ψ′| is very close to |ψ|m2/n2. We then show how each fractional copy H of ψ ′ can be

translated back into an appropriate number of (integral) edge-disjoint copies of H in G, such that

the total number of copies constructed in G in this way is very close to |ψ ′|n2/m2, and hence to

|ψ|.
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Let k∞ be the maximal order of a graph in F (possibly k∞ = ∞). Let k0 = min{k∞, d20/εe}.
Let δ = β = ε/4. For all r = 2, . . . , k0

2, let µr = µ(β, r) be as in Lemma 2.4, and put µ =

min
k2
0
r=2{µr}. Let ζ = µδk0

2
/2. For k = 3, . . . , k0, let γk = γ(δ, ζ, k) and Tk = T (δ, ζ, k) be as in

Lemma 2.3. Let γ = mink0k=3{γk}. Let M = M(γε/(25k0
2)) be as in Lemma 2.2. Finally, we shall

define N to be a sufficiently large constant, depending on the above chosen parameters, and for

which various conditions stated in the proof below hold. Thus, indeed, N = N(F , ε).
Fix an n-vertex oriented graph G with n > N vertices. Fix a fractional F -packing ψ with

|ψ| = ν∗F (G). We may assume that ψ assigns a value to each labeled copy of an element of F simply

by dividing the value of ψ on each nonlabeled copy by the size of the automorphism group of that

element. If ν∗F (G) < εn2 we are done. Hence, we assume ν∗F (G) = αn2 ≥ εn2.

We apply Lemma 2.2 toG and obtain a γ ′-regular partition withm′ parts, where γ ′ = γε/(25k0
2)

and 1/γ′ < m′ < M(γ′). Denote the parts by U1, . . . , Um′ . Notice that the size of each part is

either bn/m′c or dn/m′e. For simplicity we may and will assume that n/m′ is an integer, as this

assumption does not affect the asymptotic nature of our result. For the same reason we may and

will assume that n/(25m′k0
2/ε) is an integer.

We randomly partition each Ui into 25k0
2/ε equal parts of size n/(25m′k0

2/ε) each. All m′

partitions are independent. We now have m = 25m′k0
2/ε refined vertex classes, denoted V1, . . . , Vm.

Suppose Vi ⊂ Us and Vj ⊂ Ut where s 6= t. We claim that if (Us, Ut) is a γ′-regular pair then

(Vi, Vj) is a γ-regular pair. Indeed, if X ⊂ Vi and Y ⊂ Vj have |X|, |Y | > γn/(25m′k0
2/ε)

then |X|, |Y | > γ ′n/m′ and so |d(X,Y ) − d(Us, Ut)| < γ′ and |d(Y,X) − d(Ut, Us)| < γ′. Also

|d(Vi, Vj) − d(Us, Ut)| < γ′ and |d(Vj , Vi) − d(Ut, Us)| < γ′. Thus, |d(X,Y ) − d(Vi, Vj)| < 2γ′ < γ

and |d(Y,X) − d(Vj , Vi)| < 2γ′ < γ.

Let H be a labeled copy of some H0 ∈ F in G. If H has k vertices and k ≤ k0 then the

expectation of the number of pairs of vertices of H that belong to the same vertex class in the

refined partition is clearly at most
(k
2

)

ε/(25k0
2) < ε/50. Thus, the probability that H has two

vertices in the same vertex class is also at most ε/50. We call H good if it has k ≤ k0 vertices

and its k vertices belong to k distinct vertex classes of the refined partition. By the definition of

k0, if H has k > k0 vertices and ψ(H) > 0 then we must have k > 20/ε. Since oriented graphs

with k vertices have at least k/2 arcs, the contribution of graphs with k > k0 vertices to ν∗F (G) is

at most
(n
2

)

/(10/ε) < εn2/20. Hence, if ψ∗∗ is the restriction of ψ to good copies (the bad copies

having ψ∗∗(H) = 0) then the expectation of |ψ∗∗| is at least (α− ε/50 − ε/20)n2. We therefore fix

a partition V1, . . . , Vm for which |ψ∗∗| ≥ (α− 0.07ε)n2.

We say that the set of arcs E(Vi, Vj) is good if (Vi, Vj) is a γ-regular pair and also d(Vi, Vj) ≥ δ.

Notice that it is possible that E(Vi, Vj) is good while E(Vj , Vi) is not good (because of sparseness).

Let G∗ be the spanning subgraph of G consisting of the union of the good sets of arcs (thus, we

discard arcs inside classes, between non regular pairs, between sparse pairs, or one-sided sparse

pairs). Let ψ∗ be the restriction of ψ∗∗ to the labeled copies of elements of F in G∗. We claim that
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ν∗F (G∗) ≥ |ψ∗| > |ψ∗∗| − 1.02δn2 ≥ (α − 0.07ε − 1.02δ)n2 = (α − 1.3δ)n2. Indeed, by considering

the number of discarded arcs we get (using m′ > 1/γ′ and δ >> γ′)

|ψ∗∗| − |ψ∗| ≤ |E(G) −E(G∗)| <

γ′
(

m′

2

)

2n2

m′2
+m′(m′ − 1)(δ + γ′)

n2

m′2
+m′ n

2

m′2
< 1.02δn2.

Let R denote the m-vertex digraph whose vertices are {1, . . . ,m} and (i, j) ∈ E(R) if and only if

E(Vi, Vj) is good. We define a (labeled) fractional dicycle packing ψ ′ of R as follows. Let H be a

labeled copy of some H0 ∈ F in R and assume that the vertices of H are {u1, . . . , uk} where ui

plays the role of vertex i in H0. We define ψ′(H) to be the sum of the values of ψ∗ taken over all

subgraphs of G∗[Vu1 , . . . , Vuk
] which are partite isomorphic to H0, divided by n2/m2. Notice that

by normalizing with n2/m2 we guarantee that ψ′ is a proper fractional F -packing of R and that

ν∗F (R) ≥ |ψ′| = m2|ψ∗|/n2 ≥ m2(α− 1.3δ). Notice also that although R may contain 2-cycles, they

receive no weight in ψ′ as G has no 2-cycles.

We use ψ′ to define a random coloring of the arcs of G∗. Our “colors” are the labeled copies

of elements of F in R. Let d(i, j) denote the density from Vi to Vj and notice that |EG∗(Vi, Vj)| =

d(i, j)n2/m2. Let H be a labeled copy of some H0 ∈ F in R, and assume that H contains the

arc (i, j). Each e ∈ E(Vi, Vj) is chosen to have the “color” H with probability ψ ′(H)/d(i, j). The

choices made by distinct arcs of G∗ are independent. Notice that this random coloring is legal (in

the sense that the sum of probabilities is at most one) since the sum of ψ ′(H) taken over all labeled

copies of elements of F containing (i, j) is at most d(i, j). Notice also that some arcs might stay

uncolored.

Let H be a labeled copy of some H0 ∈ F in R, and assume that ψ′(H) > m1−k0 . Without loss of

generality, assume that the vertices of H are {1, . . . , k} where i ∈ V (H) plays the role of i ∈ V (H0).

Let r denote the number of arcs of H. Notice that r < k2
0. Let WH be the k-partite subgraph of

G∗ with vertex classes V1, . . . , Vk and with the arcs ∪(i,j)∈HE(Vi, Vj). Notice that WH satisfies the

conditions in Lemma 2.3, since t = n/m > Nε/(25k0
2M) > Tk (here we assume N > 25k0

2MTk/ε).

Let W ′
H be the spanning subgraph of WH whose existence is guaranteed in Lemma 2.3. Let XH

denote the spanning subgraph of W ′
H consisting only of the arcs whose color is H. Notice that XH

is a random subgraph of W ′
H . For an arc e ∈ E(XH), let CH(e) denote the set of subgraphs of XH

that contain e and that are partite isomorphic to H0. Put cH(e) = |CH(e)|. The following lemma,

shows that for all e ∈ E(XC), cH(e) can be tightly approximated with high probability.

Lemma 2.5 With probability at least 1 −m3/n, for all e ∈ E(XH ),

∣

∣

∣
cH(e) − tk−2ψ′(H)r−1

∣

∣

∣
< µψ′(H)r−1tk−2. (1)
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Proof: Let C(e) denote the set of subgraphs of W ′
H that contain e and that are partite isomorphic

to H0. Put c(e) = |C(e)|. According to Lemma 2.3, if e ∈ E(Vi, Vj) then

∣

∣

∣

∣

∣

c(e) − tk−2

∏

(s,p)∈E(H0)
d(s, p)

d(i, j)

∣

∣

∣

∣

∣

< ζtk−2. (2)

Fix an arc e ∈ E(XH) belonging to E(Vi, Vj). The probability that an element of C(e) also belongs

to CH(e) is precisely

ρ = ψ′(H)r−1 · d(i, j)
∏

(s,p)∈E(H0)
d(s, p)

.

We say that two distinct elements Y,Z ∈ C(e) are dependent if they share at least one arc other

than e. Consider the dependency graph B whose vertex set is C(e) and the edges connect dependent

pairs. Since two dependent elements share at least three vertices (including the two endpoints of

e), we have ∆(B) = O(tk−3) where ∆(B) is the maximum degree of B. Hence, χ(B) = O(tk−3)

where χ(B) is the chromatic number of B. Put s = χ(B). Let C 1(e), . . . , Cs(e) denote a partition

of C(e) to independent sets. Let Cq
H(e) = Cq(e) ∩ CH(e), cq(e) = |Cq(e)| and cqH(e) = |Cq

H(e)|.
Clearly, c1(e) + · · · + cs(e) = c(e) and c1H(e) + · · · + csH(e) = cH(e). The expectation of cqH(e) is

ρcq(e). Consider some Cq(e) with cq(e) >
√
t. According to a large deviation inequality of Chernoff

(cf. [3] Appendix A), for every η > 0, and in particular for η = µ/8, if n (and hence t and hence

cq(e)) is sufficiently large,

Pr[|cqH(e) − ρcq(e)| > ηρcq(e)] < e
−

2(ηρcq(e))2

cq(e) = e−2η2ρ2cq(e) << t−k−1.

It follows that with probability at least 1 − st−k−1 > 1 − t−3, for all Cq(e) with cq(e) >
√
t,

(1 − η)ρcq(e) ≤ cqH(e) ≤ (1 + η)ρcq(e) holds. Since the sum of cq(e) having cq(e) ≤
√
t is O(tk−2.5)

and since c(e) = Θ(tk−2) we have that this sum is much less than ρηc(e). Thus, together with (2)

and the fact that ρ < ψ′(H)r−1δ−r we have

cH(e) =
s

∑

q=1

cqH(e) ≤ ρ(1 + η)(
s

∑

q=1

cq(e)) + ρηc(e) = ρ(1 + 2η)c(e) ≤ (3)

ρ(1 + 2η)tk−2(ζ +

∏

(s,p)∈E(H0)
d(s, p)

d(i, j)
) = (1 + 2η)tk−2(ψ′(H)r−1 + ζρ) ≤

tk−2ψ′(H)r−1(1 + 2η)(1 + ζδ−r) ≤

tk−2ψ′(H)r−1(1 + µ/4)(1 + µ/2) ≤ (1 + µ)tk−2ψ′(H)r−1.

Similarly,

cH(e) ≥ ρ(1 − η)c(e) − ρηc(e) = ρ(1 − 2η)c(e) ≥ (4)

ρ(1 − 2η)tk−2(

∏

(s,p)∈E(H0)
d(s, p)

d(i, j)
− ζ) = (1 − 2η)tk−2(ψ′(H)r−1 − ζρ) ≥
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tk−2ψ′(H)r−1(1 − 2η)(1 − ζδ−r) ≥
tk−2ψ′(H)r−1(1 − µ/4)(1 − µ/2) ≥ (1 − µ)tk−2ψ′(H)r−1.

Combining (3) and (4) we have that (1) holds for a fixed e ∈ E(XH) with probability at least

1 − t−3. As |E(XH )| < n2 we have that (1) holds for all e ∈ E(XH) with probability at least

1 − n2/t3 = 1 −m3/n.

We also need the following simple lemma that gives a lower bound for the number of arcs of

XH .

Lemma 2.6 With probability at least 1 − 1/n,

|E(XH )| > (1 − 2ζ)r
n2

m2
ψ′(H).

Proof: For (i, j) ∈ E(H0), the expected number of arcs of E(Vi, Vj) that received the color H is

precisely d(i, j) n
2

m2
ψ′(H)
d(i,j) = n2

m2ψ
′(H). Summing over all r arcs of H0, the expected number of arcs of

WH that received the color H is precisely r n
2

m2ψ
′(H). As at most ζ|E(WH)| arcs belong to WH and

do not belong toW ′
H we have that the expectation of |E(XH )| is at least (1−ζ)r n2

m2ψ
′(H). As ζ, r, m

are constants and as ψ′(H) is bounded from below by the constant m1−k0 , we have, by the common

large deviation inequality of Chernoff (cf. [3] Appendix A), that for n > N sufficiently large, the

probability that |E(XH )| deviates from its mean by more than ζr n
2

m2ψ
′(H) is exponentially small

in n. In particular, the lemma follows.

Since R contains at most O(mk0) labeled copies of elements of F with at most k0 vertices, we

have that with probability at least 1 − O(mk0/n) − O(mk0+3/n) > 0 (here we assume again that

N is sufficiently large) all labeled copies H of elements of F in R with ψ ′(H) > m1−k0 satisfy the

statements of Lemma 2.5 and Lemma 2.6. We therefore fix a coloring for which Lemma 2.5 and

Lemma 2.6 hold for all labeled copies H of elements of F in R having ψ ′(H) > m1−k0 .

Let H be a labeled copy of some H0 ∈ F in R with ψ′(H) > m1−k0 , and let r denote the number

of arcs of H. We construct an r-uniform hypergraph LH as follows. The vertices of LH are the arcs

of the corresponding XH from Lemma 2.5. The hyperedges of LH correspond to the arc sets of the

subgraphs of XH that are partite isomorphic to H0. We claim that our hypergraph satisfies the

conditions of Lemma 2.4. Indeed, let q denote he number of vertices of LH . Notice that Lemma

2.6 provides a lower bound for q. Let d = tk−2ψ′(H)r−1. Notice that by Lemma 2.5 all vertices of

LH have their degrees between (1 − µ)d and (1 + µ)d. Also notice that the co-degree of any two

vertices of LH is at most tk−3 as two arcs cannot belong, together, to more than tk−3 subgraphs

of XH that are partite isomorphic to H0. In particular, for N sufficiently large, µd > tk−3. By

Lemma 2.4 we have at least (q/r)(1−β) arc-disjoint copies of H0 in XH . In particular, we have at

least

(1 − β)(1 − 2ζ)
n2

m2
ψ′(H) > (1 − 2β)ψ′(H)

n2

m2

9



such copies. Recall that |ψ′| ≥ m2(α− 1.3δ). Since there are O(mk0) labeled copies H of elements

of F in R with 0 < ψ′(H) ≤ m1−k0 , their total contribution to |ψ′| is O(m). Hence, summing the

last inequality over all H with ψ′(H) > m1−k0 we have at least

(1 − 2β)m2(α− 1.3δ −O(
1

m
))
n2

m2
> n2(α− ε)

arc-disjoint copies of elements of F in G. It follows that νF (G) ≥ n2(α − ε). As ν∗F (G) = αn2,

Theorem 1.2 follows.

The proof of Theorem 1.2 implies a polynomial (in n) time algorithm that produces a set of

n2(α − ε) arc-disjoint elements of F in G with probability at least, say, 0.99. Indeed, Lemma 2.2

can be implemented in o(n3) time using the algorithm of Alon et. al. [1] applied to the directed

regularity lemma. Lemma 2.3 can be implemented using a simple greedy algorithm following the

proof in [10]. Lemma 2.4 has a polynomial running time implementation due to Grable [9]. By

Theorem 1.3, computing ψ and ψ∗∗ can be done in O(n3) time. The other ingredients of the proof,

namely, computing ψ′ and the random coloring are easily implemented in polynomial time.

2.4 A lower bound for the error term in Theorem 1.1

We now prove the second part of Theorem 1.1. We must show that there exists a digraph G for

which ν∗c (G) − νc(G) = Ω(n3/2). Let T be the following Eulerian orientation of K11 with vertex

set {0, . . . , 10}. Each vertex i has an outgoing arc towards i + 2, i + 6, i + 7, i + 8, i + 10 (indices

module 11). It is easy to check that each arc lies on three directed triangles, and that there are 55

directed triangles. Thus, by assigning 1/3 to each triangle we get ν ∗c (T ) = 55/3. Trivially, however,

νc(T ) ≤ b55/3c = 18 = 54/3.

It is well known (by applying the Rödl nibble method or the result from [7]) that for all

sufficiently large n, Kn contains more than, say, n2/111 edge-disjoint copies of K11. Hence, let

G∗ be an n-vertex oriented graph with 55r arcs where r > n2/111 and which consists of a set R∗

of r arc-disjoint copies of T . Consider a directed triangle S in G∗. We say that S is good if it is

contained entirely in some T element of R∗. Notice that a bad directed triangle must have each arc

in a distinct element of R∗. We construct a random spanning subgraph G′ of G∗ by independently

choosing each element of R∗ with probability n−1/2/11. Let R′ ⊂ R∗ denote the random subset

chosen. Clearly, E[|R′|] = rn−1/2/11 > n3/2/1221. The maximum number of arc-disjoint good

directed triangles in G′ is at most 18|R′|. The probability that a bad directed triangle appears in

G′ is precisely n−3/2/113. As there are less than n3 bad directed triangles in G∗, their expected

number in G′ is at most n3/2/1331. It follows that there exists an n-vertex oriented graph G, which

is composed of a set of t arc-disjoint copies of T , where t ≥ n3/2(1/1221 − 1/1331), and with no

bad directed triangle. Clearly, ν∗c (G) = 55t/3. Consider an integral dicycle packing of G. It may

10



contain at most 54t/3 directed triangles. The other cycles must have length at least 4. Thus,

νc(G) ≤ 54.75t/3. It follows that ν∗c (G) − νc(G) ≥ t/12 = Ω(n3/2).

A similar argument shows that for every ε > 0, there exists k = k(ε) such that if T is a

tournament with k vertices and F = {T}, there are oriented graphs G for which ν ∗
F (G)− νF (G) =

Ω(n2−ε). Thus, in general, the o(n2) error term in Theorem 1.2 cannot be improved to o(n2−ε) for

any positive ε.

3 Computing a Fractional Dicycle Packing in Polynomial Time

The main difficulty in proving Theorem 1.3 stems from the fact that the LP-formulation of the

problem might have an exponential number of variables since, in general, the number of dicycles

in a digraph might be exponential in the size of the digraph.

Let ψ be a fractional dicycle packing of a weighted digraph (G,w). Notice that it is sufficient

to specify the values of ψ only for dicycles with ψ(C) > 0. Thus, if C(G) denotes the set of dicycles

in G, let χ(ψ) = {C ∈ C(G) : ψ(C) > 0} denote the characteristic set of ψ. An algorithm for

the maximum dicycle packing problem is polynomial if it runs in time polynomial in the size of

the input digraph (G,w), and delivers a polynomial size set of dicycles C ⊆ C(G) and nonnegative

numbers ψ(C) for C ∈ C, such that by assigning ψ(C) = 0 to all C ∈ C(G)−C we obtain an optimal

fractional dicycle packing of (G,w), namely |ψ| = ν∗c (G,w).

A fractional dicycle arc cover of (G,w) is a function x : E(G) → [0, 1], such that
∑

e∈C x(e) ≥ 1

for every C ∈ C(G). The value of a fractional dicycle arc cover x is |x| =
∑

e∈E(G)w(e)x(e). Let

τ∗c (G,w) denote the value of a minimum fractional dicycle arc cover of (G,w). The minimum

fractional dicycle arc cover problem is a dual to the maximum fractional dicycle packing problem.

For the rest of this section we will assume that G is the complete digraph (the digraph in which

any pair of distinct vertices are connected with arcs in both directions). We may assume this since

if G is not complete, we may add the nonexistent arcs and assign them zero weight. Notice that

ν∗c (G,w) and τ ∗c (G,w) remain intact after this modification.

It was shown in [13] that the minimum fractional dicycle arc cover problem is reduced to

solving a linear program with a polynomial number of constraints. Let Ck(G) denote the set of all

the dicycles in G of length k. The result in [13] shows that in order to solve the fractional dicycle

arc cover problem in a complete digraph, it is sufficient to consider only dicycles of length 2 and 3.

11



Theorem 3.1 ([13],Theorem 4.1) If (G,w) is a complete weighted digraph then

τ∗c (G,w) = min
∑

e∈E(G) w(e)x(e) (5)

s.t.
∑

e∈C x(e) ≥ 1 for all C ∈ C3(G)
∑

e∈C x(e) = 1 for all C ∈ C2(G)

x(e) ≥ 0 for all e ∈ E(G).

Proof of Theorem 1.3: Using Theorem 3.1 we will show that a maximum fractional dicycle

packing with O(n2) (resp. O(n3)) dicycles in its characteristic set, can be found in (resp., strongly)

polynomial time. Consider the dual linear program to (5). By the strong duality theorem:

ν∗c (G,w) = max
∑

C∈C2(G)∪C3(G) ψ(C) (6)

s.t.
∑

e∈C∈C2(G)∪C3(G) ψ(C) ≤ w(e) for all e ∈ E(G)

ψ(C) ≥ 0 for all C ∈ C3(G).

Note that a feasible solution ψ to (6) might not be a fractional dicycle packing, since there might

be a dicycle C ∈ C2(G) for which ψ(C) < 0 holds. A fractional dicycle pseudopacking is a fractional

dicycle packing in which 2-cycles may receive negative values. In particular, a feasible solution of

(6) is a fractional dicycle pseudopacking. We will show a polynomial time iterative procedure that

converts an optimal solution ψ of (6) into a fractional dicycle packing of value |ψ| = ν ∗
c (G,w), and

such that the cardinality of the characteristic set is at most |χ(ψ)|.
For a pair of vertices u, v, let Cuv = Cvu denote the 2-cycle consisting of the two arcs (u, v), (v, u).

For a fractional dicycle pseudopacking ψ, let ∆ψ(u, v) = w(u, v) − ∑

(u,v)∈C ψ(C). Notice that

∆ψ(u, v) ≥ 0 for each (u, v) ∈ E(G). Notice also that if ψ is an optimal solution of (6) then

min{∆ψ(u, v) , ∆ψ(v, u)} = 0. Our algorithm consists of repeated applications of one of the

following two basic operations.

Operation A: Let ψ be a fractional dicycle pseudopacking with |ψ| = ν ∗c (G,w). Suppose that

for s, t ∈ V (G) holds: ψ(Cst) < 0, ∆ψ(t, s) = 0 and ∆ψ(s, t) > 0. Let C1 be a dicycle such that

(t, s) ∈ C1 and ψ(C1) > 0. Notice that C1 must exist. Let δ = min{∆ψ(s, t) , ψ(C1)}. Let ψ̂ be

the same as ψ except for ψ̂(C1) = ψ(C1)− δ and ψ̂(Cst) = ψ(Cst) + δ. Notice that ψ̂ is a fractional

dicycle pseudopacking with |ψ̂| = |ψ| = ν∗c (G,w). Furthermore |χ(ψ̂)| ≤ |χ(ψ)| and if ∆ψ̂(s, t) > 0,

then |χ(ψ̂)| ≤ |χ(ψ)| − 1.

Operation B: Let ψ be a fractional dicycle pseudopacking with |ψ| = ν ∗c (G,w). Suppose that

for u, v ∈ V (G) holds: ψ(Cuv) < 0 and ∆ψ(u, v) = ∆ψ(v, u) = 0. Let C1, C2 be dicycles such

that (u, v) ∈ C1, (v, u) ∈ C2, and let µ = min{ψ(C1) , ψ(C2)} > 0. Notice that C1 and C2 exist.

Let Ĉ be a dicycle in (C1 ∪ C2) − Cuv. Let ψ̂ be the same as ψ except for ψ̂(Ci) = ψ(Ci) − µ

for i = 1, 2, ψ̂(Ĉ) = ψ(Ĉ) + µ, ψ̂(Cuv) = ψ(Cuv) + µ. Notice that ψ̂ is a fractional dicycle

pseudopacking with |ψ̂| = |ψ| = ν∗c (G,w). Furthermore, ∆ψ̂(u, v) = ∆ψ̂(v, u) = 0, |χ(ψ̂)| ≤ |χ(ψ)|,
and |{C ∈ χ(ψ̂) : (u, v) ∈ C or (v, u) ∈ C}| ≤ |{C ∈ χ(ψ) : (u, v) ∈ C or (v, u) ∈ C}| − 1.
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Our algorithm proceeds as follows. We begin with a fractional dicycle pseudopacking ψ which

is an optimal solution of (6). At each stage we apply either Operation A or Operation B. Thus,

at any stage we have a fractional dicycle pseudopacking ψ̂ with |χ(ψ̂)| ≤ |χ(ψ)| and with |ψ̂| =

|ψ| = ν∗c (G,w). At any stage, let S ′ denote the set of dicycles C with ψ̂(C) < 0 and let S denote

the set of cycles with ψ̂(C) > 0. Notice that operations A and B guarantee that S ′ contains

only 2-cycles. In the beginning, S ⊂ C2(G) ∪ C3(G) but Operation B may add longer cycles to S.

Notice that in operations A and B we can increase the weight of a 2-cycle without decreasing the

weight of any other 2-cycle. In the main loop, as long as S ′ 6= ∅, the algorithm chooses Cuv ∈ S ′

and increases ψ̂(Cuv) by min{∆ψ̂(u, v) , ∆ψ̂(v, u)}. In case ∆ψ̂(u, v) = ∆ψ̂(v, u) = 0 holds, the

algorithm iteratively applies Operation B until ψ̂(Cuv) ≥ 0 holds. Otherwise, for (s, t) = (u, v)

or for (s, t) = (v, u), ∆ψ̂(s, t) > 0 and ∆ψ̂(t, s) = 0 holds. Then, the algorithm iteratively applies

Operation A for an appropriate choice among (s, t) = (u, v) or (s, t) = (v, u), until ψ̂(Cuv) ≥ 0, or

until ∆ψ̂(u, v) = ∆ψ̂(v, u) = 0 holds. During the operations, the algorithm updates the sets S ′ and

S. It is not hard to see, that every iteration of the main loop decreases |S ′| by at least 1. Thus, at

the end of the algorithm, ψ̂ is an optimal fractional dicycle packing. As each inner loop is repeated

at most |S| times, the algorithm is polynomial in the initial values of |S ′|, |S|, and in n = |V (G)|.
It is known that any linear program of the form max{y ∈ Rm : Qy ≤ q} which has an optimal

solution, has an optimal solution ỹ which is basic. That is, there exists a set of m equations and

tight inequalities, such that ỹ is the unique solution to the corresponding equation system. Let ψ̃

be a basic solution to (6). The linear program (6) has O(n3) variables and O(n3) constraints. Note,

however, that only O(n2) of the variables do not have constraints of the form ψ(C) ≥ 0. Thus, ψ̃

has only O(n2) nonzero entries, i.e., |χ(ψ̃)| = O(n2). One can compute an optimal basic solution

to (6) in polynomial time using the interior point method.

Tardos [16] showed that there exists a strongly polynomial time algorithm for solving linear

programs with {0,±1} constraint matrices, assuming all the other input numbers are rational.

Thus, the linear program (6) can be solved in strongly polynomial time. However, the algorithm

in [16] might produce an optimal solution ψ̃ which is not basic. In this case, we can guarantee only

that |χ(ψ̃)| = O(n3).

Similar techniques can be used to show that there always exists a compact maximum integral

dicycle packing. Let νc(G,w) denote the value of a maximum integral dicycle packing in (G,w).

Lemma 3.2 Let (G,w) be a complete weighted digraph, and let ν̃c(G,w) be the value of an optimal

integral solution to (6). Then ν̃c(G,w) = νc(G,w).

Proof: We can assume, w.l.o.g., that the weights are integral. Then the algorithm described

above preserves integrality. Thus ν̃c(G,w) ≤ νc(G,w). We now prove the reverse inequality. Let

ψ be an optimal integral solution to (6). Among all integral dicycle pseudopackings in (G,w), let

ψ̃ be one for which
∑

C∈C3(G)∩χ(ψ) ψ(C) is maximal. We claim that χ(ψ̃) ⊆ C2(G) ∪ C3(G). If
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not, then there is a dicycle Ĉ = {(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1)}, such that k ≥ 4, and

ψ̃(Ĉ) ≥ 1. Let C1 = {(v1, v2), (v2, v3), (v3, v1)} and let C2 = {(v3, v4), . . . , (vk, v1), (v1, v3)}. Define

ψ̂ on χ(ψ̃)∪{C1, C2, Cv1v3} as follows: ψ̂(C) = ψ̃(C)−1 if C = Cv1v3 or if C = Ĉ, ψ̂(C) = ψ̃(C)+1 if

C = C1 or if C = C2 and ψ̂(C) = ψ̃(C) otherwise. It is easy to see that ψ̂ is a dicycle pseudopacking

such that
∑

C∈C3(G)∩χ(ψ̂) ψ(C) ≥ 1 +
∑

C∈C3(G)∩χ(ψ̃) ψ(C) contradicting our assumption.

Corollary 3.3 For any integrally weighted digraph (G,w) on n vertices, there exists a maximum

integral dicycle packing in G of value νc(G,w) whose characteristic set contains O(n3) dicycles.
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