
Distributed primal-dual approximation algorithms

for network design problems

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Amir Sadeh∗

The Open University of Israel

amirsadeh@yahoo.com

Abstract

We present a simple paradigm for efficient implementation of primal-dual approximation

algorithms for several network design problems in the distributed environment. Our approxi-

mation ratios are the same as in the centralized primal-dual algorithms, and we establish that our

message complexity is close to the best possible. Specifically, we show that the 2-approximation

algorithm of [9] for covering an uncrossable set-family by a minimum cost set of edges can be

implemented in distributed environment using O(nD) communication rounds and O(n2 log D)

messages, where n is the number of nodes and D is the diameter of the communication network.

In particular, within the same communication complexity we obtain:

(i) A 2-approximation for Steiner Forest, Point to Point Connection, and T -Join.

(ii) A 3-approximation for Survivable Network Design with requirements in {0, 1, 2}.

(iii) An O(log k)-approximation for Steiner Network, for constant maximum requirement k.

Even for Steiner Forest, the previous best known algorithm [11] had expected ratio O(log n),

while using O(Sp log2 n) rounds and O(|E|S log n) messages, where S ≥ D is the “shortest path

diameter” of the network, and p = O(n) is the number of groups in the instance.

We also give a 2(k+1)-approximation algorithm for k-Connected Subgraph with metric costs

that uses O(log log n) rounds and O(|E|) = O(n2) messages, which is optimal. This improves

the result of [12] where was given an O(k log n)-approximation algorithm that uses O(log n

k
)

rounds and O(nk log n

k
) expected number of messages.

1 Introduction

1.1 Problems considered and results

Distributed approximation algorithms aim to establish a trade off between optimality of a dis-

tributed algorithm solution for the communication complexity – number of communication rounds

and messages of the algorithm. Distributed algorithms inherently deal with the way nodes should

∗Part of this work was done as a part of author’s M.Sc. Thesis at The Open University of Israel.

1

exchange information in order to solve a common problem. The goal in network design prob-

lems is to design a “cheap” subnetwork (subgraph) that satisfies prescribed properties. Network

connectivity is a fundamental property, naturally arising in distributed computing network design.

In the synchronous model all link delays are bounded and each processor keeps a local clock

synchronized with every other clock in the network. A message sent in clock pulse p arrives

before clock pulse p + 1. So, in one communication round each node can send and receive one

message from each of its neighbors and perform some local computation, which does not require

any communication with other nodes. In the asynchronous model there is no synchronized local

clock, messages arrive within some finite but unpredictable time, and messages arrival order may

differ from its original transmission order. Unless stated otherwise, we assume the synchronous

model when each message is restricted to O(log n) bits of information. It is straightforward to

adapt our results to the general case when each message is restricted to O(B) bits of information.

Most of our results easily extend to the asynchronous model with invoking an O(log D) factor in

the number of communication rounds, where D is the diameter of G.

In this paper we design efficient distributed primal-dual approximation algorithms for some

network design connectivity problems. The instance to each of these problem contains a graph

G = (V, E) with edge costs {c(e) : e ∈ E}. Clearly, if all the data is known to some node s, then

this node can apply any centralized algorithm for the problem. But usually, every node v ∈ V knows

only a “local” information about the edges incident to it and their costs. A distributed algorithm can

be converted into a centralized one by sending all the information to one node s, and then distribute

the solution computed by s to the nodes of the network. Assuming that the local information at

each node and the solution size is O(n), an attempt to convert a distributed algorithm into a

centralized one requires O(D|E|) = O(n3) messages and the number of communication rounds is:

O(D|E|) = O(n3) in the asynchronous model and O(|E|) = O(n2) in the synchronous model, where

n = |V | and D is the diameter of the communication network. A non-trivial distributed algorithm

should use less rounds/messages than the one that transfers all the instance to a single node. The

key idea behind our algorithms is that a total of O(n) distinct messages are transferred during the

algorithm (each message of size O(log n)), but to all the nodes of the network.

In the next known statement, a leader election algorithm for trees is used as described in [21];

we provide a proof for completeness of exposition in Section 2.

Proposition 1.1 Constructing an O(D) diameter broadcasting tree T can be implemented using

O(n) rounds and O(n log n + |E|) messages. Distributing a pre-known information of N messages

to all the nodes of the network over T can be done in the synchronous model using O(N +D) rounds

and O(nN) messages. Electing a leader-minimum value over T takes O(D) rounds and O(n log D)

messages. In the asynchronous model, constructing T takes O(nD) rounds and O(n log n+|E|+nD)

messages, distributing N messages over T takes O(ND) rounds and O(nN) messages, and the

leader election-minimum value over T takes O(D log D) rounds and O(n log D) messages.

2

The generic problem we consider, which is the basis to most of our algorithms, is as follows.

Definition 1.1 Let F ⊆ 2V be a set-family of subsets of a ground-set V .

• F is uncrossable if X ∩ Y, X ∪ Y ∈ F or X − Y, Y −X ∈ F for any X, Y ∈ F .

• An edge set I on V covers F , or I is a F-cover, if for every X ∈ F there is an edge in I with

exactly one end-node in X.

• An inclusion minimal member of F is an F-core, or simply a core if F is understood.

Set-Family Edge-Cover

Instance: A graph G = (V, E) with edge-costs {c(e) : e ∈ E} and a set-family F on V .

Objective: Find a minimum cost F-cover I ⊆ E.

As we consider undirected graphs, we may assume that F is symmetric, namely, that S ∈ F

implies V − S ∈ F . Given a partial solution I to Set-Family Edge-Cover, the residual family FI

consist from all members of F that are not covered by I. Goemans et al. [9] gave a 2-approximation

algorithm for Set-Family Edge-Cover with uncrossable F provided that for any edge set I the FI -

cores can be computed in polynomial time. In the distributed setting, we assume that:

Assumption 1:

There is a pre-known information built from O(n) messages of O(log n) bits each, so that knowing

this information and an edge-set I ⊆ E, any node v ∈ V can locally compute the set of FI -cores.

Theorem 1.2 Set-Family Edge-Cover admits a distributed 2-approximation algorithm that in the

synchronous model uses O(nD) rounds and O(n2 log D) messages; in the asynchronous model the

number of rounds is O(nD log D).

An information as in Assumption 1 can be distributed to all nodes as described in Proposi-

tion 1.1. Comparing to the trivial algorithm that transfers the graph to a single node s, we use

O(nD) rounds versus O(n2) in the synchronous model, and O(n2 log D) messages versus O(n3),

while our ratio is the same; in the asynchronous model we use O(nD log D) rounds versus O(n3).

Several problems can be casted as Set-Family Edge-Cover with uncrossable F . We give 3 exam-

ples. The instance to each problem contains a graph G = (V, E) with edge costs {c(e) : e ∈ E}.

Additional instance parts, objectives, and the corresponding family F , are as follows, see [8].

Steiner Forest

Given a partition R1, . . . , Rp of V find a minimum cost edge-set I ⊆ E so that in the graph (V, I)

every part belongs to the same connected component.

Here F = {S ⊆ V : S ∩Ri 6= ∅, Ri − S 6= ∅ for some part Ri}.

T -Join

Given T ⊆ V with |T | even find a minimum cost edge-set I ⊆ E so that degI(v) (the degree of v

3

w.r.t. I) is odd for every v ∈ T and is even for every v ∈ V − T ;

Here F = {S ⊆ V : |S ∩ T | is odd }.

Point to Point Connection

Given disjoint subsets P, Q ⊆ V with |P | = |Q| find a minimum cost edge-set I ⊆ E so that

|P ∩ C| = |Q ∩ C| for every connected component C of the graph (V, I).

Here F = {S ⊆ V : |S ∩ P | = |S ∩Q|}.

It was implicitly shown in [8] that Assumption 1 holds in each case. Thus we obtain:

Theorem 1.3 Each one of the problems Steiner Forest, T -Join, and Point to Point Connection,

admits a 2-approximation algorithm that in the synchronous model uses O(nD) communication

rounds and O(n2 log D) messages; in the asynchronous model the number of rounds is O(nD log D).

For Steiner Forest this improves the result of [11], where an O(Sp log2 n) time algorithm with

expected ratio O(log n) and message complexity O(S|E| log n) was given; here S is the so called

“shortest path diameter” of the network, namely S = maxu,v∈V `(u, v) where `(u, v) is the minimum

length (number of the edges) in a cheapest uv-path. Note that n ≥ S ≥ D ≥ 1.

We also establish lower bounds on the communication complexity for Steiner Forest, which does

not depend on edge costs and hold even when G is a tree. Our lower bounds are valid under the

following assumption on the way the problem instance is distributed among the nodes.

Assumption 2:

At the beginning, the local information available to every node v of G is: the ID of v, the edges of

G incident to v, and the (ID of the) part Ri that contains v.

Assumption 1 is stronger than Assumption 2, as it allows more “global” information. Note

however, that a distributed algorithm that relies on Assumption 1 has a preprocessing phase of

redistributing the pre-known information (e.g., all the parts Ri) to all the nodes. Such a phase

requires Θ(n2) messages even for trees, see Proposition 1.1. Hence every algorithm that relies

on Assumption 1 has implicitly a lower bound of O(n2) messages even for trees. This message

complexity is dominated by other parts of our algorithm, and hence was assumed to be negligible.

Assumption 2 is weaker than Assumption 1, but does not assume any preprocessing. We state our

lower bound using parameters D and p.

Theorem 1.4 For any p, D with 2p + D = n, there exist and instance of Steiner Forest with the

input graph G being a tree, so that under Assumption 2, the following holds. Any distributed

algorithm that computes an inclusion minimal solution to the problem and uses messages of size

≤ B needs Ω(D + p/B) rounds in the synchronous model, Ω(Dp/B) rounds in the asynchronous

model, and Ω(Dp/B) messages in both models.

Proof: The proof reduces the following mailing problem, that has the required lower bounds, to

the inclusion minimal Steiner Forest problem:

4

Mailing Problem: Given a sender node s and a receiver node t that are connected by a single path

of length D, send a vector Y = (b1, · · · , bp) of p bits from s to t.

Given an instance of the Mailing Problem, construct an instance of Steiner Forest (without costs)

as follows. The graph G is obtained by adding 2p “virtual” nodes: p nodes s1, .., sp connected to

s and p nodes t1, .., tp connected to t. The nodes s and t will simulate all the activities of the

virtual nodes in relation to running a distributed algorithm. The connectivity requirements are

r(si, ti) = 1 if bi = 1 and r(u, v) = 0 otherwise; t will mark every ti as belonging to part (with ID)

i, and s will mark si as belonging to part (with ID) i only if bi = 1 (if bi = 0 then si may be marked

by label > p). The obtained network will run the distributed Steiner Forest algorithm. The edge

(t, ti) will be chosen to the solution if, and only if, bi = 1. Hence t will be able to resolve Y . 2

Substituting D = p = n/3 and B = O(log n) in Theorem 1.4, we obtain the lower bounds:

Ω(n2/ log n) on the number of messages, and Ω(n2/ log n) and Ω(n) on the number of rounds

in the asynchronous and the synchronous model, respectively. This essentially implies that the

communication complexity of our algorithm that uses O(n2 log D) messages, and O(nD log D)

rounds in the asynchronous model, are close to the optimal. It remains an open question whether

our number of rounds O(nD) in the synchronous case can be improved.

There are two additional problems we consider that do not admit an immediate reduction to

Set-Family Edge-Cover, but use the algorithm from Theorem 1.2 as a subroutine.

Steiner Network

Given connectivity requirements {r(u, v) : u, v ∈ V } find a minimum cost edge-set I ⊆ E so that

in the graph (V, I) there are r(u, v) edge-disjoint uv-paths for every u, v ∈ V .

The Survivable Network Design (SND) problem is the same as Steiner Network, except that the

paths are required to be internally node disjoint, and not only edge disjoint. We consider SND with

r(u, v) ∈ {0, 1, 2}, and call this problem {0, 1, 2}-SND for short.

Theorem 1.5 Steiner Network and {0, 1, 2}-SND admit an H(k)-approximation algorithm that uses

O(knD) rounds in the synchronous model and O(kn2 log n) messages, where k = maxu,v∈V r(u, v)

is the maximum requirement, and H(k) is the kth harmonic number; in the asynchronous model

the number of rounds is O(knD log D).

Finally, we consider the k-Connected subgraph problem with metric costs (when the input graph

is complete and the edge costs satisfy the triangle inequality) and prove:

Theorem 1.6 k-Connected subgraph with metric costs admits an O(k)-approximation algorithm

that uses O(log log n) communication rounds and O(n2) messages.

This improves the result of [12] where was given an O(k log n)-approximation algorithm that

uses O(log n
k
) rounds and with expected message complexity O(nk log n

k
).

5

Theorems 1.2, 1.5, and 1.6 are proved in Sections 2, 3, and 4, respectively.

The following table summarizes our and previous results for problems considered.

Problem Approximation Rounds Messages

Set-Family Edge-cover 2 O(nD) O(n2 log D)

Steiner Forest [11] expected O(log n) O(Sp log2 n) O(S|E| log n)

Steiner Forest 2 O(nD) O(n2 log D)

T-Join 2 O(nD) O(n2 log D)

Point to Point Connection 2 O(nD) O(n2 log D)

{0, 1, 2}-SND 3 O(nD) O(n2 log D)

Steiner Network 2H(k) O(knD) O(kn2 log D)

Metric k-Connected Subgraph [12] O(k log n) O(log n
k
) expected O(nk log n

k
)

Metric k-connected Subgraph O(k) O(log log n) O(n2)

Table 1: Our and previous results for problems considered. Results without references are proved

in this paper. For Steiner Forest p is the number of groups and S is the shortest path diameter,

n ≥ S ≥ D ≥ 1 For Steiner Network and k-connected Subgraph k = maxu,v∈V r(u, v) is the maximum

requirement.

1.2 Related work

All the problems considered in this paper except T -join are NP-hard. These problems were studied

extensively in the centralized setting, c.f., [8, 15, 20, 7, 19]. Both k-Connected Subgraph and Steiner

Forest generalize the famous Minimum Spanning Tree problem, which was extensively studied, and

for which optimal time and message complexity distributed algorithms were devised, c.f., [1, 17]. In

addition, the approximate distributed version was studied by Elkin [6] et al., with some important

result on the trade off between the number of rounds/messages and approximation ratios.

The primal-dual approach for distributed algorithm is not new. It was already implemented for

Vertex Cover by Dubhashi, Grandoni, and Panconesi [4]. This algorithm runs in polylogarithmic

time. Elkin [6] showed that for D ≥ 3 the MST, and thus also Steiner Forest have an Ω(n/ logt n)-

approximation threshold for distributed algorithm that use polylogarithmic number of rounds,

where t ≥ 0 is some universal constant. Hence unlike Vertex Cover, MST and Steiner Forest do not

admit reasonable approximation ratios using polylogarithmic number of rounds.

As mentioned, the centralized versions of Set-Family Edge-Cover admits a 2-approximation algo-

rithm [9]. Steiner Forest, T -Join, and Point to Point Connection are particular cases, hence also admit

a 2-approximation algorithm [8, 22]. However, none of these primal-dual algorithms was known to

admit a non-trivial distributed implementation. The only distributed algorithm for Steiner Forest

6

was given by [11]; they have devised a probabilistic algorithm with O(log n) expected approxima-

tion, based on a so called “least element lists” data structure, that uses O(Sk log2 n) communication

rounds and O(|E|S log n) messages.

Both Steiner Network and {0, 1, 2}-SND admit a 2-approximation algorithm, see [10] and [7],

respectively. These algorithm are based on the iterative rounding method, that repeatedly solves

linear programs. The known primal-dual approximation algorithms have ratio 2H(k), see [9] and

[20]; note that k = 2 and H(k) = 3 for {0, 1, 2}-SND. We note that for general requirements SND is

unlikely to admit even a polylogarithmic approximation even for very restricted instances [13, 16, 2].

However, in the case of metric costs, SND admits an O(log k)-approximation algorithm [3].

The best known ratio for k-Connected Subgraph is O(log k log n
n−k

) [19]. For metric costs, the

best known ratio is 2+ k
n

[14]. The situation in the distributed settings is far from optimal. The only

distributed algorithm for k-Connected Subgraph was for the case of metric costs [12]; this algorithm

has ratio O(k log n), rounds complexity O(log n
k
), and expected message complexity O(nk log n

k
).

For centralized approximation algorithms for connectivity problems see a survey in [15].

2 Proof of Theorem 1.2

We start by proving Proposition 1.1. Initially, we compute some BFS tree T , which is used as a

broadcasting tree for communication between the nodes. Note that the diameter of T is at most

2D . This is done by electing a “leader” over a general spanning tree. The leader then commences a

BFS tree T rooted to it, afterward every node knows its neighbors in T . To perform communication

along T , every node broadcasts its pre-known encoded information over T ; upon receiving a new

information - message M by a node v, v will save locally M and will act as relay in order to continue

broadcasting M over T .

MST construction due to Awerbuch [1] uses O(n) rounds and O(|E| + n log n) messages. The

leader election algorithm for trees (similar to rings) needs additional O(diameter(MST)) = O(n)

rounds and O(n log n) messages. The BFS algorithm uses O(D) rounds and O(|E|) messages. The

tree broadcasting uses O(D + N) rounds and O(nN) messages. Electing a leader-minimum value

over T takes O(D) rounds with O(n log D) messages. We use a slightly modified version of the

leader election for trees described by Santoro [21] et al. Each active node will try conqueror its 2j

neighborhood in mega phase j, after 2 log D mega phases the “leader” of T knows the minimum

value and will broadcast its value over T .

The asynchronous case analysis is similar. The leader election takes O(n log n) rounds, the

BFS takes O(nD) rounds, and the broadcasting mini-phase takes O(Nn) rounds with no change

in the message complexity. Electing a leader-minimum value over T takes O(D log D) rounds with

O(n log D) messages; this follows immediately from the leader election for trees, c.f., [21]. This

7

finishes the proof of Proposition 1.1.

We briefly describe the 2-approximation algorithm of [9] for Set-Family Edge-Cover with uncross-

able F . Let δ(S) be the set of edges in E with exactly one endnode in S. Consider the following

LP-relaxation (P) for the problem and its dual program (D):

(P) min
∑

e∈E

c(e)x(e) (D) max
∑

S∈F

yS

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀ S ∈ F s.t.
∑

δ(S)3e

yS ≤ ce ∀ e ∈ E

xe ≥ 0 ∀ e ∈ E yS ≥ 0 ∀ S ∈ F

Given a solution y to (D), an edge e ∈ E is tight if the inequality in (D) that corresponds to e

holds with equality. Equivalently, setting c̄(e)← c(e)−
∑
{S ∈ F : e ∈ δ(S)}yS to be the residual

costs, we have that an edge e is tight if, and only if, c̄(e) = 0. The algorithm produces an F-cover

I ⊆ E (so the characteristic vector of I is a feasible solution to (P)) and a solution y to (D) so

that all the edges in I are tight. Here is the description of the algorithm. The algorithm has two

phases.

Phase 1 starts with partial solution I = ∅, and applies a sequence of iterations. At each

iteration, exactly one edge is selected to be added to I, until FI has no cores, that is I is an F-

cover. Selecting an edge to add is done as follows. The algorithm maintains (implicitly) a feasible

solution y for (D). Initially, yS = 0 for all S ∈ F . Now, if I is still not an F-cover (so there is at

least one FI core), we increase uniformly (possibly by zero) the dual variables yS corresponding to

FI -cores, until some edge e ∈ E − I that covers some FI -core becomes tight; then e is added to I

at this iteration.

Phase 2 applies on I “reverse delete”, which means the following. Let I = {e1, . . . , ej}, where

ei was added at iteration i. For i = j downto 1, we delete ei from I if I − ei is still a F-cover. At

the end of the algorithm, I is output.

In [9] it is proved that this algorithm has approximation ratio 2. Here we only need to show that

under Assumption 1 the algorithm can be implemented in distributed environment using O(nD)

rounds and O(n2 log D) messages.

Claim 2.1 I is a forest at the end of Phase 1.

Proof: Suppose to the contrary that I has a cycle C. Let e = uv be the edge of C added to C last,

and let I ′ be the accumulated partial solution before e was added. Then e covers some FI′-core S,

say u ∈ S and v ∈ V − S. However, I ′ contains the uv-path C − e, hence I ′ already covers S. This

gives a contradiction. 2

Each time an edge is added to I at Phase 1, this edge is distributed to all the nodes in the

network. As the number of edges is O(n), this can be implemented using O(nD) rounds and O(n2)

8

messages, by Proposition 1.1.

We describe how to implement the edge selection step in Phase 1. Every v ∈ V calculates the

residual costs of the edges in δE−I(v), the quantity ε(v) = min{c̄(e)/t(e) : e ∈ δE(v)}, and the edge

ev for which the minimum is attained, where t(e) is the number of (at most 2) FI -cores covered by

e. Then, a leader election-minimum distinct value algorithm is applied to select among the edges

{ev : v ∈ V } an edge e with c̄(e)/t(e) minimum; the node id’s are used to break ties. After e = eu

is chosen, u sends eu over the BFS tree. Upon receiving the edge eu, each node will add eu to I and

will update the dual variables, which are needed to calculate the residual costs. This edge selection

mini-phase takes O(D) rounds with O(n log D) message for one edge, by Proposition 1.1. Hence

for all the O(n) edges derived from Claim 2.1, O(nD) rounds and O(n2 log D) messages suffice.

Phase 2 can be implemented using local computations only. The edges and their augmentation

order in I is known to every node in the network. Hence by Assumption 1 each node in the network

can check locally whether a set I − e (for any e ∈ I) is an F-cover by insuring that every edge

e removable from I does not create any FI−e-core. This “reverse delete” implementation takes 0

communication rounds and 0 messages.

The proof of Theorem 1.2 is complete.

3 Proof of Theorem 1.5

3.1 Algorithm for Steiner Network

We describe a variation of the (centralized) algorithm of [9] for Steiner Network. For every i the

relation {(u, v) ∈ V ×V : r(u, v) ≥ i} is an equivalence, and let Ri be the partition of V into its the

equivalence classes. We will assume that the requirements are given by the partitions R1, . . .Rk,

and at the end of this section will discuss the case of pairwise requirement r(u, v). Let R0 = {V }.

The algorithm has k iterations. Let λH(u, v) be the maximum number of edge disjoint uv-

paths in H. At the beginning of iteration i the partial solution H satisfies λH(u, v) ≥ i− 1 for all

u, v ∈ Ri−1. During iteration i the algorithm computes an edge set I so that λH+I(u, v) ≥ i for all

u, v ∈ Ri. Hence after k iterations the solution H is feasible.

The augmenting edge set I is computed using the 2-approximation algorithm for Set-Family

Edge-Cover described in Section 2. The corresponding set-family F is defined by

F = {S ⊆ V : S ∩R 6= ∅, R− S 6= ∅ for some R ∈ Ri, degH(S) = i− 1} ,

where degH(S) is the number of edges in H from S to V − S. It is proved in [9] that this F is

uncrossable, and that c(I) ≤ 2opt/(k − i). This implies the approximation ratio 2H(k).

For the distributed implementation, all we need to show is that Assumption 1 holds during each

iteration, namely, knowing an edge-set I, any node v ∈ V can locally compute the set of FI -cores.

9

Here however we assume that the pre-known information is built from O(kn) messages of O(log n)

bits each. Thus we assume that at the beginning of iteration i every node knows the partial solution

H computed so far. Then computing the FI cores is done using standard flow methods. For every

pair u, v that belongs to the same part R ∈ Ri, compute in H +I the maximum uv flow. If this flow

has value i− 1, compute the minimum cut Cuv containing u and the minimum cut Cvu containing

v. The minimal inclusion sets among the sets computed are the FI -cores.

If we are given pairwise requirements r(u, v), we can convert them into requirements in the

partition form R1, . . .Rk as follows. Note that for any equivalence class Rj ∈ Ri, r(u, v) ≥ i holds

for every u, v ∈ Rj . Hence the equivalence classes of Ri could be defined by the minimum node ID

in each equivalence class.

u ∈ Rj , Rj ∈ Ri ⇐⇒ j = min{id(u), min
r(u,v)≥i, v∈V

id(v)}

Each u ∈ V will broadcast its subpartition identifier in Ri denoted by j, i.e., for all 1 ≤ i ≤ k.

By Proposition 1.1 this adds nk + D rounds in the synchronous model and nkD rounds in the

asynchronous model with a total of kn2 messages. These number of rounds and messages are

dominated by the ones of the algorithm.

3.2 Algorithm for {0, 1, 2}-SND

We start by presenting a centralized algorithm for {0, 1, 2}-SND, which is a modification of the

algorithm of Ravi and Williamson [20]. The first iteration of the algorithm is the same as in

the case of Steiner Network. Let H be the partial solution computed. In [20] it is proved that

c(H) ≤ opt.

After resetting the costs of the edges in H to 0, we get the following “residual” problem:

Instance: A graph H = (V, EH), an edge set E on V with costs {c(e) : e ∈ E}, and a collection D

of pairs of V so that every pair belongs to the same component of H.

Objective: Find a minimum cost edge set I ⊆ E so that H+I contains 2 internally disjoint uv-paths

for every pair {u, v} ∈ D.

We describe a construction from [18] that reduces the latter problem to Set-Family Edge-Cover

with uncrossable F . Start by modifying the instance H, E, c,D (see Figure 1). A node a is a

cut-node of H if H − a has more (connected) components than H. The components of H − a

that are not components of H are the sides of a. Let Q be the set of cut-nodes of H. For every

a ∈ Q with sides A1, . . . , Ak do the following (see Figure 1): add new nodes a1, . . . , ak, add the

edges aa1, . . . , aak of the weight 0 each to EH , and for every edge ua ∈ EH ∪ E with u ∈ Ai

replace its end-node a by ai; the set D of 2-connectivity demand pairs remains the same. Clearly,

the construction is polynomial. Note that only edges in E that are incident to a node in Q and

have both end-nodes in the same component of H are affected. Note that for subsets of E the

10

a

2b1b

3b

1cc

2c

b
a

2a

4a

1a

c

ba

3

Figure 1: Modification of the residual instance. Some edges in E are shown by dashed lines. The

set of original cut-nodes of H is Q = {a, b, c} and the added nodes are a1, a2, a3, a4, b1, b2, b3, c1, c2.

transformation is cost preserving, since all original edges in E keep their weights, while the added

edges have weight 0. It is also easy to see that I ⊆ E is a feasible solution to the original instance

if, and only if, I is a feasible solution to the modified instance; the weight of I is the same in both

instances. Henceforth H = (V, EH), E, c,D is the modified instance, and Q is the set of original

cut-nodes. We now define our family F on this modified instance.

Definition 3.1 A set-pair is a partition {X, X ′} of V − a for some a ∈ Q so that no edge in EH

connects X and X ′. A set-pair {X, X ′} is violated if there is a demand pair {x, x′} ∈ D so that

x ∈ X and x′ ∈ X ′. A set X ⊆ V is violated if it is a part of some violated set-pair. Let F+ be the

family of all violated sets, let F− = {V −X : X ∈ F+}, and let F = F+ ∪ F−.

Note that X ∈ F+ if, and only if, V −X ∈ F−, thus F is symmetric. It is a routine to show

that I ⊆ E is a feasible solution for the modified instance if, and only if, I covers F .

Lemma 3.1 ([18]) The family F in Definition 3.1 is uncrossable.

Hence we can apply the 2-approximation algorithm of [9] to compute an edge set I ⊆ E so that

H + I is a feasible solution to {0, 1, 2}-SND.

Now we describe the distributed implementation of the algorithm. As in Steiner Network, let R1

be the be the partition of V into the equivalence classes of the relation {(u, v) ∈ V ×V : r(u, v) ≥ i}.

A collection R2 of subsets of V is defined as the blocks (2-node connectivity components) of the

graph (V, F) where F = {uv : r(u, v) = 2}. It is well known that
∑

R∈R2
|R| ≤ 2n − 1 = O(n).

Thus we can apply Proposition 1.1 to distribute the collection R2 of sets to all the nodes of the

network within the claimed communication complexity.

As in the centralized algorithm the distributed implementation has two iteration. Both itera-

tions will run the Set-Family Edge-Cover algorithm described in Section 2. Iteration 1 runs the

Steiner Forest algorithm as in theorem 1.3, so the first iteration is identical to the first iteration in

the Steiner Network algorithm. Iteration 2 will run the Set-Family Edge-Cover algorithm on the the

family F as in Definition 3.1. At the beginning of iteration 2, every node will modify its locally

constructed graph H from iteration 1 according to the reduction described above (Figure 1). To

11

run the Set-Family Edge-Cover algorithm with the family F as in Definition 3.1, every cut-node of H

will simulate locally the activities of its copies created by the reduction. The graph H constructed

by the reduction has O(n) nodes/edges, and
∑

R∈R2
|R| = O(n). This is the pre-known information

used by every node. It is not hard to verify that knowing H,R2 and the partial solution I, any node

v ∈ V can locally compute the set of FI -cores. Hence Assumption 1 holds, and the communication

complexity of iteration 2 is as in Theorem 1.2.

The proof of Theorem 1.5 is complete.

4 Proof of Theorem 1.6

We start by describing a centralized 2(k + 1)-approximation algorithm for k-Connected Subgraph

with metric costs. This algorithm is known, and we provide proofs only for completeness of exposi-

tion. Given a spanning tree T in a metric graph G, a well known heuristic constructs a Hamiltonian

cycle H of cost c(H) ≤ 2c(T) in linear time. The centralized algorithm is as follows.

1. Compute a minimum spanning tree T in G.

2. Construct a Hamiltonian cycle HT of cost c(HT) ≤ 2c(T), and label the nodes by 1, . . . , n

according to their order in HT .

3. Obtain a graph H by connecting each node i to the nodes i + 1, i + 2, . . . , i + min{k, n− i}.

Lemma 4.1 The algorithm computes a k-connected graph H of costs c(H) ≤ k(k + 1)/2 · c(HT).

Proof: We prove that H is k-connected. It is sufficient to prove that if H is a graph on V =

{1, . . . , n} with n ≥ k+1 so that every i ≤ n−1 has at least min{k, n−i} neighbors in {i+1, . . . , n},

then H is k-connected. If n = k + 1 then H is a complete graph. Assume that n ≥ k + 2 and

suppose to the contrary that G is not k-connected. Then there is C ⊆ V with |C| ≤ k − 1 so that

G − C is disconnected. Let X, Y be distinct connected component of G − C with n /∈ X, and let

iX = maxi∈X i and iY = maxi∈Y i. We must have {iX + 1, . . . , n} ⊆ C; hence iX > iY and n /∈ Y .

Thus the same argument applied on Y gives iY > iX . This is a contradiction.

We prove that c(H) ≤ k(k + 1)/2 · c(HT). Since the costs are metric, c(i, j) ≤
∑j−1

`=i c(`, ` + 1)

for every i < j ≤ n. By the construction, if ij ∈ H then i− j ≤ k. Thus

∑

ij∈H

c(i, j) ≤
∑

ij∈H

j−1∑

`=i

c(`, ` + 1) ≤ [k + (k − 1) + · · ·+ 1] · c(HT) = k(k + 1)/2 · c(HT) .

2

Proposition 4.2 Any k-edge-connected graph H with edge costs c(e) has a spanning tree T with

c(T) ≤ 2c(H)/k.

12

Proof: Edmonds [5] proved, that if a directed graph has k edge disjoint paths from r to any other

node, then it contains k edge-disjoint arborescences rooted at r. Thus the bidirection D of H

obtained by replacing every (undirected) edge e = uv by two opposite directed edges uv, vu of the

same cost as e, contains k edge-disjoint arborescences rooted at r. Let T be the underlying tree of

the least cost arborescence among them. Then c(T) ≤ c(D)/k = 2c(H)/k. 2

Corollary 4.3 The algorithm computes a k-connected graph H of costs c(H) ≤ 2(k + 1) · opt.

Proof: We have c(H) ≤ k(k + 1)/2 · c(HT) ≤ k(k + 1)c(T) ≤ k(k + 1) · 2opt/k = 2(k + 1)opt, by

Lemma 4.1 and Proposition 4.2. 2

Now we describe a distributed implementation of the algorithm. Assume every node v ∈ V has

a unique ID id(v) ∈ {1, 2, · · · , n}. The implementation is as follows.

Step 1 is implemented by applying the algorithm of [17] that uses O(log log n) rounds and

O(n2) messages. (This does not contradicts the lower bound by Elkin [6] since Elkin’s lower bound

is valid only for D ≥ 3, while in a complete graph D = 1).

Step 2 is implemented as follows. The network will transmit the MST to the network leader

which is the node with the maximum id(·). This could be done using O(1) rounds and O(n2)

messages. In order to choose the leader every node v sends its id(v) over all its links; this takes

only one round and O(n2) messages. Afterwords every node can compute locally who is the leader.

In order to send the MST edges to the leader every node v ∈ V will send the degT (v) to the leader.

The leader then will assign to every v exactly degT (v)/2 distinct nodes that will help him to send

its edges (as relays) to the leader with additional O(1) rounds and O(n) messages for all the nodes

in the network altogether. The complexities follows.

After the MST arrives to the leader, the leader will compute the Hamiltonian cycle and the new

node labels locally. Afterward the leader will send to each node its new label. This computation

takes 1 round with O(n) messages.

Step 3 is implemented as follows. Each node will send to every node in the network its

new label; this computation takes 1 round with O(n) messages. Then each node with label i

will update locally its local edge tables so that it will be connected to the nodes labeled with

i+1, i+2, . . . , i+min{k, n− i} and to the nodes i−1, i−2, . . . , i−max{k, 1} (because the network

is undirected).

The proof of Theorem 1.6 is complete.

References

[1] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting,

leader election, and related problems. In STOC, pages 230–240, 1987.

13

[2] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network design for vertex connectivity. In STOC,

pages 167–176, 2008.

[3] J. Cheriyan and A. Vetta. Approximation algorithms for network design with metric costs. In

STOC, pages 167–175, 2005.

[4] D. Dubhashi, F. Grandoni, and A. Panconesi. Distributed Approximation Algorithms via

LP - Duality and Randomization. In T. F. Gonzalez, editor, Chapter 13 in Handbook of

Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, 2007.

[5] J. Edmonds. Matroid intersection. Annals of discrete Mathematics, pages 185–204, 1979.

[6] M. Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the distributed

minimum spanning tree problem. In STOC, pages 331–340, 2004.

[7] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms

for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci., 72(5):838–867, 2006.

[8] M. Goemans and D. P. Williamson. Primal-dual. In D. S. Hochbaum, editor, Chapter 4 in

Approximation Algorithms for NP-hard problems, pages 144–190. PWS, 1995.

[9] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B.Shmoys, E. Tardos, and D. P. Williamson.

Improved approximation algorithms for network design problems. In SODA, pages 223–232,

1994.

[10] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica, 21(1):39–60, 2001.

[11] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar. Efficient distributed approx-

imation algorithms via probabilistic tree embeddings. In PODC, pages 263–272, 2008.

[12] M. Khan, G. Pandurangan, and V. S. Anil Kumar. A simple randomized scheme for construct-

ing low-weight k-connected spanning subgraphs with applications to distributed algorithms.

Theor. Comput. Sci., 385(1-3):101–114, 2007.

[13] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-

connectivity network design problems. SIAM Journal on Computing, 33(3):704–720, 2004.

[14] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Algo-

rithmica, 37:75–92, 2003.

[15] G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems. In T. F.

Gonzalez, editor, Chapter 58 in Approximation Algorithms and Metaheuristics. Chapman &

Hall/CRC, 2007.

14

[16] Y. Lando and Z. Nutov. Inapproximability of survivable networks. In APPROX-RANDOM,

pages 146–152, 2008.

[17] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST construction in O(log log n) com-

munication rounds. In SPAA, pages 94–100, 2003.

[18] Z. Nutov. Approximating steiner networks with node weights. In LATIN, pages 411–422, 2008.

[19] Z. Nutov. An almost O(log k)-approximation for k-connected subgraphs. In SODA, 2009. To

appear.

[20] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-

connectivity problems. Algorithmica, 18:21–43, 1997.

[21] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley-Interscience, 2006.

[22] D. P. Williamson. On the design of approximation algorithms for a class of graph problems.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1993.

15

