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2.1 Introduction

Two paths in a graph are internally disjoint if no internal node of one of the paths belongs to the other. A

graph is k-connected if it contains k pairwise internally disjoint paths from every node to any other node.

We survey approximation algorithms for the k-Connected Subgraph problem, formally defined as follows.

k-Connected Subgraph

Input: A directed/undirected graph Ĝ = (V, Ê) with edge costs {ce : e ∈ Ê} and a positive integer k.

Output: A minimum cost k-connected spanning subgraph of Ĝ.

In the related k-Edge-Connected Subgraph problem the paths are required to be only edge disjoint. For

undirected graphs, both problems are NP-hard for k = 2 (the case k = 1 is the Minimum Spanning Tree

problem), even when all edges in Ĝ have unit costs. This is since any feasible solution with |V | edges is a

Hamiltonian cycle. For directed graphs the problem is NP-hard already for k = 1, by a similar reduction.

We may assume that the input graph Ĝ is complete, by assigning infinite costs to “forbidden” edges.

Under this assumption, we consider four types of edge costs:

• {0, 1}-costs: Here we are given a graph G, and the goal is to find a minimum size augmenting edge

set J of new edges (any edge is allowed) such that G ∪ J is k-connected.

• {1,∞}-costs: Here we seek a k-connected spanning subgraph of Ĝ with minimum number of edges.

• Metric Costs: The costs satisfy the triangle inequality cuv ≤ cuw + cwv for all u,w, v ∈ V .

R-2-1
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• General Costs: The costs are arbitrary non-negative integers or ∞.

In this survey we consider only the node-connectivity version, when the paths are internally disjoint.

We survey only approximation algorithms (see [13, 15] for polynomially solvable cases and [23, 28] for

previous surveys), with the currently best known approximation ratios, as summarized in Table 2, where

for comparison we also included results for edge-connectivity.

Node-Connectivity Edge-Connectivity

Costs Undirected Directed Undirected Directed

{0, 1} min{2, 1 + k
2

2opt
} [14, 21] in P [14] in P [42] in P [11]

{1,∞} 1− 1

k
+ n

opt
≤ 1 + 1

k
[3] ([36]) 1− 1

k
+ 2n

opt
≤ 1 + 1

k
[3] ([36]) 1 + 1

2k
+O

(

1

k2

)

[19] 1 + 1

k
[30]

1 + Ω
(

1

k

)

[20] 1 + Ω
(

1

k

)

[20]

metric 2 + (k − 1)/n [26] 2 + k/n [26] 2 [25] 2 [25]

general O
(

ln n

n−k
· ln k

)

[37] O
(

ln n

n−k
· ln k

)

[37] 2 [25] 2 [25]

6 if n ≥ k3 [4] ([18])

Table 1.1: Known approximability status of k-Connected Subgraph problems. Here and everywhere, references in

parenthesis give a simplified proof and/or a slight improvement needed to achieve the approximation ratio stated.

We mention some additional results not appearing in Table 1. The best known ratios for k-Connected

Subgraph with small values of k are: ⌈(k+1)/2⌉ if k ≤ 8 for undirected graphs and k+1 if k ≤ 6 for directed

graphs [1, 6, 26]. For {0, 1}-costs the complexity status of the problem is not known for undirected graphs,

but for any constant k an optimal solution can be computed in polynomial time [22]. When Ĝ contains a

spanning (k − 1)-connected subgraph of cost 0 the {0, 1}-costs case can be solved in polynomial time for

any k [40]. In the case of {1,∞}-costs, directed 1-Connected Subgraph admits ratio 3/2 [41], and undirected

k-Edge-Connected Subgraph admits ratio 4/3 for k = 2 [39] and ratio 1 + 2
k+1 for 3 ≤ k ≤ 6 [3]. In the case

of metric costs both 2-Connected Subgraph and 2-Edge-Connected Subgraph admit ratio 3/2 [17]. In the case

of {0, 1,∞}-costs when Ĝ contains a spanning tree of cost 0, 2-Edge-Connected Subgraph admits ratio 3/2

[29].
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We will assume that n ≥ k + 2 and that the input graph Ĝ is simple. This is justified as follows. If

n ≤ k + 1 then an easy argument shows that an optimal solution is obtained by taking the cheapest k − n

parallel edges from any node to the other; thus this case can be solved in polynomial time. If n ≥ k+1 then

it is known that any k-connected graph has a simple k-connected spanning subgraph. Thus in this case for

any set of parallel edges of the input graph Ĝ we can keep only the cheapest one. The case k = n− 2 can

also be solved in polynomial time. It is not hard to see that a graph G is (n − 2)-connected if and only if

each node has degree (indegree and outdegree, in the case of directed graphs) at least n− 2. The problem

of finding the cheapest subgraph that satisfies some prescribed degree bounds can be solved in polynomial

time (c.f. [38]). This gives a polynomial time algorithm for k = n− 2.

Here is some notation used. An edge from u to v is denoted by uv. A uv-path is a path from u to v. For

arbitrary sets A,B of nodes and edges (or graphs) A \B is the set (or graph) obtained by deleting B from

A, where deletion of a node implies also deletion of all the edges incident to it; similarly, A ∪ B is the set

(graph) obtained by adding B to A. For real values {xu : u ∈ U} let x(U) =
∑

u∈U

xu and max(U) = max
u∈U

xu.

We denote n = |V | and assume that n ≥ k + 2 (otherwise the problem is trivial).

Organization. In the next section 2.2 we give some reductions between directed and undirected versions

of our problem and related problems. In Section 2.3 we describe the algorithm of [3] for the {1,∞}-costs

case. In Section 2.4 we give a Biset-LP formulation of the problem, and some properties of relevant biset

functions. In Section 2.5 we consider metric costs. In Section 2.6 we describe a 6-approximation algorithm

of [4] for undirected graphs with n = Ω(k3). In Section 2.7 we discuss the relation between k-Connected

Subgraph and the augmentation version of the problem when the input graph Ĝ has a (k − 1)-connected

spanning subgraph of cost zero, and in Section 2.8 we describe an O
(

ln n
n−k

)

-approximation algorithm for

the augmentation problem. We conclude in Section 2.9 with some open problems in the field.

2.2 Relation between directed and undirected problems

We mention several relevant related problems. Let κG(s, t) denote the maximum number of internally

disjoint st-paths in a graph G. We say that G is k-inconnected to s if κG(v, s) ≥ k for all v ∈ V \{s}. The
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corresponding min-cost connectivity problem is k-Inconnected Subgraph. In the related edge-connectivity

problem k-Edge-Inconnected Subgraph the paths are required only to be edge disjoint. For directed graphs,

these problems can be solved in polynomial time, see [7, 8] for the edge-connectivity case, [16] for the node

connectivity case, and [12, 13] for various generalizations. The following reduction shows that undirected

problems are not much harder to approximate than the directed ones.

Lemma 2.1 For the four problems k-Connected Subgraph, k-Inconnected Subgraph, k-Edge-Connected Sub-

graph, and k-Edge-Inconnected Subgraph, ratio ρ for directed graphs implies ratio 2ρ for undirected graphs.

Proof: Given an undirected instance I = (Ĝ, c, k) of one of the four problems in the lemma, obtain a

“bidirected” instance I ′ = (Ĝ′, c′, k) by replacing every edge uv of Ĝ by the two opposite directed edges

uv, vu each of the same cost as uv. Then compute a ρ approximate solution J ′ to I ′ and output its

underlying graph J . It is easy to see that J is a feasible solution for I. Furthermore, if G is an arbitrary

subgraph of Ĝ, and G′ is the corresponding bidirected subgraph of Ĝ′, then c′(G′) = 2c(G), and G is a

feasible solution for I if G′ is a feasible solution for I ′. Thus opt′ ≤ 2opt, where opt and opt′ denote the

optimal solution value of I and I ′, respectively. Consequently, c(J) ≤ c′(J ′) ≤ ρ · opt′ ≤ 2ρ · opt. 2

Here is a typical application of Lemma 2.1. Since the directed k-Inconnected Subgraph problem can

be solved in polynomial time [16], we get from Lemma 2.1 ratio 2 for undirected k-Inconnected Subgraph.

Another immediate application is as follows. Since a directed graph G = (V,E) is k-edge-connected iff both

G and the reverse graph of G are k-edge-inconnected to s for some s ∈ V , we get ratio 2 for the directed k-

Edge-Connected Subgraph problem. From Lemma 2.1 we also get ratio 2 for the undirected k-Edge-Connected

Subgraph problem, since an undirected graph G is k-edge-connected if and only if G is k-edge-inconnected

to some node s. This method does not work directly for the k-Connected Subgraph problem, since a graph

which is k-inconnected to s may not be k-connected. However, many algorithms for k-Connected Subgraph

use an extension of this method.

The following reduction shows that for k-Connected Subgraph instances with “high” values of k, the

undirected variant cannot be much easier than the directed one.

Theorem 2.1 (Lando & Nutov [31]) Let ρdir(k, n) and ρund(k, n) denote the best possible approximation
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ratio for the directed and undirected k-Connected Subgraph problem on graphs on n nodes, respectively. Then

ρdir(k, n) ≤ ρund(k + n, 2n).

For even n and k ≥ n/2+1 the inequality in Theorem 2.1 can be written as ρdir(k−n/2, n/2) ≤ ρund(k, n).

Combining with Lemma 2.1 gives ρdir(k−n/2, n/2) ≤ ρund(k, n) ≤ 2ρdir(k, n). Loosely speaking, this means

that for “high” values of k, say k = n− o(n), the approximability of directed and undirected variants of the

k-Connected Subgraph problem is the same, up to a constant factor.

In the rest of this section we prove Theorem 2.1. An ordered pair (S, T ) of disjoint subsets of V is called

a setpair. For s, t ∈ V we say that (S, T ) an st-setpair if s ∈ S and t ∈ T . Let dG(S, T ) denote the

number of edges in G that go from S to T . Then the node connectivity version of Menger’s Theorem can

be formulated as follows.

Lemma 2.2 Let G = (V,E) be a (directed or undirected) graph. Then for any s, t ∈ V

κG(s, t) = min{dG(S, T ) + |V | − (|S|+ |T |) : (S, T ) is an st-setpair in G}

Furthermore, if st /∈ E then the minimum is attained for an st-setpair (S, T ) with dG(S, T ) = 0.

Using Lemma 2.2, it is not hard to prove the following known statement.

Lemma 2.3 A graph G = (V,E) with |V | ≥ k+1 is k-connected if and only if κG(s, t) ≥ k for all s, t ∈ V

with st /∈ E.

Let G = (V,E) be a directed graph. The bipartite graph of G has node set V ′ ∪ V ′′ where V ′, V ′′

are copies of V , and edge set {u′v′′ : uv ∈ E}, where for v ∈ V we denote by v′ and v′′ the copies of v

in V ′ and V ′′, respectively. The padded graph of G is obtained by adding to the bipartite graph of G

a padding edge set of cliques on each of V ′ and V ′ and the matching M = {v′v′′ : v ∈ V }. Given an

instance Ĝ = (V, Ê), c, k of directed k-Connected Subgraph, obtain an instance Ĥ, c′, k + n, of undirected

k-Connected Subgraph where Ĥ is the padded graph of Ĝ, and the costs are: c′(u′v′′) = c(uv) if uv ∈ Ê and

the padding edges have cost 0. Note that if G is a spanning subgraph of Ĝ then the padded graph H of G

is a spanning subgraph of Ĥ, and G and H have the same cost. Also note that the set of non-adjacent node

pairs in H is {{s′, t′′} : s, t ∈ V, st /∈ E}. Thus the following lemma combined with Lemma 2.3 finishes the

proof of Theorem 2.1 (for the proof see [34]).



2.3 MIN-SIZE K-CONNECTED SUBGRAPH ({1,∞}-COSTS) R-2-6

Lemma 2.4 ([31], ([34])) If H is the padded graph of a directed graph G = (V,E) on n nodes then

κH(s′, t′′) = κG(s, t) + n for all s, t ∈ V . Thus G is k-connected if and only if H is (k + n)-connected.

2.3 Min-Size k-Connected Subgraph ({1,∞}-costs)

Here we consider the {1,∞}-costs k-Connected Subgraph problem, often called theMin-Size k-Connected Sub-

graph problem. We present a slight improvement due to [36] of the ratio 1+ 1
k of Cheriyan and Thurimella [3].

Theorem 2.2 (Cheriyan & Thurimella [3] ([36])) Min-Size k-Connected Subgraph admits the follow-

ing approximation ratios: 1− 1
k + n

opt
≤ 1 + 1

k for undirected graphs and 1− 1
k + 2n

opt
≤ 1 + 1

k for directed

graphs.

An edge e of a k-connected graph G is said to be critical if G \ {e} is not k-connected. One of the most

important theorems in theory of k-connected graphs is the following.

Theorem 2.3 (Mader’s Undirected Critical Cycle Theorem [32])

In a k-connected undirected graph G, any cycle of critical edges has a node v with dG(v) = k.

In [33] Mader also formulated and proved a similar theorem for directed graphs. An even length sequence

of directed edges C = (v1v2, v3v2, v3v4, . . . , v2q−1v2q, v1v2q) of a directed graph G is called an alternating

cycle; the nodes v1, v3, . . . , v2q−1 are C-out nodes, and v2, v4, . . . , v2q are C-in nodes.

Theorem 2.4 (Mader’s Directed Critical Cycle Theorem [33])

In a k-connected directed graph G, any alternating cycle C of critical edges contains a C-in node whose

indegree in G is k, or a C-out node whose outdegree in G is k.

Definition 2.1 A graph G = (V,E) is an ℓ-edge-cover if it has minimum degree ≥ ℓ if G is undirected,

and minimum outdegree ≥ ℓ and minimum indegree ≥ ℓ if G is directed.

It is not hard to see that a directed graph G has no alternating cycle iff its bipartite graph G′ is a forest.

From Theorems 2.3 and 2.4 it is easy to deduce the following corollary, also due to Mader [32, 33].
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Corollary 2.1 Let G = (V, I ∪ F ) be a k-connected graph such that I is a (k − 1)-edge-cover and all the

edges in F are critical. If G is an undirected graph then (V, F ) is a forest, and if G is a directed graph then

the bipartite graph of (V, F ) is a forest.

The following algorithm from [3] achieves the desired ratio for both directed and undirected graph.

Algorithm 1: Min-Size k-Connected Subgraph(Ĝ, k)

1 find a minimum size (k − 1)-edge-cover I ⊆ Ê

2 find an inclusionwise minimal edge set F ⊆ Ê \ I such that (V, I ∪ F ) is k-connected

3 return I ∪ F

The problem of finding the cheapest ℓ-edge-cover can be solved in polynomial time (c.f. [38]), and it is

also not hard to see that Step 2 of the algorithm can be implemented in polynomial time (see [3] for details).

To show the approximation ratio we will use the following theorem, to be proved later.

Theorem 2.5 (Nutov [36]) Let G = (V,E) be an undirected graph with edge costs {ce : e ∈ E} and

minimum degree ≥ k and let I ⊆ E be a minimum cost ℓ-edge cover in G, 1 ≤ ℓ ≤ k − 1. If G is bipartite

then c(F ) ≤ ℓ
k · c(E). If G is k-edge-connected then c(I) ≤ ℓ+1/n

k · c(E) and c(I) ≤ ℓ
k · c(E) if ℓ|V | is even.

Let us consider directed graphs. Let I ′ and F ′ be the “bipartite” edge sets in the bipartite graph G′ of

G that corresponds to I and F , respectively. Then I is an ℓ-edge-cover if and only if I ′ is an ℓ-edge-cover.

Thus |I| = |I ′| ≤ k−1
k opt, by Theorem 2.5. On the other hand, by Corollary 2.1, F ′ is a forest, hence

|F | = |F ′| ≤ 2n− 1. Consequently, |I|+|F |
opt

≤ 1− 1
k + 2n−1

opt
.

Let us consider undirected graphs. If (k − 1)n is even or if opt ≥ kn
2 + k

2(k−1) , then |I| ≤
k−1
k opt, by

Theorem 2.5. By Corollary 2.1, F is a forest, hence |F | ≤ n − 1. Consequently, |I|+|F |
opt

≤ 1 − 1
k + n−1

opt
.

If (k − 1)n is odd and opt < kn
2 + 1, then an optimal solution is k-regular and hence |I| ≤ (k−1)n+1

2 ≤

(

1− 1
k

)

(opt+ 1). Combining we get |I|+|F |
opt

≤ 1− 1
k + 1−1/k

opt
+ n−1

opt
< 1− 1

k + n
opt

.

Before proving Theorem 2.5, let us give two additional applications of Theorem 2.5.

Max-Connectivity m-Subgraph: Here we seek a maximum connectivity k∗ spanning subgraph G of Ĝ with

at most m edges. Note that if we apply Algorithm 1 with k replaced by k−1, then from Theorem 2.5 we get:
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|I| ≤ k−2
k opt and |F | ≤ 2

kopt for directed graphs, and |I| ≤ k−2+1/n
k opt and |F | ≤ 2−2/n

k opt for undirected

graphs. Thus the algorithm returns a (k − 1)-connected spanning subgraph G with at most opt edges. We

can apply this algorithm to find the maximum integer k for which the algorithm returns a subgraph with

at most m edges. Then k ≥ k∗ − 1, hence we obtain a (k∗ − 1)-connected spanning subgraph with at most

m edges. Note that this is tight, since the problem is NP-hard.

β-metric costs: Here for some 1
2 ≤ β < 1 the costs satisfy the β-triangle inequality cuv ≤ β(cuw + cwv)

for all u,w, v ∈ V . When β = 1/2 we have the min-size version of the problem. If we allow β = 1, then we

get metric costs. In [5] it is proved that c(F ) ≤ 2β
k(1−β)opt. If (k − 1)n is even, or if there exists an optimal

solution with at least kn
2 + k

2(k−1) ≤
kn
2 + 1 edges, then Theorem 2.5 gives the bound c(I) ≤

(

1− 1
k

)

opt;

else, c(I) ≤
(

1− 1
k + 1

kn

)

opt. Consequently, we get ratio 1− 1
k +

1
kn + 2β

k(1−β) for this version of the problem.

In the rest of this section we prove Theorem 2.5. Let For A ⊆ V let δ(A) denote the set of edges in E

with exactly one endnode in A. Also, let ζ(A) denote the set of edges in E with at least one endnode in A.

For x ∈ R
E , the ℓ-edge-cover polytope Pcov(G, ℓ) is defined by the constraints

0 ≤ xe ≤ 1 e ∈ E

x(δ(v)) ≥ ℓ v ∈ V

x(ζ(A))− x(F )) ≥ (ℓ|A| − |F |+ 1)/2 A ⊆ V, F ⊆ δ(A), ℓ|A| − |F | odd

The fractional ℓ-edge-cover polytope P f
cov(G, ℓ) is defined by the first two sets of constraints. It is

known that if G is bipartite then P f
cov(G, ℓ) = Pcov(G, ℓ) (see [38], (31.7) on page 340). The fractional

k-edge-connectivity polytope P f
con(G, k) is defined by the constraints

0 ≤ xe ≤ 1 e ∈ E

x(δ(A)) ≥ k A ⊆ V

We will prove the following statement that implies Theorem 2.5.

Lemma 2.5 Let G = (V,E) be an undirected graph with costs {ce : e ∈ E} and minimum degree ≥ k ≥ 2

and let 1 ≤ ℓ ≤ k − 1. If G is bipartite and x ∈ P f
cov(G, k) then ℓ

kx ∈ P f
cov(G, ℓ). If G is k-edge-connected

and x ∈ P f
con(G, k) then ℓ+1/n

k x ∈ Pcov(G, ℓ) and ℓ
kx ∈ Pcov(G, ℓ) if ℓn is even.
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Proof: Clearly, if x ∈ P f
cov(G, k) then ℓ

k ∈ P f
cov(G, ℓ). If G is bipartite then P f

cov(G, ℓ) = Pcov(G, ℓ) and thus

ℓ
kx ∈ P f

cov(G, ℓ). Assume that G is k-edge-connected and let x ∈ P f
con(G, k). We show that µ ·x ∈ Pcov(G, ℓ),

where µ = ℓ
k if ℓn is even and µ = ℓ+1/n

k otherwise. Note that ℓ
kx satisfies the first two sets of constraints

in the definition of Pcov(G, ℓ). Thus we only need to prove that

µ(x(ζ(A))− x(F )) ≥ (ℓ|A| − |F |+ 1)/2 A ⊆ V, F ⊆ δ(A), ℓ|A| − |F | odd

Note that x(ζ(A)) = 1
2 (
∑

v∈A x(δ(v)) + x(δ(A))) ≥ 1
2 (k|A| + x(δ(A)). Substituting, multiplying by 2, and

rearranging terms, we obtain that it is sufficient to prove that

|A|(µk − ℓ) + (|F | − µx(F )) + µ(x(δ(A))− x(F )) ≥ 1 A ⊆ V, F ⊆ δ(A), ℓ|A| − |F | odd

If A = V then F = δ(A) = ∅. Then the above condition is void if ℓ|V | is even, and it reduces to the

condition n(µk − ℓ) ≥ 1 otherwise, which holds as equality for µ = ℓ+1/n
k .

Suppose that A is a proper subset of V . Then substituting µ = ℓ
k , multiplying both sides by k, and

observing that x(F ) ≤ |F |, we obtain that it is sufficient to prove that

|F |(k − ℓ)− ℓx(F ) + ℓx(δ(A)) ≥ k .

If |F | ≥ k
k−ℓ then this is so since x(δ(A)) ≥ x(F ), If k ≥ 2ℓ then this is so since |F | ≥ x(F ) and x(δ(A)) ≥ k.

The remaining case is |F | < k
k−ℓ and k < 2ℓ. Then since |F | ≥ x(F ) and x(δ(A)) ≥ k

|F |(k − ℓ)− ℓx(F ) + ℓx(δ(A)) ≥ |F |(k − 2ℓ) + kℓ ≥
k

k − ℓ
(k − 2ℓ) + kℓ = k −

kℓ

k − ℓ
+ kℓ ≥ k .

This concludes the proof of the lemma. 2

2.4 Biset functions

In Lemma 2.2 we formulated Mengers’s Theorem in terms of setpairs. It would be more convenient to

consider instead of a setpair (A,B) the pair of sets (A, V \B) called a “biset”.

Definition 2.2 An ordered pair A = (A,A+) of subsets of V with A ⊆ A+ is called a biset; A is the

inner part and A+ is the outer part of A, and ∂A = A+ \A is the boundary of A. The co-set of A is
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A∗ = V \A+; the co-biset of A is A
∗ = (A∗, V \A). We say that A is void if A = ∅, co-void if A+ = V ,

and A is proper otherwise. Let V denote the family of bisets over V .

A biset function assigns to every A ∈ V a real number; in our context, it will always be an integer.

Definition 2.3 An edge covers a biset A if it goes from A to A∗. For a biset A and an edge-set/graph

J let δJ (A) denote the set of edges in J covering A and let dJ (A) = |δJ(A)|. The residual function of a

biset function f w.r.t. a partial f -cover J is defined by fJ (A) = f(A)− dJ (A) for all A ∈ V. We say that

an edge set/graph J covers a biset function f , or that J is an f-cover, if dJ (A) ≥ f(A) for all A ∈ V.

We say that A is an st-biset if s ∈ A and t ∈ A∗. In biset terms, Menger’s Theorem (Lemma 2.2) is

κG(s, t) = min{|∂A|+ dG(A) : A is an st-biset} .

Thus κG(s, t) ≥ k iff dG(A) ≥ k− |∂A| for every st-biset A. Consequently, G is k-connected iff G covers the

k-connectivity biset function fk-CS defined by

fk-CS(A) =















k − |∂A| if A is proper

0 otherwise

We thus will often consider the following generic problem:

Biset-Function Edge-Cover

Input: A graph Ĝ = (V, Ê) with edge costs {ce : e ∈ Ê} and a biset function f on V .

Output: A minimum cost edge-set E ⊆ Ê that covers f .

Here f may not be given explicitly, and an efficient implementation of algorithms requires that certain

queries related to f can be answered in time polynomial in n. We will not consider implementation details. In

the applications discussed here, relevant polynomial time oracles are available via min-cut computations. In

particular, we have a polynomial time separation oracle for the LP-relaxation due to Frank and Jordán [14]:

τ(f) = min c · x

(Biset-LP) s.t. x(δÊ(A)) ≥ f(A) ∀A ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

This LP is particularly useful if the biset function f has good uncrossing/supermodularity properties.

To state these properties, we need to define the intersection and the union of bisets.
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Definition 2.4 The intersection and the union of two bisets A,B are defined by A∩B = (A∩B,A+∩B+)

and A ∪ B = (A ∪ B,A+ ∪ B+). The biset A \ B is defined by A \ B = (A \ B+, A+ \ B). We say that B

contains A and write A ⊆ B if A ⊆ B and A+ ⊆ B+. We say that A,B intersect if A∩B 6= ∅, and cross

if A ∩B 6= ∅ and A+ ∪B+ 6= V .

The following properties of bisets are easy to verify.

Fact 2.1 For any bisets A,B the following holds. If a directed/undirected edge e covers one of A∩B,A∪B

then e covers one of A,B; if e is an undirected edge, then if e covers one of A \ B,B \A, then e covers one

of A,B. Furthermore |∂A|+ |∂B| = |∂(A ∩ B)|+ |∂(A ∪ B)| = |∂(A \B)|+ |∂(B \ A)| .

For a biset function f and bisets A,B the supermodular inequality is

f(A ∩ B) + f(A ∪ B) ≥ f(A) + f(B) .

We say that a biset function f is supermodular if the supermodular inequality holds for all A,B ∈ V, and

modular if the supermodular inequality holds as equality for all A,B ∈ V. f is symmetric if f(A) = f(A∗)

for all A ∈ V. From Fact 2.1 one can deduce the following.

• For any (directed or undirected) graph G the function −dG(·) is supermodular.

• The function |∂(·)| is modular, and for any R ⊆ V the function |A ∩R| is modular.

Two additional important types of biset functions are given in the following definition.

Definition 2.5 A biset functin f is intersecting/crossing supermodular if the supermodular inequality

holds whenever A,B intersect/cross.

Biset-Function Edge-Cover with intersecting supermodular f admits a polynomial time algorithm that

for directed graphs computes an f -cover of cost τ(f) [12]; for undirected graphs the cost is at most 2τ(f),

by the “bidirection” reduction from Lemma 2.1. Intersecting supermodular functions usually arise by

zeroing a supermodular function on void bisets, while crossing supermodular functions arise by zeroing a

supermodular function on non-proper bisets. For example, the k-connectivity function fk-CS is crossing

supermodular, since it is obtained by zeroing the modular function k − |∂A| on non-proper bisets.
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2.5 Metric costs

For metric costs, Khuller and Raghavachari [24] obtained ratio 2+ 2(k−1)
n for undirected graphs. We survey

a result of [26], which gives an improved ratio for undirected graphs, and a similar ratio for directed graphs.

Theorem 2.6 (Kortsarz & Nutov [26]) k-Connected Subgraph with metric costs admits the following

approximation ratios: (2 + k−1
n ) for undirected graphs and (2 + k

n ) for directed graphs.

Let R ⊆ V with |R| ≥ k. A k-fan from v to R is a set of k distinct paths (possibly of length 0) from

v to R such that any two of them have only the node v in common. Let us say that a graph G is k-fan-

connected to R if G has a k-fan from any v ∈ V to R. In a similar way we define a k-fan from R to v

and say that G is k-fan-connected from R if the paths go from R to v. Note that the problem of finding a

minimum cost spanning subgraph that is k-fan-connected to R is equivalent to the k-Inconnected Subgraph

problem in the graph obtained from Ĝ by adding a new node s and edges of cost 0 from every v ∈ R to s.

Let the k-fan-connectivity function fk,R be obtained by zeroing the modular function k−|∂A|− |A∩R|

on void bisets. Then fk,R is intersecting supermodular. By Menger’s Theorem G is k-fan-connected to R iff

dG(A) ≥ fk,R(A) for all A ∈ V. Note that if A is co-void then |∂A|+ |A∩R| ≥ |R| ≥ k, hence fk,R(A) ≤ 0.

Summarizing, we have:

Lemma 2.6 If |R| ≥ k then fk,R is intersecting supermodular and fk-CS(A)−|A∩R| ≤ fk,R(A) ≤ fk-CS(A)

for all A ∈ V. Thus if an edge set J covers fk,R then A ∩R 6= ∅ whenever fJ
k-CS(A) > 0.

An undirected edge set (or a graph) S is a star if all its edges are incident to the same node, called the

center of the star. In the case of directed graphs, S should be either an outstar – all edges in S leave

the center, or an instar – all edges in S enter the center. An ℓ-star is a star with ℓ leaves. For a star

S let max(S) denote the maximum cost of an edge in S. The algorithm for undirected graphs is given in

Algorithm 2.

Note that by Lemma 2.6 an edge set F as in step 3 exist. Let eS denote the maximum cost edge

of S, so c(eS) = max(S). The approximation ratio follows from the following lemma, which shows that

c(F ) ≤ k−1
n · opt.
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Algorithm 2: Undirected Metric k-Connected Subgraph(Ĝ, c, k)

1 find a (k − 1)-star (R,S) in Ĝ for which c(S) + (k − 2)max(S) is minimal

2 find a 2-approximate k-fan-connected to R spanning subgraph (V, I) of Ĝ

3 find an inclusionwise minimal edge set F on R such that (V, I ∪ F ) is k-connected

4 return I ∪ F

Lemma 2.7 (i) c(F ) ≤ c(S) + (k − 2)max(S).

(ii) There exists a (k − 1)-star S such that c(S) + (k − 2)max(S) ≤ k−1
n · opt.

Proof: We prove (i). By Corollary 2.1 F is a forest. Let z be the center of S and for v ∈ R denote

wv = czv (where wz = 0). Note that w(R) + (k − 2)max
v∈R

wv = c(S) + (k − 2)max(S). Since the costs are

metric, c(F ) ≤
∑

uv∈F

(wu +wv) =
∑

v∈R

dF (v)wv. However, it is easy to see that for any non-negative weights

{wv : v ∈ R}, the maximum of
∑

v∈R

dF (v)wv is attained when F is a star on R centered at the maximum

weight node. Thus
∑

v∈R

dF (v)wv ≤ w(R) + (k − 2)max
v∈R

wv ≤ c(S) + (k − 2)max(S).

We prove (ii). Let p = opt/n. By an averaging argument, there exists a k-star S′ of cost c(S′) ≤ 2p.

Obtain a star S from S′ by deleting the maximum cost edge of S′. Then c(S) + c(eS) ≤ c(S′) ≤ 2p and

c(eS) ≤ c(S′)/2 ≤ p. Consequently, c(S) + (k − 2)c(eS) = c(S) + c(eS) + (k − 3)c(eS) ≤ (k − 1)p. 2

The algorithm for directed graphs is as follows.

Algorithm 3: Directed Metric k-Connected Subgraph(Ĝ, c, k)

1 find a (k − 1)-outstar (Rout, Sout) and a (k − 1)-instar (Rin, Sin) with common center such that

c(Sout) + c(Sin) + (k − 1) (max(Sout )+max(Sin )) is minimal

2 find a 2-approximate subgraph (V, I) that is k-fan-connected to Rout and k-fan-connected from Rin

3 find an inclusionwise minimal edge set F from Rout to Rin such that (V, I ∪ F ) is k-connected

4 return I ∪ F

The following directed counterpart of Lemmas 2.7 (the proof is omitted) implies that c(F ) ≤ k
nopt.

Lemma 2.8 (i) c(F ) ≤ c(Sout) + c(Sin) + (k − 1) (max(Sout )+max(Sin )).
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(ii) There exists a (k − 1)-outstar (Rout, Sout) and a (k − 1)-instar (Rin, Sin) with common center such

that c(Sout) + c(Sin) + (k − 1) (max(Sout )+max(Sin )) ≤ k
n · opt.

2.6 Ratio 6 for undirected graphs with n = Ω
(

k3
)

This section is devoted for the proof of the following result.

Theorem 2.7 (Cheriyan & Végh [4] ([18])) Undirected Biset-Function Edge-Cover with symmetric cross-

ing supermodular f admits ratio 6 provided that n ≥ γ(2γ + 1)
2
+ 2γ + 1, where γ = γf = max

f(A)>0
|∂A|.

In the k-Connected Subgraph problem the function fk-CS has γ = k − 1. This implies that undirected

k-Connected Subgraph admits ratio 6 provided that n ≥ (k − 1)(2k − 1)
2
+ 2k − 1. Better bounds can be

obtained under stronger assumptions on f , e.g., for f = fk-CS [18] gives the bound n ≥ k(k−1)(k−1.5)+k.

In the rest of this section we prove Theorem 2.7. We need some definitions. Let us say that bisets A,B

co-cross if A \ B and B \ A are both non-void, and that A,B mesh if they do not cross nor co-cross. One

can verify that A,B mesh iff one of the following holds: A ⊆ ∂B, or A∗ ⊆ ∂B, or B ⊆ ∂A, or B∗ ⊆ ∂A.

A biset function f is positively intersecting supermodular if the supermodular inequality holds

whenever A,B intersect and f(A) > 0 and f(B) > 0. f is positively skew-supermodular if the super-

modular inequality or the co-supermodular inequality f(A\B)+f(B\A) ≥ f(A)+f(B) holds whenever

f(A) > 0 and f(B) > 0. Each of the the corresponding Biset-Function Edge-Cover problems, where f is

positively intersecting supermodular, or when f is positively skew-supermodular, admits ratio 2 [16, 10].

The idea of the proof is to cover sequentially three functions dominated by f ; one intersecting super-

modular, the second positively intersecting supermodular, and the last positively skew-supermodular.

Lemma 2.9 Let f be a symmetric crossing supermodular biset function. If A,B are non-meshing bisets,

then the supermodular or the co-supermodular inequality holds for A,B and f .

Proof: If A,B cross then the supermodular inequality holds for A,B. Assume that A,B co-cross. Then A

and B
∗ cross, and thus the supermodular inequality holds for A,B∗ and f . Note that (i) A \ B = A ∩ B

∗;

(ii) A ∪ B
∗ is the co-biset of B \ A, hence f(A ∪ B

∗) = f(B \ A), by the symmetry of f . Thus we get

f(A \ B) + f(B \ A) = f(A ∩ B
∗) + f(A ∪ B

∗) ≥ f(A) + f(B∗) = f(A) + f(B). 2
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From Lemma 2.9 we obtain a sufficient condition for a symmetric crossing supermodular biset function

to be positively skew-supermodular.

Corollary 2.2 Let f be a symmetric crossing supermodular biset function. If f(C) ≤ 0 holds for every

biset C with |C| ≤ γ then f is positively skew-supermodular.

Proof: Let A,B be bisets with f(A) > 0 and f(B) > 0. We claim that A,B do not mesh, and thus by

Lemma 2.9 the supermodular or the co-supermodular inequality holds for A,B and f , as required.

Suppose to the contrary that A,B mesh. Then A ⊆ ∂B, or A∗ ⊆ ∂B, or B ⊆ ∂A, or B∗ ⊆ ∂A. If

A ⊆ ∂B holds, then |A| ≤ |∂B| ≤ γ, and thus f(A) ≤ 0. If A∗ ⊆ ∂B holds, then |A∗| ≤ |∂B| ≤ γ, and thus

by the symmetry of f we get f(A) = f(A∗) ≤ 0. In both case we obtain a contradiction to the assumption

f(A) > 0. The contradiction for the cases B ⊆ ∂A, or B∗ ⊆ ∂A is obtained in a similar way. 2

In what follows, for a biset function f on V and R ⊆ V let fR be defined by

fR(A) =















f(A) if A ∩R = ∅

0 otherwise

Lemma 2.10 If f is crossing supermodular and |R| ≥ 2γ+1 then fR is positively intersecting supermodular.

Proof: Let A,B be intersecting bisets with fR(A), fR(B) > 0. Then A ∩ R = B ∩ R = ∅, and thus

(A ∩ B) ∩ R = (A ∪ B) ∩ R = ∅. Consequently, fR(A) = f(A), fR(B) = f(B), fR(A ∩ B) = f(A ∩ B), and

fR(A ∪ B) = f(A ∪ B). Furthermore, A,B cross, since |R| ≥ 2γ + 1. Thus since f is crossing supermodular

fR(A) + fR(B) = f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B) = fR(A ∩ B) + fR(A ∪ B) .

Consequently, the supermodular inequality holds for A,B and fR whenever fR(A), fR(B) > 0. 2

For a biset function f and an integer p let us denote U(f, p) =
⋃

{A : f(A) > 0, |A| ≤ p}. Note that:

• f(A) ≤ 0 whenever |A| ≤ p and A \ U(f, p) 6= ∅.

• If I covers fR then f I(A) ≤ 0 whenever A ∩R = ∅, namely, R ∩A 6= ∅ whenever f I(A) > 0.

This implies that if R ⊆ V \ U(f, p) and if I covers fR then f I(A) ≤ 0 whenever |A| ≤ p. Combining

with Lemma 2.10(ii) we get:
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Corollary 2.3 Let f be symmetric crossing supermodular, let R ⊆ V \ U(f, γ), and let I be an fR-cover.

Then f I is positively skew-supermodular.

Corollary 2.3 gives a “cheap” method to “convert” a symmetric crossing supermodular function f into

a positively skew-supermodular function: just find R ⊆ V \ U(f, γ) with |R| = 2γ + 1 and compute a

2-approximate cover I of fR – the residual function f I of f will be positively crossing supermodular. The

difficulty is that such R may not exist, e.g., if f = fk-CS then U(f, γ) = V . We thus find some “cheap” edge

set I ′ such that |U(g, γ)| ≤ n− (2γ + 1) will hold for the residual function g = f I′

. The next lemma shows

that such I ′ can be a cover of the function fS for arbitrary S ⊆ V , provided that n is not too small.

Lemma 2.11 Let g be a symmetric crossing supermodular biset function and let F = {A : g(A) > 0, |A| ≤

p}. Let S ⊆ V such that S ∩A 6= ∅ for all A ∈ F . Then |U(g, p)| ≤ (2γ + 1)|S|p.

Proof: Let F ′ = {A1, . . . ,Aℓ} be a minimum size subfamily of F with
⋃

A∈F

A =
⋃

A∈F ′

A. It is sufficient

to show that |F ′| ≤ (2γ + 1)|S|. By the minimality of |F ′|, for every Ai ∈ F
′ there is vi ∈ Ai such

that vi /∈ Aj for every j 6= i. For every i, let Ci be an inclusionwise minimal member of the family

{A ∈ F : A ⊆ Ai, vi ∈ A}. By Corollary 2.2 F has the following property: A\B ∈ F or B\A ∈ F whenever

none of A \B,B \A is void. Thus the minimality of Ci implies that one of the following holds for any i 6= j:

• vi ∈ ∂Cj or vj ∈ ∂Ci.

• Ci = Ci \ Cj or Cj = Cj \ Ci.

Construct an auxiliary directed graph J on node set C = {C1,C2, . . . ,Cℓ}. Add an arc CiCj if vi ∈ ∂Cj .

The in-degree in J of a node Ci is at most |∂Ci| ≤ γ. Thus every subgraph of the underlying graph of J

has a node of degree ≤ 2γ. A graph is d-degenerate if every subgraph of it has a node of degree ≤ d. It

is known that any d-degenerate graph is (d + 1)-colorable. Hence J is (2γ + 1)-colorable, so its node set

can be partitioned into 2γ +1 independent sets. The bisets in each independent set are inner part disjoint,

hence their number is at most |S|. Consequently, ℓ ≤ (2γ + 1)|S|, as claimed. 2

Let I ′ be a cover of fS where |S| = 2γ + 1 and let g = f I′

be the residual function of f w.r.t. I ′. Note

that A ∩ S 6= ∅ whenever g(A) > 0, thus Lemma 2.11 gives the bound |U(g, γ)| ≤ γ(2γ + 1)
2
. Thus if

n ≥ γ(2γ + 1)
2
+ 2γ + 1 then there exists R ⊆ V \ U(g, γ) with |R| = 2γ + 1.
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However, no polynomial time algorithm for finding R as above is known. This can be resolved as follows.

The iterative rounding algorithm of [10], when applied on an arbitrary biset function h, either returns a

2-approximate cover J of h, or a failure certificate: a pair A,B of bisets with h(A) > 0 and h(B) > 0 for

which both the supermodular and the co-supermodular inequality does not hold. In the case when h = gI ,

where g is symmetric supormodular and I is a cover of gR with |R| ≥ 2γ + 1, this can happen only if A,B

mesh (by Corollary 2.2) and A∩R,B∩R are both non-empty (since A∩R 6= ∅ whenever gI(A) > 0). Since

gI is symmetric, then by interchanging the roles of A,A∗,B,B∗, we can assume that our failure certificate

A,B satisfies A ⊆ ∂B. Then A ⊆ U(g, γ) and A∩R 6= ∅, and we can apply the same procedure by choosing

a different R from a smaller range set that excludes A. Formally, the algorithm is:

Algorithm 4: Crossing Supermodular Edge-Cover(Ĝ, c, f) (Assume n ≥ γ(2γ + 1)
2
+ 2γ + 1)

1 choose S ⊆ V with |S| = 2γ + 1 and find a 2-approximate cover I ′ ⊆ Ê of fS

2 g ← f I′

, Ê ← Ê \ I ′, U ← ∅, J ← NIL

3 while J = NIL do

4 choose R ⊆ V \ U with |R| = 2γ + 1 and find a 2-approximate cover I ⊆ Ê of gR

5 apply the algorithm of [10] on gI and Ê \ I

- if the algorithm returns a failure certificate A,B with A ⊆ ∂B then do U ← U ∪A

- else, J ← a 2-approximate cover of gI computed by the algorithm of [10]

6 return I ′ ∪ I ∪ J

Clearly, the algorithm computes a feasible solution. Ratio 6 follows from the fact that the solution is a

union of 3 edge sets such that each of them is a 2-approximate cover of a function dominated by f .

2.7 Biset families and k-connectivity augmentation problems

Any {0, 1}-valued biset function f bijectively corresponds to the biset family F = {A ∈ V : f(A) = 1}.

We thus use for biset families the same terminology and notation as for biset functions, e.g., we say that

J covers F if dJ(A) ≥ 1 for all A ∈ F , in the Biset-Family Edge-Cover problem we seek a minimum cost

edge-set E ⊆ Ê that covers F , and τ(F) is the optimal value of the Biset-LP for covering F .
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Let k-Connectivity Augmentation be the restriction of (k+ 1)-Connected Subgraph to instances when the

input graph contains a k-connected spanning subgraph G of cost 0.

k-Connectivity Augmentation

Input: An integer k, a k-connected graph G = (V,E), and an edge set Ê with costs {ce : e ∈ Ê}.

Output: A min-cost augmenting edge set J ⊆ Ê such that G ∪ J is (k + 1)-connected.

Given an instance of k-Connectivity Augmentation let us say that A ∈ V is a tight biset if dG(A) = 0,

|∂A| = k, and A is proper. By Lemma 2.2, k-Connectivity Augmentation is equivalent to the Biset-Family

Edge-Cover problem with F = {A ∈ V : dG(A) = 0, |∂A| = k,A is proper} being the family of tight bisets.

Suppose that k-Connectivity Augmentation admits ratio ρ(k), and consider the following algorithm:

Algorithm 5: Sequential Augmentation(Ĝ, c, k)

1 E ← ∅

2 for ℓ = 0 to ℓ = k − 1 do

3 find a ρ(ℓ)-approximate solution J to ℓ-Connectivity Augmentation instance G = (V,E), Ê

4 E ← E ∪ J , Ê ← Ê \ J

5 return E

Clearly, the algorithm computes a feasible solution for k-Connected Subgraph and has ratio
∑k−1

ℓ=0 ρ(ℓ). One

can show a better ratio if the ratio ρ(ℓ) is w.r.t. the Biset-LP. Let us say that Biset-Function Edge-Cover

admits LP-ratio ρ if there exists a polynomial time algorithm that computes an f -cover of cost at most

ρ · τ(f). A similar terminology is used for k-Connected Subgraph and k-Connectivity Augmentation instances,

meaning that the ratio ρ is w.r.t. the Biset-LP for these problems.

Lemma 2.12 If k-Connectivity Augmentation admits LP-ratio ρ(k) then k-Connected Subgraph admits LP-

ratio

k−1
∑

ℓ=0

ρ(ℓ)

k − ℓ
; thus if ρ(ℓ) is a non-decreasing function of ℓ, then the ratio is bounded by ρ(k − 1)H(k).

Proof: At iteration ℓ of Algorithm 5, we cover the family Fℓ = {A ∈ V : dG(A) = 0, |∂A| = ℓ,A is proper}

by an edge set Jℓ of cost c(Jℓ) ≤ ρ(ℓ)τ(Fℓ). Let x be a feasible solution to the Biset-LP for fk-CS.

Then x(δ(A)) ≥ k − |∂A| = k − ℓ for every A ∈ F , hence x
k−ℓ is a feasible solution to the Biset-LP for
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covering Fℓ. Thus τ(Fℓ) ≤
1

k−ℓτ(fk-CS). Consequently, c(Jℓ) ≤ ρ(ℓ)τ(Fℓ) ≤ ρ(ℓ) · 1
k−ℓτ(fk-CS), and thus

c(E) ≤
∑ℓ=k−1

ℓ=0 c(Jℓ) ≤ τ(fk-CS)
∑ℓ=k−1

ℓ=0
ρ(ℓ)
k−ℓ , as claimed. 2

We now establish some properties of tight bisets that will be used later.

Definition 2.6 A biset family F is intersecting/crossing if A ∩ B,A ∩ B ∈ F whenever A,B inter-

sect/cross. A crossing family is p-crossing if whenever A,B ∈ F intersect and |A ∪ B| ≤ n− p− 1 holds,

A and B cross.

For a biset family F the co-family of F is defined to be F∗ = {A∗ : A ∈ F}. We will use the following

property of the family of tight bisets.

Lemma 2.13 Let F = {A ∈ V : dG(A) = 0, |∂A| = k,A is proper} be the family of tight bisets of a

k-connected (directed or undirected) graph G. Then F and F∗ are both k-crossing.

Proof: We will show that F is k-crossing; the proof for F∗ is similar. Let A,B ∈ F . Note that by Fact 2.1

dG(A ∩ B) = dG(A ∪ B) = 0.

If A,B cross, then none of A ∩ B,A ∪ B is void or co-void, thus |∂(A ∩ B)| ≥ k and |∂(A ∪ B)| ≥ k,

since G is k-connected. Thus by Fact 2.1 k + k = |∂A| + |∂B| = |∂(A ∩ B)| + |∂(A ∪ B)| ≥ k + k. Hence

|∂(A ∩ B)| = k and |∂(A ∪ B)| = k, which implies A ∩ B,A ∪ B ∈ F . Thus F is a crossing family.

Now let A,B intersect and satisfy |A ∪ B| ≤ n − k − 1. Note that A ∩ B is not co-void, and thus

|∂(A ∩ B)| ≥ k, since G is k-connected. If A,B do not cross, then |∂(A ∪ B)| = n − |A ∪ B| ≥ k + 1, and

thus |∂(A ∩ B)| = |∂A|+ |∂B| − |∂(A ∪ B)| ≤ k − 1, contradicting that G is k-connected. 2

2.8 LP-ratio O
(

ln n
n−k

)

for k-Connectivity Augmentation

Let q be a parameter eventually set to q = ⌈n−k
2 ⌉ and let µ =

⌊

n
q+1

⌋

≤ 2n
n−k . We survey the following result:

Theorem 2.8 (Nutov [37]) Directed k-Connectivity Augmentation admits LP-ratio H(µ) + 2.

Note that combining Theorem 2.8 with Lemma 2.12 gives ratio H(k)(H(µ) + 2) = O
(

ln k · ln n
n−k

)

for

directed k-Connected Subgraph, and via Lemma 2.1 also for undirected k-Connected Subgraph.
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Recall that the k-Connectivity Augmentation problem is equivalent to covering the family F = {A :

dG(A) = 0, |∂A| = k,A is proper} of tight bisets, and that by Lemma 2.13 both F and F∗ are k-crossing.

In the rest of this section we will prove the following general theorem, that implies Theorem 2.8.

Theorem 2.9 (Nutov [37]) Biset-Family Edge-Cover such that F and F∗ are both k-crossing admits LP-

ratio O(lnµ). Moreover, if |∂A| ≥ k for all A ∈ F then the problem admits LP-ratio H(µ) + 2.

Since any crossing family F is 2γ-crossing, where γ = max
A∈F
|∂A|, we get that Biset-Family Edge-Cover

with arbitrary crossing F admits LP-ratio O
(

ln n
n−2γ

)

.

In the rest of this section we prove Theorem 2.9. We need the following definition from [27]:

Definition 2.7 The inclusionwise minimal members of a biset family F are called F-cores, or simply

cores, if F is clear from the context. Let C(F) denote the family of F-cores. For an F-core C ∈ C(F), the

halo-family F(C) of C is the family of those members of F that contain C and contain no F-core distinct

from C.

The following lemma summarizes the properties of halo-families that we need.

Lemma 2.14 For any crossing biset family F the following holds.

(i) For any F-core C, F(C) is a crossing family and F(C)∗ = {A∗ : A ∈ F(C)} is an intersecting family.

(ii) Bisets A1,A2 that belong to distinct halo-families do not cross; thus no edge can cover both A1 and A2.

(iii) For any F-core C, if J is an inclusion minimal edge set that covers F(C) then C(FJ) = C(F) \ {C}.

Proof: We prove (i). Let A,B ∈ F(C) cross. Then A∩B,A∪B ∈ F . Since A∩B ⊆ A ⊆ A∪B and A ∈ F(C),

A ∩ B ∈ F(C) and C ⊆ A ∪ B. We claim that A ∪ B contains no core C
′ distinct from C. Otherwise, since

none of A,B can contain C
′, we must have that C

′,A cross or C
′,B cross, so C

′ ∩ A ∈ F or C
′ ∩ B ∈ F ;

this contradicts that C′ is a core. Thus F(C) is a crossing family. We prove that F(C)∗ is an intersecting

family. Let A,B ∈ F(C)∗ intersect. Then C ⊆ A
∗ ∩ B

∗ so A,B cross. Thus since F(C) is a crossing family,

we get that A ∩ B,A ∪ B ∈ F(C)∗.

We prove (ii). Let A1 ∈ F(C1) and A2 ∈ F(C2) cross, for C1,C2 ∈ C(F). Then A1 ∩A2 ∈ F , so A1 ∩A2

contains some F-core C. We have C = C1 since C ⊆ A1 and C = C2 since C ⊆ A2, hence C1 = C2.
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Part (iii) follows from part (ii), since every e ∈ J covers some biset in F(C) (by the minimality of J)

and thus by (ii) cannot cover a core distinct from C. 2

We need the following theorem for the proof of Theorem 2.9.

Theorem 2.10 (Fakcharoenphol & Laekhanukit [9] ([2, 37])) Directed Biset-Family Edge-Cover with

crossing F admits a polynomial time algorithm that given C ⊆ C(F) computes J ⊆ Ê such that C(FJ) =

C(F) \ C and c(J) ≤ H(|C|) · τ(F). In particular, Biset-Family Edge-Cover with crossing F admits ratio

H(|C(F)|).

Proof: Consider the following algorithm. Start with a partial solution J = ∅. While |C ∩ C(FJ)| ≥ 1

continue with iterations. At iteration i, compute for each C ∈ C ∩ C(FJ) an optimal inclusion minimal

edge cover JC of the family FJ(C) (the halo-family of C in FJ); then add to J a minimum cost edge set

Ji among the edge sets
{

JC : C ∈ C ∩ C
(

FJ
)}

. By part (i) of Lemma 2.14, each JC can be computed in

polynomial time and c(JC) = τ(FJ(C)). By part (ii),
∑

C∈C(F) c(JC) ≤ τ(F). Thus there is C ∈ C such that

c(JC) ≤ τ(F)/|C|. By part (iii), at iteration i we have |C(FJ)∩C| ≤ |C|−i+1. Thus c(Ji) ≤ τ(F)/(|C|−i+1)

at iteration i, and the statement follows. 2

Definition 2.8 A biset family F is intersection closed if A ∩ B ∈ F for any intersecting A,B ∈ F .

An intersection closed F is q-semi-intersecting if |A| ≤ q for every A ∈ F , and if A ∪ B ∈ F for any

intersecting A,B ∈ F with |A ∪ B| ≤ q. The q-truncated family of a biset family F is F≤q := {A ∈ F :

|A| ≤ q}.

We obtain a q-semi-intersecting family from a k-crossing family as follows.

Lemma 2.15 If F is k-crossing and q ≤ n−k
2 then the q-truncated family F≤q of F is q-semi-intersecting.

Proof: Let A,B ∈ F≤q intersect. Then |A∪B| ≤ |A|+ |B|−1 ≤ 2q−1 ≤ n−k−1. Thus A∩B,A∪B ∈ F ,

since F is k-crossing. Hence A ∩ B ∈ F≤q (since |A ∩B| ≤ |A| ≤ q), and A ∪ B ∈ F≤q if |A ∪B| ≤ q. 2

Let ν(F) denote the maximum number of pairwise inner part disjoint bisets in F .

Theorem 2.11 (Nutov [37]) Directed Biset-Family Edge-Cover with q-semi-intersecting F admits a poly-

nomial time algorithm that computes an edge-set J ⊆ Ê such that ν(FJ) ≤ µ and c(J) ≤ τ(F).
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Theorem 2.11 will be proved later. From Theorem 2.11 and Lemma 2.15 we have the following.

Corollary 2.4 Directed Biset-Family Edge-Cover with k-crossing F admits a polynomial time algorithm that

for q = ⌈n−k
2 ⌉ computes J ⊆ E such that ν(FJ

≤q) ≤ µ and c(J) ≤ τ(F≤q).

A slightly weaker version of the following statement was proved in [35].

Lemma 2.16 ([35]) If both F and F∗ are k-crossing then |C(F)| ≤ ν(F≤q) + ν(F∗
≤q) + µ2H(µ).

Proof: We show that if C ⊆ F has no two bisets that cross then |C| ≤ ν(F≤q) + ν(F∗
≤q) + µ2H(µ). Let

B = {A ∈ C : |A|, |A∗| ≥ q + 1}. Clearly, |C| ≤ |C≤q| + |C
∗
≤q| + |B|. Note that |C≤q| ≤ ν(F≤q), since F≤q is

intersection closed, by Lemma 2.15. Similarly, |C∗≤q| ≤ ν(F∗
≤q). To see that |B| ≤ µ2H(µ), note that:

(i) ∆(B) ≤ µ, where ∆(B) is the maximum degree in the hypergraph Bin formed by the inner parts of

the bisets in B. This is so since no two bisets in B cross, and thus for any v ∈ V the sets in the family

{A∗ : A ∈ B, v ∈ A} of B∗ are pairwise disjoint; hence their number is at most ν(B∗) ≤
⌊

n
q+1

⌋

= µ.

(ii) The hypergraph Bin has a hitting-set U of size |U | ≤ µH(∆(B)) ≤ µH(µ). This is so since this

hypergraph has a fractional hitting-set h of value µ defined by h(v) = 1
q+1 for all v ∈ V .

Since |B| ≤ |U | ·∆(B) for any hitting-set U of Bin, the bound |B| ≤ µ2H(µ) follows. 2

The algorithm is as follows.

Algorithm 6: Directed-Cover1(F , Ĝ, c) (F ,F∗ are both k-crossing)

1 compute J1 ⊆ E with ν(FJ1

≤q) ≤ µ and c(J1) ≤ τ(F≤q) using the algorithm from Corollary 2.4;

compute a similar edge set J∗
1 ⊆ E for the family F∗

≤q.

2 compute J2 ⊆ E covering FJ1∪J∗

1 using the algorithm from Theorem 2.10.

3 return J = J1 ∪ J∗
1 ∪ J2.

By Lemma 2.16,
∣

∣C
(

FJ1∪J∗

1

)
∣

∣ = O(µ2 lnµ) and thus c(J2) = τ(F)O(lnµ). Consequently, the cost of the

solution computed is bounded by τ(F)(c(J1) + c(J∗
1 ) + c(J2)) ≤ τ(F)(1 + 1 +O(lnµ)) = O(lnµ).

In the case when |∂A| ≥ k for all A ∈ F we get a slightly better ratio H(µ) + 2 by the following

observation.
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Lemma 2.17 Let F be a biset family such that F∗ is k-crossing and |∂A| ≥ k for all A ∈ F . Let q = ⌈n−k
2 ⌉.

If F≤q = ∅ then F∗ is an intersecting family;

Proof: If |A∪B| ≤ n−k−1 then A∩B,A∪B ∈ F∗, since F∗ is k-regular. Assume that |A∪B| ≥ n−k. Then

max{|A|, |B|} ≥ n−k
2 , say |A| ≥ n−k

2 . This implies |A∗| ≤ n − k − |A| ≤ n−k
2 , so A

∗ ∈ F≤q, contradicting

that F≤q = ∅. 2

Relying on Corollary 2.4, Theorem 2.10, and Lemma 2.17, it is easy to see that Algorithm 7 computes

a feasible solution of cost at most τ(F)(H(µ) + 2).

Algorithm 7: Directed-Cover2(F , Ĝ, c) (F and F∗ are both k-crossing, |∂A| ≥ k for all A ∈ F)

1 compute J1 ⊆ Ê with ν(FJ1

≤q) ≤ µ and c(J1) ≤ τ(F≤q) using the algorithm from Corollary 2.4.

2 compute J2 ⊆ Ê covering FJ1

≤q with c(J2) ≤ H(µ)τ
(

FJ1

)

using the algorithm from Theorem 2.10.

3 compute J3 ⊆ Ê covering FJ1∪J2 with c(J3) ≤ τ
(

FJ1∪J2

)

using the algorithm from Lemma 2.17.

4 return J1 ∪ J2 ∪ J3.

In the rest of this section we prove Theorem 2.11. Consider the dual program of the Biset-LP for covering

F and the following primal-dual algorithm for covering F .

max







∑

A∈V

yA :
∑

δ(A)∋e

yA ≤ ce ∀e ∈ E, yA ≥ 0 ∀A ∈ V







.

Algorithm 8: q-Semi-Intersecting Family Edge-Cover(F , G, c)

1 J ← ∅, y ← 0, L ← ∅.

2 while ν(FJ) ≥ 1 do

3 add some C ∈ C(FJ) to L

4 raise yC until the dual constraint of some e ∈ δÊ\J(C) becomes tight and add e to J

5 Let e1, . . . , ej be the order in which the edges were added to J

6 for i = j downto 1 do

7 if J \ {ei} covers the family F ′ = {A ∈ F : A ⊆ B for some B ∈ L} then do J ← J \ {ei}

8 return J
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Let I denote the set of edges in J right before the reverse-delete phase (steps 5,6,7). Note that I covers

F , but in the reverse-delete phase we care to cover just the subfamily F ′ of F . In fact, the algorithm

coincides with a standard primal-dual algorithm for covering the biset family F ′. We will show that F ′ is

an intersecting biset family and conclude that c(J) = τ(F ′) ≤ τ(F). In what follows, let M denote the

family of inclusionwise maximal members of L, and for an FJ -core Ci letMi denote the family of bisets in

M that intersect with Ci, and Bi the union of Ci and the bisets inMi.

Note that each familyMi is non-empty, since Ci is covered by some edge e ∈ I \ J , and since any edge

e ∈ I covers some A ∈ L. Let us say that a biset family L is laminar if for any A,B ∈ L that intersect

A ⊆ B or B ⊆ A holds. In the following lemma we establish some properties of the families L and F ′.

Lemma 2.18 At the end of the algorithm the following holds:

(i) L is a laminar biset family and F ′ is an intersecting biset family.

(ii) For any A ∈ M there is a unique edge eA in I that covers A, and eA ∈ J . Furthermore, if A and an

FJ -core C intersect, then δJ(A ∩ C) = {eA}.

Proof: We prove (i). Let A1,A2 ∈ L intersect where A1 was added to L before A2. When A1 was added to

L, we had A1 ∈ C(F
J) and A2 ∈ F

J . Thus A1 ∩ A2 = A1 (namely, A1 ⊆ A2) by the minimality of A1 and

since F (and thus also FJ) is intersection closed. This implies that L is laminar. We show that F ′ is an

intersecting biset family. Let A1,A2 ∈ F
′ intersect. Then, since L is laminar, A1 ∪A2 ⊆ B for some B ∈ L.

Thus A1 ∪A2 ∈ F , since |A1 ∪A2| ≤ |B| ≤ q and since F is q-semi-intersecting. This implies A1 ∪A2 ∈ F
′,

and clearly A1 ∩ A2 ∈ F
′ since A1 ∩ A2 ⊆ B and since F is intersection closed.

We prove (ii). Let eA be the edge that was added to J at step 4 of the algorithm after A was added to L

at step 3 (the first edge that covered A). After A was added to L, no biset that intersects with A was added

to L, since A ∈M and since L is laminar. Thus edges added to J after eA do not cover A, since their tails

are in V \ A. Consequently, eA is the unique edge in I that covers A, and thus eA ∈ J . Now suppose that

A and an FJ -core C intersect. Then A ∩ C ∈ F ′, since F is intersection closed and since A ∩ C ⊆ A. Thus

δJ(A ∩ C) 6= ∅. Let e ∈ δJ(A ∩ C). Then e covers A, since e covers A or C by Fact 2.1, but e cannot cover

C since e ∈ J and J does not cover C. Thus e = eA for any e ∈ δJ(A ∩ C), namely, δJ(A ∩ C) = {eA}. 2
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Lemma 2.19 If F is q-semi-intersecting then at the end of the algorithm the following holds:

(i) |δJ (A)| = 1 for any A ∈ L.

(ii) The sets Bi are pairwise disjoint and each of them has size ≥ q + 1.

Proof: For part (i), let A ∈ L and suppose to the contrary that there are e1, e2 ∈ δJ(A) with e1 6= e2. For

i = 1, 2 let Ai be some biset in F ′ that became uncovered when ei was considered for deletion at step 7.

Note that δJ(Ai) = {ei} and that A ⊆ Ai, since the edges in J were considered for deletion in the reverse

order. Thus A ⊆ A1 ∩ A2, and by Lemma 2.18(i) A1 ∪ A2 ∈ F
′. Consequently, there is e ∈ δJ(A1 ∪ A2),

hence e ∈ δJ(A1) or e ∈ δJ(A2), by Fact 2.1. Thus e = e1 or e = e2. Since the tail of each of e1, e2 is in

A ⊆ A1∩A2, so is the tail of e. The head of e is in A∗
1∩A

∗
2. This gives the contradiction e ∈ δJ(A1)∩δJ (A2).

We prove part (ii). Let Ci,Cj be distinct FJ -cores. Note that no two bisets inM intersect (since L is

laminar) and that Ci∩Cj = ∅ (since F is intersection closed). Thus to prove that Bi∩Bj = ∅ it is sufficient

to prove thatMi ∩Mj = ∅. Suppose to the contrary that there is A ∈Mi ∩Mj . By Lemma 2.18(ii), the

tail of eA is both in A ∩ Ci and A ∩ Cj . This contradicts Ci ∩ Cj = ∅. We prove that |Bi| ≥ q + 1. Note

that |Bi| ≤ q implies Bi ∈ F , since F is q-semi-intersecting. Thus to prove that |Bi| ≥ q + 1 it is sufficient

to prove that δI(Bi) = ∅, since this implies Bi /∈ F (as I covers F). Suppose to the contrary that there is

e ∈ δI(Bi). Then there is a biset A ∈M whose inner part contains the tail of e, and we must have A ∈Mi,

by the definition of Bi and since no two bisets inM intersect. As e covers the biset Bi that contains A, e

covers A, and thus e = eA and δJ(A ∩ Ci) = {eA}, by Lemma 2.18(ii). The edge eA has its tail in Ci and

covers the biset Bi that contains Ci. Consequently, eA covers Ci, contradicting that Ci ∈ F
J . 2

Lemma 2.19(ii) implies ν(FJ) ≤ ⌊n/(q + 1)⌋. To see that c(J) = τ(F ′) let x ∈ {0, 1}F be the charac-

teristic vector of J and y the dual solution produced by the algorithm. It is easy to see that x and y are

feasible solutions for the primal and dual LPs, respectively, and that the Primal Complementary Slackness

Conditions hold for x and y. The Dual Complementary Slackness Conditions are: |δJ (A)| = 1 whenever

yA > 0, and they hold by Lemma 2.19(i), since {A : yA > 0} ⊆ L.

This concludes the proof of Theorem 2.11, and thus the proof of Theorem 2.9 is also complete.
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2.9 Open problems

In this section we list some open problems in the field.

k-Connected Subgraph with {0, 1} costs. Can this problem be solved in polynomial time? A polynomial

time algorithm is known for the augmentation version of increasing the connectivity by 1.

Min-Size k-Connected Subgraph ({1,∞}-costs). The best known ratios for this problem are 1− 1
k + n

opt
≤

1+ 1
k for undirected graphs and 1− 1

k + 2n
opt
≤ 1+ 1

k for directed graphs. In both cases, the ratio is better

than 1 + 1
k , unless an optimal solution is a k-regular graph. Can the ratio 1 + 1

k be improved? Can it be

improved for k = 2? Such improvements are known in the undirected edge-connectivity case.

k-Connected Subgraph with general costs. The best known ratios are: O
(

ln k ln n
n−k

)

, for undirected

graphs with n = Ω(k3) ratio 6 is achievable, and for the augmentation version of increasing the connectivity

by 1 ratio O
(

ln n
n−k

)

is known. One main open question here is whether the later problem admits a

constant ratio. Another open question is whether the ratio O
(

ln n
n−k

)

extends to the general version of

the problem.
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