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Abstract

We consider the problem known as MAX-SATISFY: given a system of m linear equa-
tions over the rationals, find a maximum set of equations that can be satisfied. Let
r be the width of the system, that is, the maximum number of variables in an equa-
tion. We give an Ω(m−1+1/r)-approximation algorithm for any fixed r. Previously
the best approximation ratio for this problem was Ω((log m)/m) even for r = 2. In
addition, we slightly improve the hardness results for MAX-SATISFY.
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1 Introduction

One of the most fundamental computational tasks is solving a set of linear
equations over a field. If the whole system is satisfiable (namely, if there exists
an assignment of the field elements to the variables that satisfies all equations
in the system), then the Gaussian elimination procedure solves the system in
polynomial time. If, on the other hand, the system is not satisfiable, then find-
ing an assignment satisfying the maximum number of equations is NP-hard.
When the field is the rational numbers Q, this optimization problem is called
MAX-SATISFY. To avoid dealing with equivalent equations (namely, when one
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equation is obtained by multiplying the other by a non-zero constant), we con-
sider the following more general weighted version of the problem.

MAX-SATISFY:
Instance: A set E of m linear equations on a set V of n variables and positive

rational weights {w(e) : e ∈ E}.
Objective: Find a maximum weight satisfiable subset I ⊆ E of equations.

MAX-SATISFY has practical importance in various fields such as pattern recog-
nition, operational research, artificial neural networks, and more, c.f., [1]. It
also has theoretical importance. In particular, it is related to the Label-Cover
[6,9] and Learning-Half-Spaces with Error [9,7]. How well can one approximate
this problem? It has been proved in the mid 90’s that approximating MAX-
SATISFY within 1/mα where α is some positive universal constant is NP-hard
[1,2]. Furthermore, it was shown that the problem cannot be approximated
within Ω(1/m1−ε) for any constant ε > 0 unless NP⊆BPP [6].

Definition 1.1 The width of a system of equations is the maximum number
of variables in an equation of the system.

The hardness result Ω(1/m1−ε) of [6] does not apply for systems of small
width. Previously, the best known approximation ratio for systems of width
2 was Ω((log m)/m) [11], whereas the hardness result known for this case [5]
only rules out an approximation ratio of Ω(1/2log1−ε m), assuming NP-hard
problems cannot be solved in quasi-polynomial time.

The Unique Games Conjecture of Khot [13], if true, has been shown to imply
hardness of approximation results for several important NP-hard problems
(e.g., see [4] for more details). Systems of linear equations of width 2 over finite
fields are closely related to this conjecture [5,14] and have recently attracted
a lot of attention. The papers [4,8,16] considered finite fields and focused
on finding a relatively large feasible subsystem conditioned that the system is
”almost” satisfiable (namely, a fraction of 1−ε of the equations can be satisfied
for some small ε); these results are based on linear and semi-definite programs
in which the finiteness of the field is heavily used, and do not seem to apply for
infinite fields, such as Q. Trevisan [16] gives a combinatorial algorithm that
can be adapted for Q, but it applies for almost satisfiable instances and does
not seem to work for the general case.

In this paper we focus on approximating MAX-SATISFY instances with small
width. Let r-MAX-SATISFY be the restriction of MAX-SATISFY to instances
of width at most r. We give a simple combinatorial algorithm for r-MAX-
SATISFY as follows:

Theorem 1.1 r-MAX-SATISFY admits an Ω(m−1+1/r)-approximation algo-
rithm with running time O(rmr+1).
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Note that for any fixed r the running time is polynomial. Importantly, for
system of bounded width it is possible to achieve substantially better approx-
imation ratios than for the general case. In particular, for r = 2 the approxi-
mation ratio is Ω(1/

√
m), and for r = 3 the approximation ratio is Ω(1/m2/3).

Thus unlike finite fields, where the hardest instances to approximate are of
width 3 [12], when equations over Q are considered, we can achieve substan-
tially better approximation ratios for systems of bounded width. This result
is interesting also in view of the recent hardness result proved in [10], where
it is shown that for systems of width 3 it is NP-hard to decide whether the
optimum is at least (1− ε)m or at most δm, for every 0 < ε, δ < 1/2.

Our algorithm uses a greedy strategy, but it is not straightforward. The diffi-
culty is that, even for r = 2, choosing one ”bad” equation into a partial solution
may prevent from adding any other remaining equation. We use decomposition
tools to overcome this difficulty.

In addition, we slightly improve the hardness results for the problem. In [6] it
is shown that MAX-SATISFY cannot be approximated within 1/m1−ε for any
ε > 0 unless NP ⊆ BPP. The systems constructed in [6] have width Θ(ln m).
Under the assumption that P 6=NP, it is proved in [2] that r-MAX-SATISFY

with r = Θ(ln m) cannot be approximated within 1/mα for some α > 0; the
value of α in [2] is not computed explicitly, but it is known to be strictly
smaller than 1/2, see [6]. We improve the hardness result of [2] as follows:

Theorem 1.2 r-MAX-SATISFY with r = Θ(ln m) cannot be approximated
within O(1/m1/2−ε) for any constant ε > 0, unless P=NP .

Our proof is simpler than the proofs in [6,2]. It is based on a recent construction
of Zuckerman [17]. Currently, this is the best known hardness result under the
assumption that P 6=NP.

Preliminaries:

Let E be a system of linear equations with variable set V over the field Q of
rationals. Let m = |E| and n = |V |. An equation e ∈ E contains a variable v ∈
V if the coefficient of v in e is not zero. Let δE(v) denote the set of equations
in E containing a variable v. A set of equations is linearly independent if
the coefficients vectors of the equations in the set are linearly independent.
The rank of a linear system is the maximum number of linearly independent
equations in the system. Two equations ~a′ ·~x = b′ and ~a′′ ·~x = b′′, where ~a′,~a′′ ∈
QV and b′, b′′ ∈ Q, are equivalent if ~a′′ = c~a′ and b′′ = cb′ for some constant
c 6= 0. Given an instance of MAX-SATISFY we may assume that it is proper,
namely that no two equations are equivalent; otherwise, for every maximal set
of equivalent equations we keep one and set its weight to be the total weight
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of this set. Let opt be an optimal solution value for an instance at hand. For
a maximization problem, we say that an algorithm has approximation ratio
ρ, or that it is a ρ-approximation algorithm, where 0 < ρ ≤ 1, if it runs in
polynomial time and delivers a solution of value at least ρ times the value
of an optimal solution. When considering running times, it is assumed that
basic arithmetic operations between rational numbers (addition, subtraction,
multiplication and division) take O(1) time.

2 The algorithm

The key statement toward proving Theorem 1.1 is the following.

Theorem 2.1 r-MAX-SATISFY admits an algorithm with running time O(rmr+1)
and approximation ratio

1

r ·
(

n
r−1

) ≥ 1

r
·
(

r − 1

ne

)r−1

≡ ρ(r, n) .

Given Theorem 2.1, whose proof is deferred to the next section, the algorithm
is as follows. Let ` be a parameter, to be determined later. The following
algorithm starts with I1 = I2 = ∅ and returns a satisfiable set I1 + I2 ⊆ E.

Phase 1
While there is v ∈ V with |δE(v)| ≤ ` do:

I1 ← I1 ∪ ev, where ev is the maximum weight edge in δE(v).
E ← E \ δE(v), V ← V \ {v}.

EndWhile

Phase 2
Compute a set I2 ⊆ E of equations using the algorithm as in Theorem 2.1.
Return I ← I1 ∪ I2.

We claim that the algorithm returns a feasible solution. Indeed, I2 is clearly
satisfiable. The coefficient matrix of I1 is upper triangular with no zero rows.
Hence I1 is satisfiable. As every e ∈ I1 contains a variable not appearing in
any other equation in I2, we have that I1 ∪ I2 is also satisfiable.

We now prove the approximation ratio. Let (V2, E2) denote the instance at
the beginning of Phase 2, and let n2 = |V2| and m2 = |E2|. We claim that the
algorithm has approximation ratio min{1/`, ρ(r, n2)}. Let F be an optimal
solution, let F1 be the edges in F incident to nodes deleted at Phase 1, and let
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F2 = F−F1. It is easy to see that w(I1) ≥ w(F1)/` and w(I2) ≥ ρ(r, n2)·w(F2).
Thus

w(I)

w(F )
=

w(I1) + w(I2)

w(F1) + w(F2)
≥ min

{

w(I1)

w(F1)
,
w(I2)

w(F2)

}

≥ min
{

1

`
, ρ(r, n2)

}

.

We have r ·m2 ≥ ` ·n2, since |δE(v)| ≥ ` for all v ∈ V2 and since every equation
contains at most r variables. Thus n2 ≤ rm2/` ≤ rm/`. Consequently, the
approximation ratio in terms of m and ` is min{1/`, ρ(r, rm/`)}.

Note that

ρ(r, rm/`) = `r−1 · 1
r
·
(

r − 1

e · r
)r−1

·m1−r .

Solving the equation 1/` = ρ(r, rm/`) gives

` =

[

r1/r ·
(

e · r
r − 1

)1−1/r
]

·m−1+1/r = Θ(m−1+1/r)

Substituting this ` in min{1/`, ρ(r, rm/`)} gives the approximation ratio as
in Theorem 1.1.

The running time spent for computing I1 at Phase 1 is O(m2), hence the total
time is as in Theorem 2.1.

3 Proof of Theorem 2.1

Theorem 2.1 will follow from the following three statements.

Lemma 3.1 MAX-SATISFY can be solved (exactly) in time O(nmR+1), where
R is the rank of the system.

Proof: Note that if I ⊆ E is an inclusion maximal satisfiable sub-system of
E, then I has rank R. Otherwise, there is an equation e ∈ E \ I so that e is
linearly independent of the equations in I. But then I ∪ {e} is a satisfiable
system, contradicting the maximality of I. As the weights are positive, every
optimal solution is inclusion maximal, and thus has rank R.

The algorithm is as follows. Find the rank R of the system using Gaussian
elimination. Then, for every subset I ⊆ E of size R do the following. First,
using Gaussian elimination, find a satisfying assignment to the system (V, I),
or determine that such does not exist; note that if I has rank R, then every
variable v ∈ V is contained in some equation in I. Second, if I is satisfiable
and has rank R, substitute the assignment computed into all equations in E
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and return the set EI which this assignment satisfies. Finally, among the sets
EI computed output one of the maximum weight.

The correctness of the algorithm is straightforward. We show the time com-
plexity. Finding the rank of the system can be done in O(n2m) time. The num-

ber of iterations is
(

m
R

)

and the time complexity per iteration is O(R2n+nm) =

O(n(R2 + m)); indeed, solving each system I can be done in O(nR2) time,
while substituting this solution into all equations requires O(nm) time. Hence

the overall time complexity is O
(

n2m +
(

m
R

)

n(R2 + m)
)

= O(nmR+1). 2

Note that r-MAX-SATISFY instances can have rank n, hence Lemma 3.1 does
not imply that r-MAX-SATISFY can be solved in O(nmr+1) time. However,
r-MAX-SATISFY instances with r variables have rank at most r, and thus can
be solved in O(rmr+1) time.

Partition the set E of equations as follows. For every equation e choose an
arbitrary set Xe ⊆ V of size r that contains every variable contained in e. Let
E(X) = {e ∈ E : Xe = X}. Consider the r-uniform hypergraph H = (V, E),
where E = {X ⊆ V : |X| = r, E(X) 6= ∅}. Note that {E(X) : X ∈ E}
is a partition of E, thus |E| ≤ |E| = m. For X ∈ E , let FX be an optimal
solution to the instance E(X), and let p(X) = w(FX). For every X ∈ E , p(X)
can be computed in O(r|E(X)|r+1) time, by Lemma 3.1; hence the total time
complexity for computing H, p is O(rmr+1). Clearly,

opt ≤ p(H) =
∑

X∈E

p(X) =
∑

X∈E

∑

e∈FX

w(e) . (1)

The following statement is immediate.

Lemma 3.2 LetM⊆ E be a matching inH, that is,M is a subset of pairwise
disjoint sets from E. Then the subset FM =

⋃

X∈M FX ⊆ E of equations in E
that corresponds to M is a satisfiable system.

Lemma 3.3 Let H = (V, E) be any simple r-uniform hypergraph with hyper-
edge weights {p(X) : X ∈ E}. Then one can find in O(m2) time a matching
M in H of weight at least

p(M) ≥ p(H)

r ·
(

n
r−1

) . (2)

Proof: Starting with M = ∅, the algorithm iteratively finds the heaviest
hyperedge X in E , adds X to M, and removes from E all the hyperedges
intersecting X. This procedure is repeated until no edges are left in H. The
analysis of the running time is straightforward. Inequality (2) follows from the
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observation that in a simple r-uniform hypergraph the degree of every node is
at most

(

n
r−1

)

; thus the number of hyperedges intersecting a single hyperedge

is at most r
(

n
r−1

)

. Thus when X is added toM, the weight of the hyperedges

deleted from H is at most p(X) · r
(

n
r−1

)

. The statement follows. 2

Theorem 2.1 now follows easily by combining Lemmas 3.2 and 3.3. After com-
puting the hypergraph H = (V, E) and the weights {p(X) : X ∈ E}, we
compute a matching M as in Lemma 3.3, and output the subset FM ⊆ E of
equations that corresponds toM. The dominating time is spent for computing
the weight function p, which is O(rmr+1).

The proof of Theorem 2.1 is complete.

4 Proof of Theorem 1.2

In this section we give a proof sketch of Theorem 1.2, namely, that r-MAX-
SATISFY with r = Θ(ln m) cannot be approximated within O(1/m1/2−ε) for
any constant ε > 0, unless P=NP. We assume familiarity of the reader with
proof systems. For more on this subject see [3]. We use the following result
due to Zuckerman [17]:

Lemma 4.1 ([17]) For any ε > 0, NP ⊂ FPCP2(ε−1)R(R, εR), where R =
O(log m) (m is the size of the input). Further, the query complexity of the
above proof system is O(R).

The main idea is to arithmetize the above proof system in a similar way to
[6].

Create a linear set of equations over the rationals as follows. For the proof
system above, we give a variable for any position in the proof that has positive
probability of being queried. Assume our query complexity is q. If the values
b1, ..., bq cause the verifier to accept, we add the ` equations

∑q
i=1 (xi − bi) =

0,
∑q

i=1 (xi − bi)2
i = 0, . . . ,

∑q
i=1 (xi − bi)`

i = 0, where ` = 2R. (Note – the
indices of the variables should correspond to the queried positions and not
to 1, 2...q. We write it like we did to avoid notational difficulties). Clearly if
xi = bi for every i, then all ` equations are satisfied. If xi − bi is nonzero for
some i then at most q out of the ` equations are satisfied.

We get a total of 22R+ε equations. The width of the system is the query com-
plexity which is O(R). If we have a proof that is accepted with probability
1, then we can satisfy at least 22R equations. If every proof is accepted with
probability at most 2(ε−1)R, then we can satisfy at most 22R

2(1−ε)R + q2R+εR equa-
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tions. For large enough R this is no larger than 2(1+2ε)R (recall that q = O(R)).
Hence for a system containing 22R+ε equations, it is NP-hard to distinguish
between the case in which we can satisfy 22R equations, to the case in which
we can satisfy at most 2(1+2ε)R equations. The result follows.

5 Conclusions

We have shown that r-MAX-SATISFY admits an Ω(m−1+1/r)-approximation
algorithm with running time O(rmr+1). Our algorithm is combinatorial in
nature and easy to implement. There is still a big gap, even for r = 2, between
the approximation guarantee provided by our algorithm and the lower bound
known [5]. Narrowing this gap is a challenging open problem even for r = 2, as
improving the approximation ratio of O(1/

√
m) for MAX-2-SATISFY implies

improving the best known Ω(1/
√

m)-approximation [15] to LABEL-COVER, see
[5]. We also note that for r = 2, no hardness for the (1−ε)-satisfiable version is
known. Over finite fields, this is equivalent to the Unique Games Conjecture;
a similar statement is not known for the field Q of rational numbers. Finally,
observe that our algorithm applies for any field for which Lemma 3.1 is valid;
in particular, it applies to every finite field.

Acknowledgment: We thank anonymous referees for their useful comments
on a previous version of this paper.

References

[1] E. Amaldi and V. Kann. The complexity and approximability of finding
maximum feasible subsystems of linear relations. Theor. Comput. Sci., 147(1-
2):181–210, 1995.

[2] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. Syst.
Sci., 54(2):317–331, 1997.

[3] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and
nonapproximability - towards tight results. SIAM J. Comput., 27(3):804–915,
1998.

[4] M. Charikar, K. Makarychev, and Y. Makarychev. Near optimal algorithms
for unique games. In Proc. Symposium on the Theory of Computing (STOC),
pages 205–214, 2006.

8



[5] U. Feige and D. Reichman. On systems of linear equations with two variables
per equation. In Proc. Workshop on Approximation algorithms (APPROX),
pages 117–127, 2004.

[6] U. Feige and D. Reichman. On the hardness of approximating max-satisfy. Inf.
Process. Lett., 97(1):31–35, 2006.

[7] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. New results for
learning noisy parities and halfspaces. In Proc. Symposium on the Foundations
of Computer Science (FOCS), pages 563–574, 2006.

[8] A. Gupta and K. Talwar. Approximating unique games. In Proc. Symposium
on Discrete Algorithms (SODA), pages 99–106, 2006.

[9] V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise.
In Proc. Symposium on the Foundations of Computer Science (FOCS), pages
543–552, 2006.

[10] V. Guruswami and P. Raghavendra. A 3-query pcp over integers. In Proc.
Symposium on the Theory of Computing (STOC), pages 198–206, 2007.
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