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Abstract

The known cactus tree model represents the minimum edge cuts of a graph in a clear
and compact way and is used in related studies. We generalize this model to represent
the minimum and minimum-+1 edge cuts; for this purpose, we use new tools for modeling
connectivity structures. The obtained representations are different for A odd and even;
their size is linear in the number of vertices of the graph. Let A denote the cardinality
of a minimum edge cut. We suggest efficient algorithms for the maintenance of our
representations, and, thus, of the (A 4+ 2)-connectivity classes of vertices (called also
“(A+ 2)-components”) in an arbitrary graph undergoing insertions of edges. The time
complexity of those algorithms, for A odd and even, 1s the same as achieved previously
for the cases A = 1 and 2, respectively. In this paper we consider the case of even A > 4.
The case of odd connectivity is considered in the companion paper (Part T).

1 Introduction

Connectivity is a fundamental property of graphs, which has important applications in
network reliability analysis, in network design problems and in other applications. For many
connectivity problems, a clear and compact representation of minimum and near minimum
cuts of a graph is of much help. In this paper we consider only edge-connectivity and edge
cuts of an undirected multigraph (henceforth, we omit the prefix “edge” and say “graph”

instead of “multigraph”). Recently, connectivity augmentation problems and the problem
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Figure 1: Cactus-tree model of a 4-connected graph. (The gray blobs represent vertex classes of
b-connectivity. Some cuts of the graph and their representing cuts of the cactus tree are shown by

dashed lines.)

of maintaining the vertex classes of k-connectivity (called in literature also “k-components”)
of a dynamic undirected graph gave an impetus for development of connectivity models and
related algorithms. Some graph structures have been discovered (see [4, 10, 11, 3, 17,9, 8, 1]
and others); most of them serve the incremental setting, i.e., they can be efficiently updated

when the graph undergoes edge insertions.

Let G = (V, F) be an undirected connected graph on n > 2 vertices, and let A denote the
cardinality of a minimum cut of G. When analyzing the connectivity of GG, the natural first
“stratum” is the set of its minimum cuts and the set of vertex classes of (A+ 1)-connectivity
that V is “cut into” by these cuts. Both these are represented, in a compact and simple way,
by the minimal cuts of the cactus tree model (4, ) [4] :' H is a tree-of-edges-and-cycles, or
cactus tree, for short (i.e., a connected graph such that every its block is an edge or a cycle)
and ¢ is a mapping from V to the node set of H (see Fig. 1 for an example). The minimal
cuts of a cactus tree have a simple structure: any such cut is either a bridge or a pair of

edges belonging to the same cycle. The cactus tree model has the following properties:

(i) For every node N of H#, =1 (N) is either a (A + 1)-class of GG or the empty set;

(ii) The mapping ¢! takes the set of minimal cuts of H onto the set of minimum cuts of

G.

(iii) The number of edges in # is linear in the number of (A + 1)-classes, i.e., is O(n).

The cactus tree H is unique up to conversions of nodes A" of degree 3 with o1 (AN) =0
into cycles of length three and vice versa, and this representation is almost bijective (for a
formal proof and for the only case of nonbijectiveness, where a cut of GG is represented by
two model cuts, see [15]). In this paper, we consider the unique version of X in which all

empty nodes of degree 3 are replaced by cycles.

! An equivalent model was suggested independently in [10].



Since the structure of the cactus tree H and its connection to G are simple, and since
this representation is compact, it is a good model for connectivity studies. An algorithm
for the construction of the cactus tree model with the best known time complexity O(|E|+
Mnlog(|F|/n)) is presented in [10].

In this paper for the case A even and in the companion paper [6] for the case A odd,
we suggest an extension of the cactus tree model, called the 2-level cactus tree model. Our
models represents, in a clear and compact way, the system of the A- and (A+ 1)-cuts and of
the vertex classes of (A 4 2)-connectivity of a graph; their sizes are O(n). Previous results
are as follows: Galil and Italiano [11] and La Poutré et al. [13] suggested a structure for the
case A = 1, Dinitz [3] and Westbrook [17] suggested another structure for the case A = 2.
Also our 2-level cactus tree models for the cases A odd and even are not of the same kind:
the odd case generalizes the model for the case A = 1 and the even case the model for the

case A = 2.

Benczur in [1] gives a geometric representation of the cuts of weight less than gA. His
model is less compact in comparison with our models: its size is O(n?). For A < 5 our
model is stronger, since A + 1 > gA; in the range 6 < A < 10 they represent the same cuts;
starting from A = 11, when A 4+ 2 < gA, the model of [1] is stronger than our models. Tt is

worth to mention that practical networks usually require rather small connectivity.

A natural object to represent a cut of a graph is the corresponding bisection (partition
into two nonempty parts) of the vertex set; in a connected graph, there is a bijective
correspondence between the cuts of the graph and the bisections of its vertex set [6]. We
represent the family of A- and (A + 1)-cuts of G’ by a model for the family of bisections of

V' corresponding to all those cuts.

We define a cut model for a bisection family F' of a set V' as a triple (G, ¢, F), where G
is a (“structural”) graph, ¢ is a mapping from V' to the node set of G, and F is a family of
cuts of G such that ¥~ (F) = F (“modeling family”). The constructive generic “2-level”
approach for modeling bisection families of a set by cut models [4, 5, 7] is as follows. Two
bisections are called parallel if they collectively partition V into 3 parts. We choose a certain
family F"** consisting of mutually parallel bisections (henceforth, we call them “basic”); it
is modeled by a tree 7°*. The bisections in F'\ F"** are classified w.r.t. F*** and modeled
based on 7°**. Bisections parallel to all basic ones are called local; each of them is naturally
assigned to a node of 7. For every subfamily of local bisections assigned to the same
node, we construct a cut model (so called “local model”). We obtain a united model for
all basic and local bisections by a natural “implanting” of each local model instead of the

related node of 7°**. The modeling family can be extended to represent also the nonlocal



bisections in F\ F? (called “global”) if we choose F*** such that the partition of V by
the basic and local bisections coincides with the partition of V by the whole family F. In
this paper, the natural “implanting” of local models is modified in order to simplify the

representation of global bisections.

Another type of cut models used in this paper is the “r-skeleton” [6] that represents the
cuts of G up to cardinality A4+ r — 1 and the set of classes of (A + r)-connectivity that V' is
cut into by these cuts. When passing from cuts of G to the modeling cuts in the skeleton,
the cardinality decreases by a constant value. This provides an immediate reduction of the
incremental maintenance problem for the original graph to the corresponding problem for

its skeleton model.

As in [11, 13] (A = 1) and in [9] (A = 2), we use our models for the incremental
maintenance of the classes of (Ag + 2)-connectivity, Ag > 3, where Ag is the connectivity of
the initial graph. This means that we support our structures under a sequence of update

operations
Insert-Fdge(z, y): Insert a new edge between the two given vertices 2 and y;
and at any time are able to answer the query

Same-(Ag + 2)-Class(z,y) 2 Return “true” if two given vertices z and y belong to the same
(Ao + 2)-class of (7, and “false” otherwise.

The 2-level cactus tree model suggested in this paper is a skeleton of connectivity 2.
Thus we have a reduction of the maintenance problem to the case Ag = 2, preserving
the complexity. For an arbitrary sequence of u updates Insert-Edge and ¢ queries Same-
(Ao + 2)-Class(z, y) ?, total time required is O(u 4+ ¢ + nlogn), using the algorithm [9], or
O((u+g+n)a(u+g,n)), using that of [17], where « is the inverse of the Ackerman function

(which grows extremely slow, see, e.g., [2]).

A 2-level cactus tree model for an arbitrary graph can be constructed in polynomial
time by using the deterministic algorithm of [16] or the randomized algorithm of [12] for

listing of near minimum cuts.

This paper is organized as follows. Section 2 brings basic definitions and notations.
Section 3 introduces our tools: 2-level cut modeling and skeleton models, and presents
some properties of A\- and (A 4 1)-cuts; these two sections being abridged versions of the
corresponding part of [6], except for the new Lemma 3.8. Section 4 deals with both statics

and dynamics for the case of even A. Section 5 contains concluding remarks.



For a more detailed introduction see [6]. The preliminary version of this and the com-

panion papers is Extended Abstract [5].

2 Preliminaries and Notations

Let G = (V, E) be an undirected connected (multi)graph with vertex set V' and edge set F,
where |V| =n > 2, and |E| = m. To shrink a subset of vertices S C V means to replace
all vertices in S by a single vertex s, to delete all edges with both endvertices in S, and, for
every edge with one endvertex in S, to replace this endvertex by s; an edge of a new graph
is identified with its corresponding edge of G. For a given partition of V, the quotient
graph is defined to be the result of shrinking each part into a single node (a quotient set

of a set is defined similarly).

For X,Y C V we denote by §(X,Y) the set of edges with one end in X and the other
end in Y (clearly, §(X,Y) = §(Y, X)). For brevity, let us use the notations X = V' \ X,
§(X)=48(X,X), d(X,Y)=|8(X,Y)|,and d(X) = |6(X)|; d(X) is called the degree of X.

A partition of a set into two nonempty parts is called its bisection. For a proper subset
X of a set U, we denote by B(X) the bisection {X, X}; evidently, B(X) = B(X). Any
bisection {X, X} of V defines the edge cut C' = §(X, X); each of X, X is called a side
of C' (and, in fact, defines (). By following statement, it is legal to study cuts as vertex

bisections.

Proposition 2.1 ([6]) For every cut of a connected graph, there is a unique bisection of

the vertex set defining it.

A cut C is said to be minimal if no its proper subset is a cut. It is well known that
C = §(X, X) is a minimal cut of a connected graph G if and only if each of the subgraphs
induced by X and X is connected. If |C] = k then C' is said to be a k-cut; l-cuts are
referred as bridges. The family of all k-cuts of G is denoted by F*.

We say that a cut ' = §(X, X) divides a subset S of V (or that C' is an S-cut) if
both X NS and X N S are nonempty. We say that a cut divides a subgraph if it divides
its vertex set. A subset S of V is called k-connected if there are no S-cuts of cardinality
less than k. The connectivity A(S) of a subset S of V is defined to be the maximum
k for which S is k-connected (equivalently: A(S) is the minimum number of edges in an
S-cut in G). The connectivity A of G is defined to be A(V). It is easy to see that the
relation on vertices “{x,y} is k-connected” is an equivalence. Its equivalence classes are

called classes of k-connectivity, or, for simplicity, k-classes (they are often called in



corner cut

Figure 2: Relations between bisections: (a) crossing bisections; (b) parallel bisections and a bisec-
tion between them.

literature “k-components”); let ng denote the number of k-classes. Obviously, the partition

of V into (k 4 1)-classes is a subdivision of its partition into k-classes.

For an edge e = (v,v’) of a tree, the branch that hangs on v via e is the connected
component of 7'\ e not containing v. For any graph H, let V(H) and E(H) denote the

vertex and edge sets of H, respectively.

Following are some definitions concerning bisections and relations between them (see
Fig. 2). Two distinct bisections {X, X} and {Y,Y} of a set V are called crossing if all
the four corner sets X NY, X NY,XNY, XNY are nonempty, and parallel otherwise
(i.e., if exactly one of these sets is empty). For brevity, we denote these corner sets by
Ay, Az, As, Ay, respectively, if no ambiguity arises (see Fig. 2(a)). A bisection defined by a
nonempty corner set is called a corner bisection. For a pair of parallel bisections {X, X}
and {Y,Y}, where X NY = (), a bisection {Z, 7} is said to be between them, if X C 7
and Y C Zor X C Zand Y C Z. (see Fig. 2(b)). For a family F of bisections of V, the
equivalence classes of the relation “xz,y € V, {z,y} is not divided by any bisection in F”

are called F-atoms; let ng denote the number of F-atoms.

When V is the vertex set of a graph (G, similar definitions are used for cuts, considering
them as bisections of V. The quotient graph defined by the four corner sets of two cuts
C,C" is called the {C,C'}-square. An edge of the square belonging to both C' and C” is
called a diagonal edge; the other edges of the square are called side edges. For brevity,
we denote d;; = d(A;, A;), d; = d(A;) for i £ j=1,...,4.

Most of our definitions and results apply to cuts of an integrally weighted graph as well,
by replacing the cardinality of a set of edges by the sum of their weights. In fact, in what
follows we do not distinguish between a multigraph and its corresponding weighted simple
graph if this does not lead to misunderstanding (“the weight of an edge (z,y) is k7 means
“d(z,y) = k7, and vice versa). We say that a multigraph is a cycle if its corresponding

weighted simple graph is a cycle, and call it l-uniform if the weight of every edge in the



latter is [.

3 Modeling tools and auxiliary statements

In this Section, we introduce our modeling techniques. Section 3.1 introduces the hierarchic
2-level approach of [5, 7] to the construction of cut models for families of bisections. In
Sect. 3.2, we introduce skeleton models of [6]. Sect. 3.3 presents some properties of cuts

proved in [6].

3.1 Cut models

The following concept of a model, applying to cuts of a connected graph as to bisections
of its vertex set, has been used in connectivity studies since [4]. Following [7], we present
this concept abstractly, for bisections of an arbitrary set (one reason for this decision is to
emphasize that edges of original graph play no role in modeling, the other is that illustrating

figures are much more clear without such edges).

A cut model for a set V (or, for short, a model) is a pair (G, ), where G = (V, &) is
a connected graph and 1 : V —= V is a mapping;?> we sometimes abbreviate this notion by
G, if ¥ is understood. We call ) a model mapping and G a structural graph; vertices
of G are called nodes and its edges structural edges. A node N of V is called empty
if »1(N) = 0. Observe that, for any cut model, shrinking a subset of nodes of G implies
naturally a new model: its mapping is the composition of the original mapping and the
quotient one.

We say that a cut C = §(X, X) of G p-induces the bisection ¢»=1(C) = {1 (X), v=1(X)}
of V if both ¥»=1(X),~1(X) are nonempty. Any bisection of V that is 1-induced by a cut
of G is said to be compatible with G (or with V). For a family of cuts F of G, we denote
™Y F) = {4p71(C) : C € F}. For a subgraph G’ of G with node set V', ¢»=1(G") is defined
to be Yp=1(V).

Let F' be a family of bisections of V. Then a triple (G, ¢, F), where (G, ) is a model
for V and F is a family of cuts of G, is said to be a cut model for F if v)~!(F) = F; there
F is called a modeling family (for F) and its members are called modeling cuts. For
any two models: (G,v,F) for F' and (G',¢', F') for F, the triple (G', 1 o', F') is, clearly,

a model for F'; it is called the composition of the former models.

2In this paper, objects related to a model, which is not a quotient, graph, are usually denoted by letters
in their calligraphic form, for example C, F,G,V(G).



Figure 3: A parallel family and its tree model. (The nodes whose preimages are empty are shown
white. Bisections and cuts are shown by dashed lines.)

For short, we say that F' is modeled by a graph G if there is a cut model, whose
structural graph is G and modeling family is the family of all minimal cuts of G. A cut
model (G, 1, F) is called condensed if, for every node A" of G, ¢~ (N is an F-atom or
the empty set. It is easy to see that a sufficient condition for a cut model to be condensed

is that the modeling family partitions the node set of the structural graph into singletons.

Generalizing [4] (and following [7]), we allow indirect descriptions of the modeling family.
Modeling cuts are groupped into so called bunches. Each bunch is presented in a clear and
compact way; its definition consists of its type and a constant number of parameters, e.g.,
references to certain edges sets. Observe that such a structural description can be preferable
in comparison with a trivial listing of all the cuts (for example, see in Introduction on the

cactus tree model).

The size of a model (G, 1, F) is the sum of sizes of its three parts: (i) of G = (V, £), that
is |V 4 [€], (ii) of 9, that is O(]V|), and (iii) of the description of F (when it is indirect of
the above type, its size is the total length of bunch definitions and auxiliary sets). Observe
that thus the size of a model can be much less than the number of bisections (or cuts) in
F'. Notice that the number of F-atoms ng can serve, instead of |V, as a natural parameter
for measuring the size of a condensed model, excluding the size of the modeling mapping;
for simplicity, we say that a model is linear in ng if all its parts, except for the model

mapping, have size linear in np.

Let us consider an important simple case of a cut model. A family FP of bisections of
V is called parallel if its members are pairwise parallel. By [14], |F?| = O(|V]) (in fact,
|FP| < 2|V| — 3). Following [4], we represent such a family by the naturally defined tree
model (77,4 1-cuts of TP), where T? is a tree (see Fig. 3, for a formal definition see
[9, 7])). This model is condensed and is bijective, i.e., every bisection in F? is 1P-induced
by a unique 1-cut of 77. For a node N of TP, the family of bisections Fy, = {(¢?)~!(C) :
C = (N,N’)is a 1-cut of TP} is called the neighbor group at A/. Two bisections belong

to the same neighbor group if and only if there is no other bisection in F? between them.



(d)

Figure 4: (a) decomposition of a bisection family w.r.t. a basic family (basic bisections are shown
by thick dashed lines, local bisections by thin dashed lines, and global bisections by dotted lines);
(b) node sets of components at A and at A’ (halo nodes are shown gray), and the decomposition of
F'°¢; (c) local models; (d) implanting; (e) the result of optional contractions (in (d) and (e) modeling
cuts are shown partly; one of the global bisections is not modeled).

Assume we are looking for a cut model for a bisection family F of a set V. Given
a parallel bisection family, we use the following classification of bisections in F' w.r.t. that
family (see Fig. 4(a)). We call that family and its members basic, and in what follows denote
it by F*** and its tree model by (70?2, b5 Fb5) A nonbasic bisection in I is called local
if it is not crossing with any member of F***, and global otherwise; ¢ and F9! denote
the corresponding subfamilies of F', respectively. (Recall that here and everywhere in this
section similar definitions are implicitly made for a cut family F', considering cuts as vertex

bisections.)

We decompose the local bisections relatively to the nodes of 7°*° by means of the
following model (see Fig. 4(b)). The component Vj at a node A" of 7% is defined to



be the quotient set of V' (or the quotient graph Gy of G, in the case of a cut family F)
which is obtained from V by shrinking, for every branch B hanging at A in 7%, the subset
(¢"*%)=1(B) into a single halo element (resp., halo node); the corresponding quotient

mapping is denoted by QL_/\/'.

Lemma 3.1 ([7]) Any bisection compatible with a component is either local or basic. More-
over, every local bisection C' is compatible with exactly one component, and every basic bi-
section is compatible with exactly two components (at the endnodes of the structural edge

defining it in Tbas) and are defined by single halo nodes in these components.

By Lemma 3.1, F¢ falls into parts F]VOC corresponding to nodes A of 7°** (via com-
patibility with VN) Our general approach is to represent the parts F]\?C separately, and
then to sinthesize the entire representation for F"** () F'° (everywhere in this paper holds
Fbs C F, which implies F***|J F'°® C F). Let us define the appropriate type of such sepa-
rate representations. Observe that, for any node A, the neighbor group Fjbvas is exactly the
set of basic cuts compatible with Vyr. A local model at A is a cut model (Gns o, Fyr)

with the following properties:

e the modeled family I} satisfies F\%° C F}, C Fi° U Fhs;

e for every branch B of 7% hanging at A, its preimage (¢***)~1(B) is mapped by 1y into
a single node N3 of Gyr.?

It can be easily shown that Gy is a local model at A if and only if it is a composition of
(Viv, ¥ars bar(Fiy)) and a cut model for ¢y (Fi), with F, as above (see Fig. 4(c)). Hence,
in applications to cut families, we usually obtain a local model at A/ via the component
Gy by constructing a cut model for the family QL_/\/(F_//\/) of cuts of GN, for an appropriate
family F,.

Assume now that there is given a local model (Gu, ¥nr, F),) for each node N of T bas
with F]VOC # (. Those local models can be naturally “implanted” into 7°** instead of the
corresponding nodes to obtain a united model for F'°° U " as follows (for illustration
see Fig. 4(d)). Let A be a node of 7°**. For any structural edge ¢ of 7°** incident to A/,
let B* denote the branch hanging at A" on . The structural graph Gy is implanted into
Tt by replacing the endpoint A of every structural edge ¢ incident to A by the node

*This requirement is naturally fulfilled in known models. Moreover, it is not very restrictive in general,
since any model for i, Fp?® C Fie C FI?° U FE#°, can be easily modified to satisfy it, by appropriate
shrinkings.

10



Nge = Par(("**)71(B7)) of Gy, and then deleting A. Let us denote the resulting graph by
g2.

Since V is the union of nonempty preimages of nodes of 7°%° it is sufficient to define the
mapping ¥2: V — V(G?) on everyone of such preimages. For a nonempty node A of 7%,
¥? takes elements in (¢"**)~!1(A\) as the mapping ¥n does, in the case A has undergone

implanting, and takes all of them to A, otherwise.

Let us define the modeling family. By the construction, there is a natural bijective
correspondence between the structural edges of G and the structural edges of the local
models and of the basic tree. Let us consider the modeling cuts in Fjr and in Fpq, as edge
sets. By [7], the above correspondence applied to them defines edge sets of cuts of G2, and
those cuts represent, via 12-inducing, the same bisections of V; in what follows we identify

such corresponding edges and such corresponding cuts. In this sense, we define

F? = (U{]:J/V : there is a local model Gyr}) U]_‘bas‘

Theorem 3.2 ([7]) (G2,?% F?) is a cut model for F*** |J F'¢, and (1p*)~" takes F*** onto
Fbas.

The model (G212, F?) is called the plant model based on 7 and the set of local
models {Gur}.

The following Lemma shows several properties that are expanded from local models to

their plant model.

Lemma 3.3 ([7]) (i) If each local model at a node N is of size linear in the number of
(Fi9° U F¥¢*)-atoms, then the plant model is linear in the number of (F'U F**)-atoms.

(i) Any bisection in F'°° is represented in a plant model the same number of times as it
was represented in the corresponding local model. Any bisection in F*** is represented
exactly once by an edge inherited from T, and, in addition, the same number of
times as it is represented in the (at most two) local models at the nodes incident to

this edge.

Observe that if a basic bisection B is represented in at least one local model, then the
structural edge inherited from 7% that represents B can be contracted without losing
representation for B (see, for example, edges £ and £” in Fig. 4(d,e)). Executing such
contractions is optional, and each of them can be done independently from the others;

henceforth, we refer to them as “optional contractions”.

11



An important particular choice of F*** (used in [4]) is as follows. We say that a bisection
in F'is separating if it is parallel to any other member of F. We denote the subfamily of
all separating bisections in F' by F*°?; clearly, it is parallel. Choosing F®** = F* implies
Fb*s C F and 9" = ().

3.2 Skeleton models

A particular type of cut models used in this paper is skeleton models.

Definition 3.4 A cut model (G,%) for a graph G is called an r-skeleton if it is condensed,
and =1 takes the set of all (A\(G) +1)-cuts of G onto the set of all (NG +1)-cuts of G, for

anyt=20,...,r—1.

A simple example of an r-skeleton is the quotient graph of G w.r.t. the partition of V
into (A(G) 4 r)-classes.

It is easy to see, by the definition of the skeleton, that for any ¢ < r, the i-preimages
of (A(G) + 7)-classes of G are exactly the (A(G) 4 ¢)-classes of G. This implies the following

statement.

Lemma 3.5 Let (G, ) be an r-skeleton for G and let i be an integer not exceeding r. Then
the answer to a query Same-(A(G) 4 i)-Class(z, y)? for G is the same as the answer to the
query Same-(A(G) + ©)-Class(¢(z), ¥ (y))? for G.

An important property of a skeleton is that it is, in a sense, stable under insertions of

edges into G (note that such an insertion can increase the connectivity of a graph at most

by 1).

Theorem 3.6 ([6]) Let (G, 1) be an r-skeleton for G. Let G' be the graph obtained from
G by inserting an edge (x,y); let (G',¢') be the model obtained by inserting the edge
(v(x),%(y)) into G and, then, shrinking each of the arising nonsingleton (A(G) +r)-classes.
If X(G') = MG), then (G',4") is an r-skeleton for G'; if \(G') = MG)+ 1 and r > 1, then
(G, ") is an (r — 1)-skeleton for G.

Corollary 3.7 ([6]) Let (G, ) be an r-skeleton for G. Let G undergo edge insertions and
let A% and /\g denote the initial connectivities of G and G, respectively. Then the time
complezity of maintaining the (A2 + i)-classes of G under any sequence of updates Insert-
Edge and queries Same-(A% +4)-Class?, i = 1,...,r, is the same as the time complexity of

maintaining the (/\8 + t)-classes of G undergoing the corresponding updates and queries.

12



Observe that the cactus model (4, ¢) with weights (i.e., multiplicities) 2 for its tree-
edges and 1 for edges belonging to a cycle (henceforth called “cycle-edges”) is a 1-skeleton
for G, with A(H) = 2. We use this version of a weighted cactus model in this paper.

3.3 Some properties of A- and (A + 1)-cuts

Recall that F* denotes the family of minimum cuts of G. As recommended at the end of
Sect. 3.1, let us consider as the basic family for modeling F = F* U F! its subfamily
(FA)*eP; let T denote the tree modeling it. Observe that the cactus tree model (#,¢) is
a plant model for F* based on 7 and built by implanting into it cycles (i.e., local models
which are cycles), in the way of Theorem 3.2. By [4], for an arbitrary node of 7% that a local
model is implanted instead of it, the corresponding component has a special uniform cycle
structure and coincides with that local model. We elaborate this property as follows (recall
that the version of the cactus tree model that we use is with cycles of length 3 implanted

instead of all empty nodes of degree 3).

Lemma 3.8 When constructing the cactus tree model, a local model Gy is implanted instead
of a node N if and only if the component Gy is the %-unifarm cycle on the set of its halo

nodes.

In this case, N is an empty node, the length of the cycle Gy is equal to the degree of N
in T, and the local model coincides with Gy together with its minimal cuts, i.e., 2-cuts if

edge weights ignored.

Proof: The if-part and the last group of statements are straightforward, by definitions of
a component and of a local model. Indeed, if Gy is a %—uniform cycle, then this cycle, with
edge weights ignored, together wits its 2-cuts is a cactus tree model for the A-cuts of Gy if
the length of this cycle is at least 4, then the subfamily (FA)k)/C is nonempty, and the local

model must be implanted; if this length is 3, we implant a triangle by our choice.

The only-if-part for the case (F*)i%¢ nonempty is given in [4]. The only remaining case
is an empty node of degree 3. The corresponding component has exactly three nodes, all
of them halo, and all three its cuts are of cardinality A. An easy computation shows that

each of the three edges must have the weight % a

By the construction of a plant model, since only empty nodes of 7T* are affected by
implanting, ¢ coincides with the model mapping for 7*. According to [4], all the optional
contractions are executed. Recall that ¢~ (N), for any nonempty node A, is a (A4 1)-class
of G. The components w.r.t. 7* are called (X 4+ 1)-components of G (observe that this
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is a generalization of the concept of a 3-component given in [3]). The following important

statement is straightforward.

Lemma 3.9 (i) Any (A+ 1)-component is a A-connected graph.

(i) The A-cuts of a (A + 1)-component are cuts defined by a single halo node, and vice

versa.
For establishing the structure of the global (A4 1)-cuts, we use the following statements.

Lemma 3.10 ([6]) Let C be a (A+1)-cut and R a A-cut crossing with it. Then the {R,C'}-
square has no diagonal edges (so, it is a cycle) and has one edge of weight %—I— 1 and three

edges of weight %
Corollary 3.11 ([6]) If A is even, then any (A 4 1)-cut divides exactly one (A4 1)-class.

Remark: By Corollary 3.11(ii), if A is even, then the totality of Connectivity Carcasses
[8] of all (A + 1)-classes of i represents all the (A + 1)-cuts of G. However, Section 4
presents a more compact data structure, which, in addition, allows more efficient incremental

maintaining.

4 The even case

In this section we prove in a constructive way the following reduction to the case A = 2 (for

examples see Figures 17 and 18 at the end of this section).

Theorem 4.1 For any connected graph with even connectivity, there exists a 2-skeleton of

connectivity 2 and size O(ny42) = O(n).

This provides, in particular, by Section 3.2, a straightforward reduction of the (Ag+ 2)-
clagsses maintenance problem, for an arbitrary graph with Ap > 4 even, to the 4-classes
maintenance problem for its 2-skeleton; for the latter problem there exists an efficient
algorithm [9].

In this section the modeled family F* U FA*! is denoted by I and the basic family is
(F*)**P. We begin with showing, in Section 4.1, a method to generate the global cuts from
the local cuts and the cactus tree model H. Further, in Section 4.2, a special modifica-
tion of a (A + 1)-component is suggested that enables to establish a structure of its local
cuts. Finally, unwrapping the reductions, we build in Section 4.3 a 2-skeleton for G, whose

connectivity is 2; its 2- and 3-cuts have a simple explicitly given structure.
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4.1 Structure of global cuts

Let us recall some general information, according to Section 3.1. The family (F*)*P is
modeled by the tree T*. To each node A of T corresponds the neighbor group FK/ formed
by A-cuts that are p-induced by the cuts of 7" defined by single edges incident to A'. Fach
separating A-cut belongs to exactly two neighbor groups and is induced by a structural
edge of T with the endnodes corresponding to those neighbor groups. All A-cuts of G are
modeled by the cactus H that is obtained by implanting cycles instead of certain empty
nodes of 7" and executing all the optional contractions (i.e., contracting each bridge that

is incident to an implanted cycle).

Let us consider a cycle £ of H implanted instead of a node Ny of 7*. By Lemma 3.8,
the component of A is a %—uniform cycle on the halo nodes. Hence, to the structural edges
e of L correspond pairwise disjoint sets F. of edges of GG, each of cardinality % (edges in
such a set connect vertices of G, which are mapped into branches of 7 hanging on Az and
neighboring according to the order given by £). By Lemma 3.8, all nonempty nodes of 7%

remain in H (i.e., are not replaced by a local model).

By Corollary 3.11, any global (A + 1)-cut of GG divides exactly one (A 4 1)-class. Let us
fix such a class S and analyze the global (A + 1)-cuts dividing it. For simplicity, we denote
the (nonempty) node (S) by Ns, the component Gy, by Gs, and the neighbor group
FK/S by Fé The cuts in the neighbor group Fé, together, separate S from V'\ S. For any
cut R € FQ, let us denote the corresponding bisection of V' by {Xg, Xg}, where S C Xg;
notice that, for two distinct cuts Ry, Ry € Fé, the sets Xg,, X, are disjoint. Shrinking of

every such set Xp into a halo node results in GS.
Let us consider a global (A4 1)-cut C' dividing S. Since it is not local, it crosses at least

one cut R in Fé Let us show, what a structure corresponds to such a crossing cut pair (for

example see Fig. 5).

Lemma 4.2 Let FJAV(R) be the neighbor group that contains R and is distinct from Fé
Then:

(i) the node N'(R) of T is replaced by a cycle Lyry in H, and Ns is a node of this
cycle in H;

(ii) the quotient graph of the partition into the (Fﬁ/(R) UC)-atoms is a cycle Lr(g) o with
one edge € of the weight %—I— 1, such that the contraction of £ results in L (g) (hence,
all the other edges of L (ry,c are of the weight %) Moreover, R is defined by the two
edges of Ly (r),c adjacent to £, and C' is defined by ¢ and some other edge ¢ of this
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(b)

Figure 5: A structure that corresponds to a global cut and a basic cut crossing it: (a) the cycle
Lx(ry in H (shown by heavy lines); (b) the cycle Ly(r),c-

cycle not adjacent to ¢ (i.e., C' is p-induced by the cut {¢,} of H).

Proof: Observe that, since R and C' are crossing, they divide V into four parts, and the
structure of their square is given by Lemma 3.10(ii). Assume, first, that this is the final
partition into the (F/%/(R) UC)-atoms. Then the resulting quotient graph Lr(r),c is given by
this Lemma and is as required. Clearly, the component at A'(R) is the result of shrinking,
in this graph, the two nodes that S is mapped into them; so, it is a cycle of length 3 with
all edges of weight % By Lemma 3.8, the local model Ly/(g) is as required as well. The

last two observations of the Lemma are straightforward.

Assume now that R and C' do not partition V into the (F/%/(R) U C')-atoms. Then, one
of the two corner A-cuts of the { R, C'}-square, say Ry, is not separating and, so, is crossing
with a A\-cut R’ (see Fig. 6(a)). As any crossing pair of A-cuts, Ry and R’ are cuts compatible
with the same component Ga of 7%, which is a uniform %—Cycle of length at least 4. Let
us prove that the corresponding neighbor group FK/ coincides with FJAV(R)v by showing that
R belongs to FK/ If R, to the contrary, does not belong to the neighbor group Ffv, then
there exists a separating (w.r.t. ') cut R” € Fy between R and R; (see Fig. 6(b)). It is
easy to see that any cut between R; and R must cross the second corner A-cut Ro of the

{R,C}-square. But then R" is not separating, a contradiction. Hence Fy = F(ry-

Now, the above uniform cycle is the component G/\/(R)7 and the cuts R, Ry, and R, are
compatible with it; the corresponding cycle £y (r) (with weights ignored) is implanted into
T instead of the node AV'(R). The cut R, as a separating one, is defined by two adjacent
edges of GN(R)v say, €1 and €9, and there is one more its edge, ¢, such that the pairs g1, ¢
and 2, ¢ define the cuts Ry, and Ry, respectively. Now, the combination of the cycle Gy (r)
and the {R, C'}-square is the extended cycle Ly (r),c as required. The last two observations
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Figure 6: Tllustration to the proof of Lemma 4.2.

of the Lemma follow immediately. O

Corollary 4.3 Let a global cut C' dividing a (A + 1)-class S, a basic cut R € Fé, and a
cycle Ly (ry be as in Lemma 4.2. Then each edge of C' either has both endpoints in Xg or
has both of them in Xgr. Moreover, there exists a structural edge £ € Ly (ry not incident to
Ns such that the set of edges of C' that have both endpoints in Xgr coincides with F..

Let us estimate the number of cuts R as in Corollary 4.3 and establish the general

structure generated by a global cut.

Lemma 4.4 Let C' be a global cut that divides a (A + 1)-class S. Then C' is crossing with

at most two cuts of F2.

Proof: By Corollary 4.3, each cut R of Fé which is crossing with C' contributes to C' a set
of exactly % edges with both endpoints in Xp; they are not edges of GS, since the entire
Xp is mapped to a single halo node of (. For any two distinct such cuts R’ and R”, those
edge sets are pairwise disjoint, since the edge endpoints lie in disjoint vertex sets X and
Xpo (see Fig. 7(a)). Let t denote the number of such cuts; then t2 < A+ 1, which implies
that if A > 4 then t < 2. O

The following Corollary is implied by Corollary 4.3 and Lemma 4.4 (see for illustration
Fig. 7).

Corollary 4.5 Let C' be a global cut that divides a (X + 1)-class S. Then there exists a
cycle L of H incident to Ns (type 1) or exist two such cycles L1 and Ly (type 2) as follows.
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The set C\E(GS) coincides with the set E., where ¢ € L, or with the disjoint union of I,
and F.,, where ey € L1 and 5 € Ly, respectively, and ¢, or each of €1,c9, respectively, is

not incident to Ns.

Let us gain more information about (A + 1)-cuts from the structures obtained. We
consider a global cut C' of the type 1 first (see Fig. 7(b)). Relying on the structure of
quotient graph Lr(g) ¢ given by Lemma 4.2(ii), it is easy to see that the replacement of
E. in C by Eg, for any £ € Ly (gy, results in a (A + 1)-cut of G as well. Moreover, such
a cut is global if £ is not incident to Ng in H, and local otherwise. We call the group of
all such (A + 1)-cuts a bunch of type 1. Clearly, any bunch can be easily reconstructed as
described above given anyone of its cuts and the cycle Ly (g). The bunch defined by a cut
C' and a cycle L is said to be generated by C and L, or, briefly, generated by C' (or by
L) if the second object is understood.

In particular, observe that we can use for such a reconstruction of a bunch anyone of its
two local cuts. Such a pair—a local cut C' and the corresponding cycle L—can be identified
in terms local for the component Gg as follows. For any cycle £ of H containing a node
Ng, let b denote the halo node of Gs corresponding to the branch of T that contains
the nodes of L, except for Ns. By Lemma 4.2, the set of edges incident to b is halved

18



by F., E.n, where ¢’,¢" are the structural edges of £ incident to Ns in H. A local cut '
dividing S and a cycle £ generate a bunch of type 1 if and only if C'N§(b,) coincides with
F.r or with E.n.

When a global cut C' is of type 2, then the modifications of C' similar to that described
for type 1 can be done independently for cycles £; and Ly (see Fig. 7(c)). Indeed, a
modification done for any one of the cycles affects, for the other one, only the corner (A+1)-
cuts of the square considered in the proof of Lemma 4.2; so, nothing in the structure given
by Lemma 4.2 for the latter cycle is affected. In this case, the bunch of type 2 generated
by C', L4, and Ly, consists of all modifications of (' resulting from replacement of F., and
E., by any other Fz and Fs,, where &1 € L4, £ € L.

There are four local cuts in such a bunch; each of them, together with the cycles £y and
Lo, can be used to generate the entire bunch. Such a local cut C' and the cycles £; and
Lo are recognized, similarly to the case of type 1, as a cut C that halves properly each of
§(be,) and 8(bz,) in Gg, where bz, and bz, are the two halo nodes in G's corresponding to
L1 and Ls, respectively.

Clearly, all bunches of the two described types cover the set of global (A 4 1)-cuts.

For any two sets A and B, let AAB = (AUB)\ (AN B) denote the symmetric difference
of A and B. We say that a partition of a set is balanced if its parts have equal cardinality.

We say that a halo node b of Gs is distinguished if there exists a (A4 1)-cut C’ of G'g
such that |C” N §(b)| = 3; such C” is said to be a distinguishing cut. Since d(b) = A, the
cut C” = C'Aj§(b) has the same property, and we say that {C’,C"} is a distinguishing
pair. Note that, in this case, the partition {6(b) N C”,§(b) N C"} of 6(b) is balanced.

The previous discussion implies the following property:

Lemma 4.6 Let C' be a local cut dividing a (A + 1)-class S and L, Ly, Ly be cycles of H
containing Ns. Then:

(i) C and L generate a bunch of type 1 if and only if C' distinguishes in Gs the halo node

br so that the arising balanced partition of 6(bz) coincides with the partition induced
by L.

(i) C and Ly, Ly generate a bunch of type 2 if and only if C' distinguishes in G each of
the halo nodes bz, and by, so that the arising balanced partitions of §(bz,) and 6(bz,)

coincide with the partitions induced by L1 and Ly, respectively.

As a consequence, any model for the local (A+1)-cuts of a component (g, with additional

information on all the cases when a local (A+ 1)-cut halves prperly the set of edges incident
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Figure 8: (a) a bunch of type 1 contained in a bunch of type 2; (b) a global cut of type 1 contained
in 2 bunches; (¢) a local cut C' contained in 4 bunches.

to a halo node, can serve as an implicit model for all the (X + 1)-cuts dividing S. We use

this reduction in what follows.

Let us conclude with some observations. Notice that each bunch of type 2 contains
exactly four bunches of type 1: each one of them is obtained by fixing one among the four
structural edges £,2) € £y and &},2) € Lo incident to Ng in H (see Fig. 8(a), where &/
is chosen). In what follows, we consider only the maximal-inclusion bunches (i.e., do not

consider bunches of type 1 contained in a bunch of type 2), if not said the contrary.

Observe that, by the previous discussion, no two bunches share a global cut of type 2.

However, distinct bunches can share a global cut of type 1 or a local cut (see examples in

Fig. 8(b.c)).

Lemma 4.7 A global (A + 1)-cut is contained in at most 2 bunches, and a local one in at

most 4.

Proof: Let us, first, prove an auxiliary statement: any local (A + 1)-cut C' distinguishes
at most 4 halo nodes in its component. Indeed, the contrary implies that some side of C'
contains at least 3 of such nodes; since the sets of edges incident to them in C' are disjoint,
3% < |C| = A+ 1 must hold, a contradiction if A > 4.

By similar reasons, any global (A4 1)-cut halves the set of edges incident to a halo node
for at most 2 halo nodes of (7. This property immediately implies the first statement of
the Lemma.

For a local (A4 1)-cut C' if it generates only bunches of type 2, then one can imagine at
most six pairs from the 4 nodes distinguished by it, each defining (together with C') a bunch
of type 2. To reduce the bound six to four, let us fix an arbitrary halo node b, distinguished
by C. Let C' be an arbitrary global cut generated by C' and £. Observe that any bunch of
type 2 generated by C', bz, and any other halo node b induces a bunch of type 1 generated
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Figure 9: Two possible cases of crossing (A + 1)-cuts for A even.

by C' and b. By proved above, there can be at most two latter bunches, and thus of the

former bunches as well. The total bound four for the current case follows.

If C' generates a bunch of type 1 with exactly one of the nodes, then the three remaining
nodes can form at most three pairs to generates bunches of type 2, totally four; the remaining

cases can be proved similarly. O

4.2 Structure of local cuts

We study the local (A+1)-cuts as the (A + 1)-cuts of the component Gg; by Corollary 3.11,
each of them divides S.

It turns out that the family ng“ of those cuts can be restored from a certain parallel
cut family as follows. Crossings of such cuts have a very specific structure: flipping of a
certain halo node from one side of any cut in a crossing pair to the other its side turns
that crossing pair into a parallel cut pair (as in Fig 9). Moreover, for all crossing pairs that
are “parallelized” using the same halo node, the changes in the edge set of a cut by such
a flipping are the same. We modify the graph GS, by splitting-into-two each distinguished
halo node, in a way, and replace each pair of cuts in Féoc that distinguish a halo node b by
a single cut dividing the two new nodes that b is split into; the original cuts can be easily
restored from the new cut. The new cut family of the new graph turns to be parallel, i.e.,
modeled by a tree. In such a way, the cuts in Féoc have a simple and compact but implicit
representation; moreover, in the next Section, we proceed to an (explicit) cut model for the

entire I based on those tree models.

We begin with establishing a specific structure of squares of crossing (A + 1)-cuts in Gs.

Lemma 4.8 Let C',C" be a pair of crossing (A4 1)-cuts in a graph with even connectivity

A. Then, at least one of the corner cuts of their square is a A-cut. Moreover, if C is such a

A

corner cut, then both side edges in it are of weight 5, while its diagonal edge is of weight 0.
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Proof: Assume, in negation, that all the four corner cuts of C’, C" have cardinality strictly
greater than A, i.e., at least A + 1. Recall from Section 2 that in the {C’ C"}-square holds
di+dy = |C'+|C"|=2daz = 2(A+1) —2da3, and da+ds = |C'|+|C"|=2d14 = 2(A+1) —2d14.
Thus, all the corner cuts are (A + 1)-cuts, and das = d14 = 0. One can easily verify that
A+1

2

in this case each side edge of the {C’, C"}-square must have the non-integral weight a

contradiction.

Let now C' be a corner A-cut in the {C’, C"}-square, say C' = §(Ay). We show that
diy = di3 = % If this is not so, then assume, w.l.o.g., that di3 < % But then d(Az) =
d(A U Ag) — (diz+dia) +diz=(A+1) = (A—diz) +dia=2d12+1<2(3 - 1)+ 1< ) a

contradiction. O

In fact, there exist only two possible cases of the square of cuts as in Lemma 4.8, which
are presented in Fig. 9 (this fact can be easily established, and this leads to an alternative

proof of Lemma 4.8).
Recall that (g is A\-connected and that the only its A-cuts are the cuts defined by single

halo nodes. Therefore, any corner cut as in Lemma 4.8 is defined by a halo node; such a
halo node b is distinguished by any of the crossing cuts, and the arising balanced partition
of 6(b) is defined by the side edges of the square incident to b. Observe that flipping of b
to the other side of anyone of the crossing cuts turns it into a corner cut, i.e., turns the

crossing pair into a parallel one.

The following fact is crucial.

Lemma 4.9 If a halo node b is distinguished by several pairs of (A + 1)-cuts, then the

arising balanced partitions of 6(b) coincide.

Proof: Suppose, in negation, that there is a halo node b which is distinguished by two
pairs of (A + 1)-cuts, say {C1,C3} and {C3,Cy4}, such that the arising partitions of §(b)
do not coincide (see Fig. 10(a)). The negation assumption implies that there are exactly
five {C4,Cq,C3,Cy4}-atoms, and one of them is {b} = Xy. Denote the other atoms by
X1, Xo, X3, X4, where §(X; U X;41) =C4, i =1,2,3, and §(X4U X;) = Cy. Then holds:

4 4
NS AX) =2 Y (X, X)) = S0 ICH — 2d(Xy, Xa) + d(Xa, X)) < A+ 1),
i=0 0<i<j<4 i=1
which is possible only if A = 4 and d(Xy, X3) = d(X32,X4) = 0. Clearly, in this case
d(Xo, X;) =1,i=1,2,3,4, must hold. Further computations lead to d(X;, X;) = % for any
i#j=1,2,3,4 (see Fig. 10(b)), which is impossible for an unweighted graph. O
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A=4).

Figure 11: (a) a distinguished node and its split pair; (b) local cuts restored from a (A+ 1)-cut that
contains a single split edge; (c) local cuts restored from a (A + 1)-cut that contains two split edges.

For any distinguished halo node b, let us denote the canonical balanced partition of §(b)
by {&'(b),8"(b)}. The split graph G's of G5 is defined as follows (see Fig. 11(a)). Fach
distinguished node b is replaced by the two split nodes o', b” (the split pair of b) and
the split edge ¢, = (b, ") of the weight/multiplicity %; each edge e = (b, v) is replaced by
(b',v) if e € &'(b) or by (b",v) if e € §"(b).

Clearly, G5 is a quotient graph of G, obtained by shrinking every split pair of G's into
a single node. Each non-split edge (resp., non-split node) of G's naturally corresponds to
an edge (resp., a nondistinguished node) of (s, and vice versa; in what follows we identify
such corresponding objects in Gyg and Gs. Similarly, we identify each cut of G'g that does
not contain any split edge with the corresponding cut of G's. In this way, the (A + 1)-cuts
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of G'g that do not contain any split edge are the cuts in Féoc, which we intend to model.

Any other (A + 1)-cut of (s contains one or two split edges and is called a split cut.

The following statement, concerning general graphs, can be easily verified.

Fact 4.10 Let C' be a cut and v be a vertex such that C' # §(v), in a graph. Then,
C'' = CAS(v) is a cut, and |C'| = |C] + d(v) = 2|C' N §(v)|. Hence, if d(v) is even and
ICN8(v)] > 2 then |C7] < |C] - 2.

Let us now establish some important properties of the split graph G's.

Lemma 4.11 (i) G5 is A-connected;

(i) R isa A-cut of G if and only if it is defined either by a halo node, or by a split node,
or by a split pair.

Proof: (i) Among minimum cuts of G's, let R be one that contains a minimum number
of split edges. Assume that R contains at least one split edge, say 5. If R = 6(b') then
|R| = A and we are done. Otherwise, by Fact 4.10, the cut R' = RAS(V) is also a minimum
cut of G's and contains less split edges than R, a contradiction. Therefore, R is a cut of Gy

and, hence, |R| > A as required.
(ii) Clearly, any cut defined by a halo node, or by a split node, or by a split pair is

a A-cut. Assume, in negation, that there exists a A-cut of G of another type. Among
such cuts, let R be one that contains the minimum number of split edges. Observe that R
contains at least one split edge, say €;,. Indeed, otherwise R is a A-cut of (g, hence, it must
be defined by a halo node in GS, i.e., it must be defined by a halo node or by a split pair
in GS.

Since G is A-connected, then by Fact 4.10, each of R’ = RAS(Y), R" = RAS(D")
is a A-cut of G's that contains less split edges than R. We obtain a contradiction to the
definition of R by showing that at least one of R’, R” is defined neither by a halo node, nor
by a split node, nor by a split pair. By Corollary 3.11(ii), S is nonempty; let s € S. By
construction, one of R/, R” contains s and both ', " on the same its side, while the other
its side is nonempty. Then, the other one of R’, R” contains s on its one side, and at least

three nodes on its other side, i.e., is as required, which finishes the proof. O

Corollary 4.12 (i) Let C' be a (A + 1)-cut of Gs containing a split edge =, = (b',b").
Then, C'N6&(b') = ey. Hence, C' = CAS() is also a (A + 1)-cut.

Moreover, for any node v # b of G's of degree \, |CNS(v)| = % implies |C'N6(v)| = %
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(ii) For any (A + 1)-cut C' and any halo node b of G5, |C' N 5(b)| < %

Proof: Since G'g is A-connected, by Fact 4.10, no (A + 1)-cut of (g contains more than %

edges incident to a node of degree A.

(i) The above property implies straightforwardly the first part of (i), and, observing that
C’ N §(v) contains C'N §(v), also the second its part.

(ii) Assume, in negation, that C' contains exactly 3 edges from §(b). W.lo.g., let C
contain the minimal number of split edges among all such cuts. Observe that C' contains
at least one split edge, say e, = (b',b”). Indeed, otherwise C' is a cut of (g, therefore, b is

a distinguished node in GS, and, hence, b cannot be a halo node in Gs.

Now, by (i), ¢’ = CAS§(H) is a (A+ 1)-cut that contains 2 edges from &(b) and contains

less split edges than C', a contradiction. O

Let FQ‘H denote the family of all (A 4+ 1)-cuts of G's that do not contain all the %
non-split edges incident to any split node. In other words, a (A4 1)-cut C belongs to FQH
if and only if for every split node b’ such that |C'N§(b)| = 2 holds C'N (') = &3, where &,
is the split edge incident to b’. Let us see what is the relation between FQ‘H and Fle.

Let us consider a split cut C' in FQ‘H; recall that any split cut contains either one or
two split edges. If C' contains a single split edge £;, then, by Corollary 4.12(i), each of the
two cuts CAS(Y) and CAS(D") is a (A + 1)-cut cut of G's distinguishing b (see Fig. 11(b)).
Similarly, by Corollary 4.12(i), if it contains two split edges ¢, and &4,, then each of the
four cuts CAS(D) AS(BY), CASB])AS(L), CASDL)ASDY), CASBYASBY) is a (A+1)-cut
distinguishing both by and by in Gs (see Fig. 11(c)). All those cuts are said to be restored
from C'.

It is easy to see, using Corollary 4.12(ii), that a (A4 1)-cut of G's belongs to both F¥*
and FQ‘H if and only if it is a nondistinguishing cut of G's. Such a cut is said to be restored

from itself.
Lemma 4.13 The family of cuts restored from the cuts in FQ‘H coincides with Féoc.

Proof: The fact that all restored cuts are in Féoc was already indicated above. It remains
to show that for any cut C' € FQ'H there exists a cut in FQH such that C' is restored from
it.

If C' is nondistinguishing in G's, then it is restored from itself. Now, let ' distinguish in
G's a halo node, say by. Let b} be the split node of by for which in G's holds |C'N§(b))| = 2.

Now, C} = CAS§(B,) is a (A + 1)-cut of G5, and C' = C1AS(b)). Therefore, if Cy € Fat,
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then ('is restored from C'y and we are done. Otherwise, the definition of FQ‘H (??) implies
that there exists a halo node by # by in G'g such that in G'g, for one of b}, by, say b}, holds:
ICh N 8(bY)| = 3 and Cy N 5(by) # ep,. The cut Oy = C1AS(bS) is a (A + 1)-cut which
contains two split edges; evidently, it belongs to FQH. Now, C' = CoAS(b)) Ad(by), which
finishes the proof. O

Lemma 4.6 and Lemma 4.13 imply the following 2-stage reduction:

Reduction:

(i) Given a description of the (X + 1)-cuts of Gs, the global (A + 1)-cuts dividing S are

generated by certain distinguishing cuts among them.

(i) Given a description of the cuts in FQH, the (A + 1)-cuts of G are restored from

them.

In such a way, the family FQ‘H represents the family of all (A + 1)-cuts dividing S.
(Observe that, though the graph G g serves to represent those cuts, it is not a model in the

usual sense of this paper.)

Let us show that the family FQ‘H is parallel. Lemmas 4.8 and 4.11(ii) and Corol-
lary 4.12(ii) imply that at least one corner cut of a crossing pair of (A + 1)-cuts of G's is
defined by a split node or by a split pair. It is easy to see that in both cases at least one of
the crossing cuts contains exactly % non-split edges incident to some split node, and, hence,

does not belong to FQH. This implies the desired parallel property of FQH.

Hence, for the family FQ‘H exists a tree model (Tg,@s), where $g maps V(Gs) to
V(Ts). The model (Ts,ps) represents, via the above Reduction, all the (A + 1)-cuts of
Gg; moreover, by Corollary 3.11, the set of models {(Ts,¢s) = Sis a (A + 1)-class of G}
represents all the (A4 1)-cuts of (. In the next Section we show how this representation
can be “unwrapped”, united over all (A + 1)-classes of G, and implemented in a compact

way.

4.3 2-skeleton model and the incremental maintenance

Now we unwrap Reduction (ii), arriving at a 2-skeleton for G's (for illustration follow Fig. 12).
For convenience of explanation, let us assign colors to structural edges of our model. First,
we assign to structural edges of T the blue color. Second, for each halo node b of G, we
add to T the (halo) node denoted also by b and two red edges of weight 1 each: (b, ¢s(b'))
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Figure 12: Construction of a 2-skeleton for Gs: (a) the tree Ts; (b) H%; (c) restoration of the
distinguishing cuts. (Blue edges are shown thicker than red ones.)

and (b, ps(b")), if b is a distinguished node, and two parallel edges (b, ¢s(b)), otherwise. For
the graph H% obtained, each its cut defined by a single halo node is a 2-cut. The mapping
9% V(Gs) = V(H2) takes the vertices of S as ¢g does and each halo node b of Gis to the
node b of H% (in what follows we identify them). Clearly, the pair of red edges incident to

a halo node b @%-induces the A-cut corresponding to b.

Let us call the unique blue path P(b) that connects the ends of the red edges incident
to a halo node b the projection path of b. Observe that a structural edge belongs to P (b)
if and only if it pg-induces a cut of G'g dividing {b’, "}, i.e., containing ep.

Lemma 4.14 (i) A structural edge of H% is contained in at most two projection paths.

(ii) Two projection paths have at most one structural edge of H% in common.

Proof: For proving (i) observe that if  is a blue structural edge of H%, then for each
projection path P(b) containing e, the split edge e is contained in the (A + 1)-cut of G'g
corresponding to €. Those split edges are distinct, and each of them has the weight % Since

A > 4, the number of such edges is at most two, as required.

We now prove part (ii). Suppose, in negation, that two projection paths P; and Py
have at least two structural edges in common. Since P; and Ps are paths in a tree, their
intersection is a path of length at least two. Let (N1, N), (N, N2) be two adjacent edges of
this intersection path. Remove (N, N') and (A, N3), and let B be the connected part of T
containing A (see Fig. 13(b)). Since the (A + 1)-cuts of G's that are @g-induced by (A7, N)
and (N, N3) are distinct, the set ¢3! (B) is nonempty (see Fig. 13(a)). Since those cuts has
two split edges of weight % in common, 9551(3) defines a cut of Gg of cardinality at most

2, a contradiction.

a

We assign to any blue structural edge ¢ of H% the weight w(e) equal to 3 minus the
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Figure 13: TImpossibility of a long intersection of two projection paths.

number of projection paths containing ¢ (Fig. 12(c)). Taking into account these weights,
observe that any blue edge ¢, together with either zero, or one, or two red edges: one edge
from each red pair that defines a projection path containing ¢, is a 3-cut of H%; thus, ¢ is
contained in either one, or two, or four such cuts, respectively. It is easy to see that those
cuts pi-induce exactly the (A + 1)-cuts of G's restored from the cut of G's defined by .

Lemma 4.15 (i) H% is 2-connected; it has O(|V(Gs)|) structural edges.

(it) The model (H%, %) is a 2-skeleton for G's.

Proof: (i) By construction, there are no bridges in #% when weights ignored, except for

the blue edges that do not belong to any projection path. Since each such edge has weight
3, there are no 1-cuts in H%.

By Section 3.1, the size of the tree Tg, i.e., the number of blue edges, is linear in |V(GS)|
The number of red edges is at most twice the number of projection paths, and the latter is

at most twice the number of blue edges, by Lemma 4.14.

(ii) The condensity property of #% follows from the simple observation that the 3-cuts
of #% as in the discussion before the Lemma, together with 2-cuts defined by single halo

nodes, partition the node set of % into singletons.

Now, the only thing remained is to show that (©%)~! takes the sets of 2- and 3-cuts of
H% onto the sets of A\- and (A + 1)-cuts of GS, respectively. From the previous discussion
follows that for any A- or (A + 1)-cut of (g there exists a 2- or 3-cut of M, respectively,
¢%-inducing it. It remains to prove that any 2- or 3-cut of H% ¢%-induces A- or (A+1)-cut
of G'g, respectively.

First, let us analyze a cut C' consisting of red edges only. Observe that the entire tree

formed by the blue edges is on the same side of C. The other side consists only from halo
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(b)

Figure 14: No 2-cut of H% contains a blue edge.

nodes b, so that both the two edges incident to b are in C'. Therefore, if |C'| = 2 then C'is
defined by a single halo node; otherwise, |C| > 4.

Now we prove that no 2-cut C' of H% contains a blue edge. Let us consider two cases.
Assume, first, that C' consists of a blue edge ¢ = (N, V) of weight 1 and a single red edge
Since w(e) = 1, there are two projection paths containing . There exists at least one of
those paths such that the both red edges corresponding to it do not belong to C'. Then,
Ni and N, are connected by the edges of that path, excluding ¢, and those red edges (see
Fig. 14(a)), a contradiction.

Second, assume that C' consists of two blue edges 1, 45 of weight one each. Deletion of
them breaks Tg into three parts: a “middle” one and two “terminal” ones (see Fig. 14(b)).
No projection path containing anyone of 1, €5 connects the middle and a terminal parts;
indeed, otherwise, the two red edges corresponding to that path connect the two sides of
C'. Since both w(ey), w(ey are 1, there must be at least two projection paths containing &4
or €9, and, hence, connecting the two terminal parts. Both those paths contain both of g¢

and £5, a contradiction to Lemma 4.14.

We proceed to 3-cuts. Let us show that any 3-cut of H% contains exactly one blue edge.
It was already shown that three red edges cannot form a 3-cut. Let C be a 3-cut of H%, and
let eq,...,,, 1 <r <3, be the blue edges in C'. Assume, in negation, that r equals 2 or 3.
Deletion of e1,...,s, partitions the tree Tg into r + 1 subtrees 7o, ..., 7, (see Fig. 15). It
can be easily shown that the edges £; and the subtrees 7; can be renumbered so that there
exist nodes N;, i = 0,...,r, such that N, belongs to 7; and, for ¢ > 1, is incident to &;;
w.l.o.g., assume that our numbering is such a one. Let Q% be the quotient graph obtained
from H% by shrinking every subtree 7; into the node Aj, i =0,...,r; let X, X be the sides
of C'in Q%, where Ay € X. Observe that

(a) C'is compatible with Q% and contains all its r blue edges;

(b) since ' is of odd cardinality 3, each of X', X’ contains at least one node of odd degree;
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Figure 15: Tllustration to the proof of Lemma 4.15 (upper parts show divisions of 75 and lower
parts show graphs Q%).

since all nodes in Q%, except of A,..., N, are halo and, thus, have degree 2 each,

such a node must be one of A, ..., N,;

(c) for any projection path with one endnode in A’ and the other in X', the cut C' contains

exactly one red edge of the pair of red edges corresponding to this path.

Let us consider two cases:

r=2: W.lo.g., let 7y be the “middle” subtree (see Fig. 15(a)). Let ¢ € {0,1} be the
number of projection paths containing both £; and €3 (those are the projection paths
having one endnode in 7; and the other in 73). It can be easily verified (see Fig. 15(a))
that
A(NG) = 2(1X] = 1)+ 6 — 2.

a contradiction, since d(MNy) must be odd.

r=3: In this case, C' contains no red edges, while each of the edges £1,e5,c35 has the
weight 1 and thus is contained in exactly two projection paths. Clearly, one side of C'
contains at least two nodes from Ny, N7, Ny, N3; assume, w.l.o.g., that A7, N3 € X.

Let us consider two possibilities:

Ny € X Wlo.g., g, = (N1, N;), ¢ = 1,2,3 (see Fig. 15(b)). Since C' does not contain

any red edge, each of the two projection paths containing £; must have one
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endnode in 7o and the other in 7,. However, then both £, ¢, are contained in

each of those two projection paths, a contradiction to Lemma 4.14(ii).

Ny € X: In this case g; = (Mo, Ni), i = 1,2,3 (see Fig. 15(c)). Let us consider the
projection paths containing at least one of £1,e9,23. Using arguments as in the
case Ny € X, it can be easily verified that there are exactly three such paths:
one contains €1,€2, another £9,e3, and the last one 1,e3. Let us denote by b;;,
1 < 7 = 1,2,3, the halo node corresponding to the projection path containing
g;,€;. Let C; be the 3-cut of 7—[25 which consists of the edge ; and the two red edges
(Ni, bi;), and let X; be the part of C; containing 7;, i = 1,2, 3. Recall that each
Ci, i =1,2,3, ¢%-induces a (A + 1)-cut of G's. Let us denote X; = (p%) (X)),
i = 1,2,3, and Xog = (¢%)"HX). By the construction, for j > ¢ = 1,2,3
holds: d(X;) = A+ 1, d(b;;) = A, and d(b;;, X;) = d(b;j, X;) = 3 (??). Hence,
d(b;;, Xo) = 0, d(X;, Xo) < 1. Now, d(Xy) =3 —2-%,;d(X;, X;). This implies
that d(Xo) is equal to 1 or 3, hence, X is nonempty; therefore, X defines a 1-

or 3-cut in a graph with connectivity A > 4, a contradiction.

So, each 3-cut of H% contains exactly one blue edge. Tt is easy to see that the set of red
edges belonging to a 3-cut of #% containing a single blue edge ¢ is formed by taking exactly
one edge from each red pair that defines a projection path containing £. By the previous

discussion, any such cut p%-induces a (A + 1)-cut, which finishes the proof. O

Let us analyze the obtained representation. Observe that the structure of the 2- and
3-cuts of each skeleton model (H%, %) is simple: those are, respectively, the cuts defined
by the single halo nodes and the cuts defined by the single blue edges as described before
Lemma 4.15. The totality of those models, together with (#,¢), represents all the A- and
(A + 1)-cuts of G, via Reduction(i) established for the global cuts in Section 4.1. This
representation can be implemented in a compact way if we keep, (i) for each (A + 1)-class
S, a pointer from the node ¢(S) of H to the model (H%, ¢%), (ii) for each halo node b of
H%, a pointer from it to the corresponding cycle £(b) (possibly of the length 2) of #, and,
(iii) for some of the halo nodes b, a flag indicating that b is distinguished and the partition
{8'(b),6"(b)} of §(b) coincides with its partition induced by L(b).

In this implementation, the bunches are represented as follows. A bunch of type 2 is
defined by a blue edge ¢ of weight 1, such that each of the two corresponding halo nodes
(whose projection paths contain €) has the flag as above. A bunch of type 1 is defined either
by a blue edge of weight 1, such that exactly one of those halo nodes has this flag, or by a
blue edge of weight 2, such that the unique corresponding halo node has this flag.
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@ O

Figure 16: Tllustration to the opening procedure.

By Lemma 4.15(i), the size of the considered representation is O(nyy2) = O(n), since the
sum of the numbers of nodes in all (A+ 1)-components is O(ny42) (indeed, as can be easily
verified, there are, totally, at most ny42 nonhalo nodes and 2-|V(T*)| = O(nxy1) = O(nxt2)
halo nodes). This representation generalizes the representation for the case A = 3 given
in [3], and we think that the algorithm and the data structure for the incremental mainte-
nance of the 4-classes of GG given in [9] can be adjusted for this generalization. However,
the total skeleton model that we suggest in what follows provides, using Corollary 3.7, a
straightforward reduction to the case A = 3.

Now, we build a 2-skeleton (H?, ¢?) of size O(nys2) = O(n) for G, with A(#?) = 2. Let
us use the version of H with weights 2 for tree-edges and 1 for cycle-edges, as in Section 3.2.
Recall that with these weights, for X even, (4, ¢) is a l-skeleton for G, with A\(H) = 2.
Observe that, in the sense of Section 3.1, any 2-skeleton (H%, p%) is a local model at the
node ¢(9) of T*, of size linear in the number of the (\ + 2)-classes in S and halo nodes of
GS; moreover, any cycle £ of # is a local model at the corresponding node Az of 7. By
Theorem 3.2 and Lemma 3.3, implanting all such local models into 77 results in a model
(H?, %), of size linear in nyyq, that represents the A- and local (A + 1)-cuts of G' by its 2-
and 3-cuts, respectively. We now adjust it, using Reduction(i), to represent also the global
(A + 1)-cuts (see Fig. 16).
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Let us paint red each cycle £ of H implanted into 7% (in what follows we identify it
in % and in H?). Let ¢ = (N, Ns) be a structural edge of 7 such that a cycle £ is
implanted instead of Az and the local model %% is implanted instead of NVs into T (notice
that in H2 both Nz, Ns are empty nodes) and let (As,b.) be the “remainder” of ¢ in H2,
where Vs € £,b; € H% (see Fig. 16(a)). In the case b, is distinguished and {&§'(bz), 6" (bz)}
coincides with the partition of §(bz) induced by £, we perform the following operation, in
order to give an explicit representation to the bunch corresponding to b, and £. W.l.o.g.,
let us assume that &'(bz) = F. and 8”(bg) = E.n, where £/, are the structural edges
incident to Mg in £. We contract to a single new node the “reminder” (JV57b£) in H?
(according to the optional contraction described in Sect. 3.1) (see Fig. 16(b)). Then, we
delete this node and identify each red edge incident to b; in H% with the one of &’ "
corresponding to it via the assumed coincidence (see Fig. 16(c)). We call this operation the
opening of %% into L. (Remark: this operation can be executed in one phase as follows:
if &' corresponds to (b, N} and £” to (be, N), then we delete Ns and b., together with
(Ns,bz), (be,N'), and (be, N"), and identify the “free” ends of ¢’ and £” with N’ and A",
respectively.) Observe that nonempty nodes of H% are not affected by such openings, i.e.,

the mapping remains the same. The size of the model does not increase.

The following situation may be considered as a degenerate case of the above construction.
Let us consider a structural edge (by,b2) of H? such that by, by are halo nodes of local
models 7—[251 and 7—[252, respectively (in this case, the edge (b1, b2) is the reminder of the edge
(¢(S1),¢(S2)) of T*). Observe that then the cuts defined by b; in H% , i = 1,2, model the
same cut C' of G as the structural edge (b1, b3), and thus &(b;) in 7—[251., ¢ = 1,2, coincide,
since each of them coincides with C'. Assume that both by, by are distinguished halo nodes,
and that the corresponding balanced partitions of §(by) and 6(by) coincide (see Fig. 16(d)).
In this case, let us consider the edge (by,bs) of the weight 2 as a cycle {¢’, 2"} of the length
two in H? with the sets F.; and E.» equal to the parts of the balanced partition mentioned
above. We define the opening of 7—[251 and 7—[252, one into the other, as the result of the two
openings of %% and H% into that degenerate cycle (see Fig. 16(e),(f)) (in fact, to execute
that opening, it is sufficient to remove by, by, and (by,b2) and identify the corresponding

pairs of red edges of 7—[251 and 7—[252)
We denote by (H?2, 0%, F?), where F?is the family of all 2- and 3-cuts of H?, the model

obtained by executing all openings in 2. Now, the following statement proves Theorem 4.1.

Lemma 4.16 The model (H?,?) is a 2-skeleton for G, with connectivity 2 and of size
O(nA+2).
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Proof: Let us consider an opening as described above. Observe that it does not produce
bridges (hence, H? is 2-connected) and retain all present cuts. Moreover, for any 3-cut cut
C of H% containing one of (bz, N') and (bz, N"), replacement of that edge by any edge ¢ in
L results in a new 3-cut. For the modeled cuts, this corresponds to the replacement of the
edge set F. or F.n by E., where ¢ € L. It is easy to see that those new cuts form exactly
the bunch of type 1 generated by C' and L. Moreover, when C' contains two such edges, the
results of all pairs of such independent replacements form the bunch of type 2. Therefore,
all the A- and (A + 1)-cuts of G are p?-induced by the 2- and 3-cuts of H2.

Let us show that openings produce new 2- and 3-cuts only of the kind described above.
By induction, let us assume that after some sequence of openings all the new 2- and 3-cuts
are as required (for the initial graph this is trivial), and one more opening is executed; we
keep notations as in the definition of an opening. Clearly, if a cut C' of the new graph does
not cross the cut {(bg, N'), (b, NV} = {&’,£"}, it is a cut of the current graph and is, by
the induction assumption, as required. Otherwise, let us consider the two corner cuts of
the square of C' and {¢’,¢”} that contain the edge ¢’; both of them are cuts of the current
graph. Clearly, their total cardinality is |C| 4+ 2. If C' is a 2-cut, the only possibility is that
both the corner cuts are 2-cuts. This is a contradiction, since, by the induction assumption,
there are no 2-cuts dividing H%. If C'is a 3-cut, the only possibility is that the corner cut
Cy dividing H% is a 3-cut, and the other one is a 2-cut, which, by the induction assumption,
must be of the form {¢’,¢}, with ¢ € £. Observe that if Cy is a cut of #%, then C is in the
bunch generated by Cy and L. If C'y is a cut obtained by a replacement, say, in a cut Cj,
corresponding to the opening of H% into a cycle £y, then by the induction assumption, the
only possibility is that Cy consists of a blue edge, ¢/, and a red edge of 7—225 corresponding to
L1. Clearly, in this case, C'is in the bunch of type 2 generated by Cy, £, and L. Observe
that a cut obtained by two replacements contains only one edge in 7—225, which is blue; hence,
(1 cannot be of this kind.

It was mentioned above that the size of #? is not greater than that of H2, i.e., O(ny42).
a

Observe that the representation by #? is not bijective. However, it can be shown that
each A-cut of (G is represented at most twice (as in the cactus tree model) and, using
Lemma 4.7, that each (A + 1)-cut of (G is modeled by at most four cuts of H2.

From the last Lemma, Corollary 3.7, and [9] we deduce:

Theorem 4.17 For X even, the (A + 2)-classes of G can be maintained under a sequence

of u updates Insert-Edge and q queries Same-(A+2)-Class? in O(u+q+nlogn) total time.
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Figure 17: Example of the construction of the 2-level cactus tree model for A even.

Figure 18: Example of the 2-level cactus tree model for a graph with A = 6.
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The worst case time for each query is O(1). The initialization time is polynomial in n, and

the space required is O(n).

Relying on [17], the complexity of incremental maintaining can be reduced to O((u +
¢+ n)o(u+q,n)).

Notice that the above complexities of maintenance can be reduced substituting each
instance of n by njys in the following way. At the preprocessing stage, we can build
the quotient graph G’ by shrinking each of the ny,42 (Ao + 2)-classes of GG into a single
supervertex and apply our algorithm to G, with n),12 supervertices, instead of G. In this
version, the current (Ag+ 2)-class of a vertex v of (¢ is found as the current (Ag+ 2)-class of
the supervertex of G’ corresponding to the initial (Ag 4 2)-class of v. This is done via two
queries, where finding the supervertex can be supported by a static data structure in O(1)

time.

5 Concluding remarks

1. Observe that the properties mentioned in Theorem 4.1 are similar to those of the cactus
tree model for the minimum cuts, though more complicated. Since the structure of the
modeling cuts is explicit and, in a sense, simple, and since the representation is compact,
our model seems to be convenient to represent the minimum and minimum+41 cuts of graphs

in various applications.

2. It is likely that the 2-level cactus model can be a useful tool for handling edge-
augmentation problems when the increase of the connectivity is 2. Another possible di-
rection is to use our representation for effective maintenance of optimal augmentation sets

of an incremental graph.

3. Let us call a cut of a weighted graph subminimum if its weight is the second minimum.
It seems that the authors have obtained a generalization of the results of this paper to
modeling the minimum and subminimum M-cuts, in the case AT/ < %, for an arbitrary
weighted graph. To achieve this generalization, the techniques used in this paper separately
for odd and even cases were combined; therefore, the new construction has the difficulties

of both these cases simultaneously and even more.
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