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Abstract

We study several multi-criteria undirected network design problems with node costs and
lengths. All these problems are related to the Multicommodity Buy at Bulk (MBB) problem
which is as follows. We are given a graph G = (V,E), demands {dst : s, t ∈ V }, and a family
{cv : v ∈ V } of subadditive cost functions. For every s, t ∈ V we seek to send dst flow units from
s to t on a single path, so that

∑

v cv(fv) is minimized, where fv the total amount of flow through
v. In the Multicommodity Cost-Distance (MCD) problem we are also given lengths {`(v) : v ∈ V },
and the goal is to find a subgraph H of G that minimizes c(H)+

∑

s,t∈V dst ·`H(s, t), where `H(s, t)
is the minimum `-length of an st-path in H. The approximation for these two problems is equiv-
alent up to a factor arbitrarily close to 2. We give an O(log3 n)-approximation algorithm for both
problems for the case of demands polynomial in n. The previously best known approximation
ratio was O(log4 n) [Chekuri et. al, FOCS 2006] and [Chekuri et. al, SODA 2007].

A related problem to MBB is the Maximum Covering Tree (MaxCT) problem: given a graph
G = (V,E), costs {c(v) : v ∈ V }, profits {p(v) : v ∈ V }, and a bound C, find a subtree T of G
with c(T ) ≤ C and p(T ) maximum. The best known approximation algorithm for MaxCT [Moss
and Rabani, STOC 2001] computes a tree T with c(T ) ≤ 2C and p(T ) = Ω(opt/ log n). For
MaxCT, we give the first real O(log n)-approximation algorithm that does not violate the cost
bound, and show the first nontrivial lower bound on approximation: MaxCT admits no better
than Ω(log log n/ log log log n) approximation assuming NP 6⊆ Quasi(P). This solves two open
questions posed in [Moss and Rabani, STOC 2001].

Another problem related to MBB is the Shallow Light Steiner Tree (SLST) problem, in which
we are given a graph G = (V,E), costs {c(v) : v ∈ V }, lengths {`(v) : v ∈ V }, a set U ⊆ V of
terminals, and a bound L. The goal is to find a subtree T of G containing U with diam`(T ) ≤ L
and c(T ) minimum. We give an algorithm that computes a tree T with c(T ) = O(log2 n) · opt

and diam`(T ) = O(log n) · L. Previously, a polylogarithmic bicriteria approximation was known
only for the case of edge costs and edge lengths.

Key-words: Network design, Node costs, Multicommodity Buy at Bulk, Covering tree, Approxi-
mation algorithm, Hardness of approximation.
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1 Introduction

Network design problems require finding a minimum cost (sub-)network that satisfies prescribed
properties, often connectivity requirements. The most fundamental problems are the ones with 0, 1
connectivity requirements. Classic examples are: shortest path, min-cost spanning tree, min-cost
Steiner tree/forest, traveling salesperson, and others. Examples of problems with high connecti-
vity requirements are: min-cost k-flow, min-cost k-edge/node-connected spanning subgraph, Steiner
network, and others. All these problems also have practical importance in applications.

Two main types of costs are considered in the literature: the edge costs and the node costs.
We consider the later, which is usually more general than the edge costs variants; indeed, for most
undirected network design problems, a very simple reduction transforms edge costs to node costs,
but the inverse is, in general, not true. The study of network design problems with node costs is
already well motivated and established from both theoretical as well as practical considerations, c.f.,
[20, 14, 24, 7, 6, 25]. For example, in telecommunication networks, expensive equipment such as
routers and switches are located at the nodes of the underlying network, and thus it is natural to
model some of these problems by assigning costs on the nodes rather than to the edges.

For some previous work on undirected network-design problems with node costs see the work of
Klein and Ravi [20], Guha et al. [14], Moss and Rabani [24], and Chekuri et al. [7, 6]. We mostly
focus on resolving some open problems posed in these papers.

1.1 Problems considered

Given a length function ` on the edges/nodes of a graph H, let `H(s, t) denote the `-distance between
s, t in H, that is, the minimum `-length of an st-path in H (including the lengths of the endpoints).
Let diam`(H) = maxs,t∈V (H) `H(s, t) be the `-diameter of H, that is the maximum `-distance between
two nodes in H. We consider the following two related problems on undirected graphs.

Multicommodity Buy at Bulk (MBB)
Instance: A graph G = (V,E), a family {cv : v ∈ V } of sub-additive monotone non-decreasing

cost functions, a set D of pairs from V , and positive demands {dst : {s, t} ∈ D}.
Objective: Find a set {Pst : {s, t} ∈ D} of st-paths so that

∑

v∈V cv(fv) is minimized, where
fv =

∑{dst : {s, t} ∈ D, v ∈ Pst}.
Multicommodity Cost-Distance (MCD)
Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {`(v) : v ∈ V }, a set D of pairs from

V , and positive integral demands {dst : {s, t} ∈ D}.
Objective: Find a subgraph H of G that minimizes

w(H,D) = c(H) +
∑

{s,t}∈D

dst · `H(s, t) (1)

As linear functions are subadditive, MCD is a special case of MBB. The following statement
shows that up to a factor arbitrarily close to 2, MCD and MBB are equivalent w.r.t. approximation.

Proposition 1.1 ([3]) If there exists a ρ-approximation algorithm for MCD then there exists a
(2ρ+ ε)-approximation algorithm for MBB for any ε > 0.

We consider another two fundamental problems closely related to MBB (see explanation below):

Maximum Covering Tree (MaxCT)
Instance: A graph G = (V,E), costs {c(v) : v ∈ E}, profits {p(v) : v ∈ V }, and a bounds C.
Objective: Find a subtree T of G with c(T ) ≤ C and p(T ) maximum.
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Shallow-Light Steiner Tree (SLST)
Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {`(v) : v ∈ V }, a set U ⊆ V of terminals,

and a bound L.
Objective: Find a subtree T of G containing U with diam`(T ) ≤ L and c(T ) minimum.

Each one of the problems MBB and SLST has an ”edge version”, where the costs/lengths are given
on the edges. As was mentioned, the edge version admits an easy approximation ratio preserving
reduction to the node version.

1.2 Relations between the problems considered

The common denominator of all the problems considered is the MBB problem, via the Buy at Bulk
k-Steiner Tree (BBk-ST) problem (see [16]). We are given a graphs, G, a set of terminals T ⊆ V , a
root r, costs and length on the edges/nodes, and an integer k. The goal is to find a tree containing r
and (at least) k terminals, minimizing the cost of the tree plus the sum of distances from terminals
to the root. This problem is related to MBB via the following key theorem:

Theorem 1.2 ([16]) Let T be an optimal solution to the MBB instance at hand. Let optc = c(T )
be the cost of T and let opt` be the sum of the distances from terminals in T to the root. A
(ρc, ρ`)-bicriteria approximation algorithm for the density variant of BBk-ST implies a solution of
cost O(log3 n) · ρc · optc +O(logn) · ρ` · opt` for MBB.

The algorithm that is derived from Theorem 1.2 is the only combinatorial approximation algorithm
known for MBB. Improved bicriteria algorithm for BBk-ST would imply a better combinatorial
algorithm for MBB. It seems hard to improve the bicriteria approximation for BBk-ST given in [16].
Hence we deal with the ”relaxations” MaxCT and SLST of the problem, which are interesting in
their own right. The hope is that they may also shed some light on BBk-ST and thus on MBB. The
MaxCT problem is similar to BBk-ST, except that we upper bound the cost and not lower bound
the profit as in BBk-ST. This point is very minor and can be overcome using binary search. The
main difference between BBk-ST and MaxCT is that there are no length constraints in MaxCT. On
the other hand, SLST has both costs and length. However, the constraint is on the diameter, and
not on the sum of the lenghts as in BBk-ST. This point can be handled using averaging arguments.
One main difference is that in SLST we must cover all terminals, and not only k as in BBk-ST.
This difference seems quite significant and hard to handle. However, the hope is that the (separate)
techniques for MaxCT and SLST can be somehow combined to derive an improved approximation
for BBk-ST.

1.3 Related work

There is a vast literature on network design problems, see, e.g., [9, 11] for classic results on polynomial
time algorithms. Also, see [12, 18, 29, 21, 1, 12, 19] for results on approximation algorithms.

Klein and Ravi [22] showed that the node-costs Steiner Tree problem is set-cover hard, thus it
admits no o(log n) approximation unless P=NP [26]. They also obtained a matching approximation
ratio using a greedy merging algorithm. Guha et al. [14] showed O(log n) integrality gap of a natural
LP-relaxation for the problem. The MBB problem is motivated by economies of scale that arise
in a number of applications, especially in telecommunication. The problem is studied as the fixed
charge network flow problem in operations research. The first approximation algorithm for the
problem is by Salman et al. [27]. For more results on the problem see [4, 13, 28, 15, 23, 8]. For the
multi-commodity version MBB the first non-trivial result is due to Charikar and Karagiazova [5] who
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obtained an O(log |D| exp(O(
√
log n log log n)))-approximation, where |D| is the sum of the demands.

In [7] an O(log4 n)-approximation algorithm is given for the edge costs case, further generalized to
the node costs case in [6]. See [2] for an Ω(log1/2−ε n)-hardness result.

MaxCT was introduced in [14] motivated by efficient recovery from power outage. In [14] a
pseudo approximation algorithm is presented that returns a subtree T with c(T ) ≤ 2C and p(T ) =
Ω(P/ log2 n), where P is the maximum profit under budget cost C. This was improved in [24] to
produce a tree T with c(T ) ≤ 2C and p(T ) = Ω(P/ log n). For a related minimization problem
when one seeks to find a minimum cost tree T with p(T ) ≥ P [24] gives an O(lnn)-approximation
algorithm.

1.4 Our results

The previously best known ratio for MCD/MBB was O(log4 n) both for edge costs [7] and node costs
[6], and this was also so for polynomial demands. We improve this result by using, among other
things, a better LP-relaxation for the problem.

Theorem 1.3 MCD/MBB with polynomial demands admits an O(log3 n)-approximation algorithm.

Our next two results are for the MaxCT problem. In the MaxCT problem it is not easy to meet
the budget C. Indeed, all previous logarithmic approximation algorithms for the problem were in
fact pseudo-approximations, that produced a tree of cost as high as 2C. For MaxCT [14] gave an
algorithm that computes a tree T with c(T ) ≤ 2C and p(T ) = Ω(P/ log2 n), where P = max{p(T ) :
c(T ) ≤ C, T is a subtree of G}. This was improved in [24] to c(T ) ≤ 2C and p(T ) = Ω(P/ log n).
We resolve two open problems posed in [24]:
1. Does MaxCT admits an O(logn)-approximation algorithm without violating the cost bound?
2. Does MaxCT admits an O(1) approximation algorithm?
It was conjectured in [24] that MaxCT admits an O(logn)-approximation algorithm without violating
the cost bound, and that it probably admits an O(1) approximation ratio. We prove the first
conjecture and disprove the second.

Theorem 1.4 MaxCT admits an O(logn)-approximation algorithm.

Theorem 1.5 MaxCT admits no constant approximation algorithm unless NP ⊆ DTIME(nO(logn)).
MaxCT admits no o(log log n) approximation algorithm unless NP ⊆ DTIME(npolylog(n)).

Our last result is for the SLST problem. For SLST with edge costs and edge lengths, the algorithm
of [22] computes a tree T with c(T ) = O(logn) · opt and diam`(T ) = O(logn) · L. We consider the
more general case of node costs and node lengths.

Theorem 1.6 SLST with node costs and lengths admits an approximation algorithm that computes
a tree T with c(T ) = O(log2 n) · opt and diam`(T ) = O(log n) · L.

2 Improved algorithm for MBB

In this section we prove Theorem 1.3. We give an O(log2 n · logN)-approximation algorithm for MCD

with running time polynomial in N , where N is the sum of the demands plus n. If N is polynomial
in n, the running time is polynomial in n, and the approximation ratio is O(log3 n). We may assume
(by duplicating nodes) that all demands are 1. Then our problem is:
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Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {`(v) : v ∈ V }, a set D of node pairs.
Objective: Find a subgraph H of G that minimizes w(H,D) = c(H) +

∑

{s,t}∈D `H(s, t).

For the latter problem, we give an algorithm with approximation ratio O(log2 n·log |D|). We need
to assume that the lengths are integral and polynomial in N . This assumption is needed to solve the
LP we introduce later. Specifically, we can transform our instance into a new one with lengths being
integral and bounded by N 4, so that the loss in the approximation ratio is a constant, and hence is
negligible in our context. By trying all nodes, we guess a node v that has the largest length among
the nodes that carry a positive flow in some optimal solution H. Let M = `(v). Zero the length of
all nodes u with `(u) < M/N 4. We claim that the decrease in the length part

∑

{s,t}∈Q `H(s, t) of
w(H,Q) due to this modification is negligible. Note that the total demand that goes through one
node is at most N2. Thus if u is a node so that `(u) ≤ M/N 4, then the contribution of u to the
length part is at most `(u) · N 2 ≤ M/N2, and the contribution of all such nodes is at most M/N .
Since at least one unit of demand goes through v,

∑

{s,t}∈Q `H(s, t) ≥ M . Hence the loss is at most
a fraction 1/N of the length part. Now, the minimum (non-zero) length of a node that contributes
to the length part is at least M/N 4. Divide the length of every node by M/N 4 and round down the
result to the nearest integer. It is easy to see that the rounding down only incurs a loss of factor 2
in the sum of the distances. Thus the total loss incurred is at most 2 + 1/N , as claimed.

2.1 Approximate greedy algorithm and junction trees

We use a result about the performance of an Approximate Greedy Algorithm for a certain type of
problems, defined as follows:

Covering Problem

Instance: A groundset Π and functions ν, w on 2Π given by an evaluation oracle.
Objective: Find P ⊆ Π with ν(P) = ν(Π) and with w(P) minimized.

A set-function f on 2Π is decreasing (resp, increasing) if f(P2) ≤ f(P1) (resp., if f(P2) ≥ f(P1))
for any P1 ⊂ P2 ⊆ Π, and f is subadditive if f(P1 ∪ P2) ≤ f(P1) + f(P2) for all P1,P2 ⊆ Π. Given
an instance of a Covering Problem, we call ν the deficiency function (it is assumed to be decreasing
and measures how far P from being a feasible solution) and w the weight function (assumed to be
increasing and subadditive). Let ρ > 1 and let opt be the optimal solution value for Covering Problem.
The ρ-Approximate Greedy Algorithm starts with P = ∅ and iteratively adds subsets of Π− P to P
one after the other using the following rule. As long as ν(P) > ν(Π) it adds to P a set R ⊆ Π− P
so that

σP(R) =
w(R)

ν(P)− ν(P +R) ≤
ρ · opt

ν(P)− ν(Π)
. (2)

The following known statement follows by a standard set-cover analysis, c.f., [20].

Theorem 2.1 If ν is decreasing and w is increasing and subadditive, the ρ-Approximate Greedy
Algorithm computes a solution P with w(P) ≤ ρ · [ln(ν(∅)− ν(Π)) + 1] · opt.

In our setting, Π is the family of all st-paths, {s, t} ∈ D. For a set R ⊆ Π of paths connecting a
set R of pairs in D, let ν(R) = |D| − |R| be the number of pairs in D not connected by paths in R,
and let w(R) = c(R) +∑

{s,t}∈R `(Pst), where c(R) denotes the cost of the union of the paths in R,
and Pst is the shortest st-path in R. Note that ν(Π) = 0 and ν(∅) = |D|. W.l.o.g., we may consider
the case P = ∅. Then (3) can be rewritten as:

σ(R) = c(R)
|R| +

∑

{s,t}∈R `(Pst)

|R| ≤ ρ · opt

|D| . (3)
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The quantity σ(R) in (3) is the density ofR; it is a sum of ”cost-part” c(R)/|R| and the remaining
”length-part”. The following key statement from [7] shows that with O(logn) loss in the length part
of the density, we may restrict ourselves to very specific R, as given in the following definition; in [7]
it is stated for edge-costs, but the generalization to node-costs is immediate.

Definition 2.1 A tree T with a designated node r is a junction tree for a subset R ⊆ D of pairs in
T if the unique paths in T between the pairs in R all contain r.

Lemma 2.2 ([7], The Junction Tree Lemma) Let H∗ be an optimal solution to an MCD in-
stance with {0, 1} demands. Let C = c(H∗) and let L =

∑

{s,t}∈D `H∗(s, t). Then there exists a junc-
tion tree T for a subset R ⊆ Q of pairs, so that diam`(T ) = O(logn)·L/|D| and c(T )/|R| = O(C/|D|).

If we could find a pair T,R as in Lemma 2.2 in polynomial time, then we would obtain an
O(log |D| · log n)-approximation algorithm, by Theorem 2.1. In [7] it is shown how to find such a
pair that satisfy (3) with ρ = O(log3 n). We will show how to find such a pair with ρ = O(log2 n).

Theorem 2.3 There exists a polynomial time algorithm that given an instance of MCD with {0, 1}
demands computes a set R of paths connecting a subset R ⊆ D of pairs satisfying (3) with ρ =
O(log2 n).

Motivated by Lemma 2.2, the following LP was used in [7, 6]. Guess the common node r of
the paths in R. Let U be the union of pairs in D. Relax the integrality constraints by allowing
”fractional” nodes and paths. For v ∈ V , xv is the ”fraction of v” taken into the solution. For u ∈ U ,
yu is the total amount of flow v delivers to r. In the LP, we require ys = yt for every {s, t} ∈ D, so
ys = yt amount of flow is delivered from s to t via r. For u ∈ U let Πu be the set of all ur-paths in
Π, and thus Π = ∪u∈UΠu. For P ∈ Π, fP is the amount of flow through P . Dividing all variables
by |R| (note that this does not affect the objective value), gives the following LP:

(LP1) min
∑

v∈V c(v) · xv +
∑

P∈Π `(P ) · fP

s.t.
∑

u∈U yu = 1
∑

{P∈Πu|v∈P} fP ≤ xv v ∈ V, u ∈ U
∑

P∈Πu
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D
xv, fP , yu ≥ 0 v ∈ V, P ∈ Π, u ∈ U

2.2 The LP used

Let A · logn ·L/|D| be the bound on the lengths of the paths in R guaranteed by Lemma 2.2. We use
almost the same LP as (LP1), except that we seek to minimize the cost only, and restrict ourselves
to paths of length at most A · logn · L/|D|, which reflects better the statement in Lemma 2.2. For
Π′ ⊆ Π let Π̃′ = {P ∈ Π′ : `(P ) ≤ A · log n · L/|D|}. The LP we use is:

(LP2) min
∑

v∈V c(v) · xv

s.t.
∑

u∈U yu = 1
∑

{P∈Π̃u|v∈P} fP ≤ xv v ∈ V, u ∈ U
∑

P∈Π̃u
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D
xv, fP , yu ≥ 0 v ∈ V, P ∈ Π̃, u ∈ U
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Although the number of variables in (LP2) might be exponential, any basic feasible solution to
(LP2) has O(N2) nonzero variables.

Lemma 2.4 (LP2) can be solved in polynomial time (assuming the length are polynomial).

Proof: We show that (LP2) can be solved by writing an equivalent LP with polynomial number
of variables and constraints. Recall that we assume that the lengths are integral and the largest
node length is at most N 4. This implies that the maximum length of a path is N 5. Define a
variable s(v, u, P, j) for every v ∈ V , u ∈ U , P ∈ Πu, and j ≤ N5, so that s(v, u, P, j) = 1 if, and
only if, v at distance j from u in the path P . Define f(v, u, j) =

∑

P∈Πu
s(v, u, P, j) · fP . Also

f(u, j) =
∑

v f(v, u, j). Thus f(u, j) is the total amount of flow from u to r at distance j from u.
The above variables are used to define an alternative LP. The flow conservation inequality is

f(v, u, j) =
∑

zv∈E

f(z, j − `(z, v), u) ∀v ∈ V, u ∈ U, j ≤ N 5 .

The flow from u to r is
∑

1≤j≤N5,vr∈E

f(u, j − `(vr)) .

It is not hard to verify, that the obtained LP is equivalent to (LP2). As its size is polynomial in
N , it can be solved in time polynomial in N . Given a solution for the modified LP, the solution for
(LP2) is derived by standard flow decomposition. 2

By Lemma 2.2 there exists a solution to (LP2) of value O(C/|D|). Indeed, let T,R,R be as in
Lemma 2.2; in particular, c(T )/|R| = O(C/|D|). For u ∈ T let Pu be the unique ur-path in T .
Define a feasible solution for (LP2) as follows: xv = 1/|R| for every v ∈ T , yu = fPu

= 1/|R| for
every u that belongs to some pair in R, and xu, yu, fP are zero otherwise. It easy to see that this
solution is feasible for (LP2), and its value (cost) is c(T )/|R| = O(C/|D|).

2.3 Proof of Theorem 1.3

We now proceed similarly to [7, 6]. We may assume that max{1/yu : u ∈ U} is polynomial in n,
see [6]. Partition U into O(logn) sets Uj = {u ∈ U : 1/2j+1 ≤ yu ≤ 1/2j}. There is some Uj

that delivers Ω(1/ lnn) flow units to r. Focus on that Uj . Clearly, |Uj | = Θ(2j)/ log n. Setting
x′v = min{Θ(2j) · xv, 1} for all v ∈ V and f ′P = min{Θ(2j) · fP , 1} for all P ∈ Π, gives a feasible
solution for the following LP that requires that every node in Uj must deliver a flow unit to r.

(LP3) min
∑

v∈V c(v) · x′v +
∑

P∈Π `(P ) · f ′P
s.t.

∑

{P∈Πu|v∈P} f
′
P ≤ x′v v ∈ V, u ∈ Uj

∑

P∈Πu
f ′P ≥ 1 u ∈ Uj

x′v, f
′
P ≥ 0 v ∈ V, P ∈ Π

We bound the value of the above solution x′, f ′ for (LP3). Since
∑

v∈V c(v)xv = O(C/|D|),
∑

v∈V

c(v)x′v = O(2j) · C/|D| .

We later see that, since |Uj | = Θ(2j/ log n), an extra log n factor is invoked in the cost part of
our solution; if, e.g., |Uj | = 2j would hold, this logn factor would have been saved. Our main point
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is that the length-part of the density does not depend on the size of Uj . We show this as follows. All
paths used in (LP2) are of length O(logn · L/D). First, assure that

∑

P∈Π̃u
f ′P is not too large. For

any u ∈ Uj the fractional values of {f ′P : P ∈ Πu} only affect u, namely, if u 6= u′ then Π̃u ∩ Π̃u′ = ∅.
Therefore, if

∑

P∈Π̃u
fP >> 1, we may assure that the sum is at most 3/2 as follows. If a single path

carries at least 1/2 a unit of flow then (scaling values by only 2) this path can be used as the solution
for u. Else, any minimal collection of paths delivering at least one unit of flow, deliver at most 3/2
units of flow to r. Hence the contribution of a single node u to the fractional length-part is

O(logn · L/|D|)
∑

P∈Π̃u

f ′P = O(logn · L/|D|) .

Over all terminals, the contribution is O(|Uj | · logn · L/|D|). Now, use the main theorem of [6]:

Theorem 2.5 ([6]) There exists a polynomial time algorithm that finds an integral solution to (LP3)
of value O(logn) times the optimal fractional value of (LP3).

Hence we can find in polynomial time a tree T containing r and Uj with c(T ) = O(logn·2j ·C/|D|)
and

∑

u∈Uj
`T (u, r) = O(|Uj | · log2 n · L/|D|).

Note that if the tree contains i terminals then it contains i/2 pairs. This is due to the constraint
ys = yt. Since the tree spans Θ(2j/ logn) pairs, its cost-part density is O(log2 n) · C/|D|. Clearly,
the length-part density is O(log2 n) · L/|D|. This finishes the proof of Theorem 2.3, and thus also
the proof of Theorem 1.3 is complete.

3 Algorithm for MaxCT

In this section we prove Theorem 1.4. Clearly, we may assume that c(v) ≤ C for every v ∈ V . Let
T ∗ be some optimal solution and let P = p(T ∗). We assume that P is known, as we may apply
binary search and get a tight lower bound on P . The density of a tree T is c(T )/p(T ). Let Tu be a
tree with a designated root u. A subtree of Tu rooted at v is the subtree induced by v and all its
descendants. Let ρ = A lnn be the approximation ratio of the (bicriteria) approximation algorithm
of [24], A > 0 is a constant. One idea of the algorithm is to guess the maximum cost node w in T ∗

by trying all w ∈ V and returning the minimum cost tree over all w. Given a guess w, the algorithm
executes the algorithm of [24] on a modified graph Gw = G − {v ∈ V − w : c(v) > c(w)} obtained
by removing all nodes of cost strictly larger than c(w), and setting the cost of w to 0; all the other
nodes maintain their original costs. The algorithm of [24] returns a tree T0 with p(T0) ≥ P/ρ and
c(T0 − w) ≤ 2(C − c(w)). Eventually, we find a certain subtree T̂ rooted at some node u. A central
property is that c(u) ≤ c(w) and if w ∈ T̂ then c(u) = c(w). We show that p(T̂ ) = Ω(P/ log n), and
c(T̂ − u) ≤ C − c(w). Incorporating the cost of u we get c(T̂ ) ≤ C − c(w) + c(u) ≤ C. Due to space
limitation, see Section 6.1 for the rest of the proof of Theorem 1.4.

4 A lower bound for MaxCT

Theorem 4.1 MaxCT admits no better than c-approximation algorithm, unless NP ⊆ DTIME(nO(ln c·exp(9c))).

Clearly, this implies that MaxCT admits no constant approximation algorithm unless P=NP.
Also, the problem admits no B log log n-approximation for some universal constant B unless NP ⊆
DTIME(npolylog n).

Remark: The size of the instance produced is s = nO(ln c·exp(9c)) and thus c = Θ(log log s). Therefore,
it is not possible to get a stronger hardness than log log n unless we get a better gap in terms of c.
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4.1 The max-coverage problem

For a graph H = (V,E) and X ⊆ V let ΓH(X) = ΓE(X) = {v ∈ V −X : uv ∈ E for some u ∈ X}
denote the set of neighbors of X in H. We say that A′ ⊆ V covers B′ ⊆ V if B′ ⊆ ΓH(A′).

Max-Coverage

Instance: A bipartite graph H = (A+B,E) and a bound D with |D| ≤ |A| and |B| = n.
Objective: Find A′ ⊆ A with |A′| ≤ aD and |ΓH(A′)| maximum.

Lemma 4.2 Unless NP ⊆ DTIME(nO(log logn)) it is not possible to decide for any 0 ≤ a ≤ ln |B|
whether there is A′ ⊆ A with |A′| ≤ aD and |Γ(A′)| > (1− 1/e1+a)|B|,

Proof: Let D be the minimum size of a cover of all B. By [10], the corresponding Set-Cover instance
cannot be approximated better than (1 − ε) lnn for any ε > 0 unless NP ⊆ DTIME(nO(log logn).
Suppose we can find A′ ⊆ A with |A′| = aD that covers (1 − b)|B| nodes, b ≤ 1. For the residual
instance of Set-Cover, we still need to cover bn nodes in B. We can find a cover of size D · [1+ ln(bn)]
of the remaining nodes using the greedy algorithm. So, we can find a cover of size D[a+ 1+ ln(bn)]
of all B. But this cannot be smaller than D · lnn, unless NP ⊆ DTIME(nO(log logn). So, we get that
a+ 1 + ln(bn) ≥ lnn. This gives b ≥ e−(a+1) = 1/(ea+1). 2

Corollary 4.3 Unless NP ⊆ DTIME(nO(log logn)), it is not possible to decide for any 0 ≤ a ≤ ln |B|
whether:
(i) The YES instance: There is A′ ⊆ A with |A′| ≤ D that covers all B.
(ii) The NO instance: there is A′ ⊆ A with |A′| ≤ aD and |Γ(A′)| ≥ (1− 1/e1+a)|B|.

4.2 The reduction

Define a sequence of graphs G1, G2, . . . by induction (see Fig. 1). To obtain G1, take H, add a root
r, and connect r to every node in A. Let A1 = A and B1 = B. To obtain Gi from Gi−1, i ≥ 2,
take G1 and |B| copies of Gi−1, each corresponding to a node in B1, and for every copy identify its
root with the node corresponding to it in B1. As the construction resembles a tree, we borrow some
terms from the terminology of trees. A copy of H has level i if it has distance 2i − 1 to the root
r. The copies of H at level i are ordered arbitrarily. A typical copy of H at level i is denoted by
Hij = (Aij , Bij , Eij) with i the level of the copy and j the index of the copy. The index j is the order
statistic of the copy inside the order. Let Ai =

⋃

j Aij and Bi =
⋃

j Bij .
An Hij is an ancestor of a terminal y if y belongs to the subgraph rooted by some v ∈ Bij ; such

v is called the elements ancestor of y in level i and is denoted ansi(y). The sets Aij , Bij are the
ancestors sets of y in level i and are denoted by Ai

y, B
i
y. y is a descendant of ansi(y), Ai

y, B
i
y.

The terminals of Gh are
⋃

j Bh,j , and each of them has profit 1; other nodes have profit 0. The
cost of every node in Aij is 1/|B|i−1 (so the nodes in A1 = A11 have cost 1), and the cost of any
other node is 0. The cost bound is C = h ·D.

Fact 4.4 The size (and the construction time) of the construction is nO(h), where n = max{|A|, |B|}.

This concludes the description of the reduction.

4.3 Analysis

While increasing the level by 1, the number Max-Coverage instances grows up by |B| but the node
costs go down by |B|. Hence the total cost of every level i is |A|, and the total cost of G is h · |A|. We
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Figure 1: (a) The graph G1. (b) The graph G2; if instead of copies of G1 we ”attach” to nodes in
B1 roots of the copies of Gi−1, then we obtain Gi.

may assume that any solution T to the obtained instance of MaxCT contains r. Otherwise, we may
add the shortest path from r to T ; the cost added is negligible in our context. Hence a subgraph T
of G is a feasible solution if T contains r, T is connected, and c(T ) ≤ C = h ·D.

Lemma 4.5 (The YES instance) If for the Max-Coverage instance H there exists A′ ⊆ A with
|A′| = D that covers all B, then the obtained MaxCT instance G admits a feasible solution T that
contains all terminals.

Proof: Consider the graph T induced in G by r and all the copies of A′ ∪ B. This graph contains
all terminals. It is easy to see that, since A′ covers B, T is connected. The cost of all copies of A′ at
any level i is D. Summing over all levels gives total cost c(T ) = h ·D = C, as claimed. 2

Fix a feasible solution T for MaxCT. Let c be the solution of:

h = 4 ln(2c) · exp(9c).

Our intent is to show that any solution for a no instance can cover at most 1/c fraction of the
terminals.

Definition 4.1 Level i in G is T -cheap if c(T ∩ Ai) < 2D. A copy Hij in level i is an T -cheap if
|T ∩Aij | ≤ 8 · c ·D. Otherwise they are expensive. A terminal y is T -expensive if at most h/4 of its
H i

y ancestors are T -cheap.

In the sequel since T is fixed throughout, we use cheap instead of T -cheap. Note that for every
cheap level i, by the way the cost was defined, on average |Aij ∩ T | ≤ 2D. This is the reason for the
definition of expensive Aij above.

Claim 4.6 At most 1/2c of the terminals are expensive.
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Proof: Let s be the number of cheap levels. Let i be some non-expensive level. Pick a terminal y at
random. Consider the (random) ancestor H i

y of y in level i. As y is random, by symmetry (namely,
because the construction is regular) H i

y is a random copy at level i.
As the i level is cheap, the expectation of |T ∩Ai

y| is at most 2D. Thus, with probability at least
1−1/(4c), |Ai

y ∩T | ≤ 8cD. By linearity of the expectation, this implies that the expected number of
levels i for which |Ai

y ∩ T | > 8 · c ·D is at most s/(4c). Thus, the probability that at least s/2 of the
H i

y in cheap levels i are expensive is at most 1/(2c). Therefore, with probability at least 1−1/(2c) at
least s/2 ≥ h/4 of the H i

y on cheap levels are cheap. The last inequality follows as there are at least
h/2 cheap levels. Since y was chosen at random, it implies that the fraction of expensive terminals
is at most 1/2c. 2

Remove all expensive terminals. At most 1/(2c) fraction of the terminals are removed. Let T ′

be the new tree.

Lemma 4.7 (The NO instance) If T corresponds to a no instance then T contains at most 1/c
fraction of the terminals.

Proof: Consider any cheap level i and a cheap Hij at this level. By Corollary 4.3, for every cheap
Hij , as |A′| = |Aij ∩ T ′| ≤ 8 · c ·D, the set A′ only covers a subset B′ = Γ(A′) so that

|B′| ≤
(

1− 1

e1+8c

)

|B| .

This gives the same fraction of, namely, 1/e1+8c fraction of the terminal descendants of Hij that do
not belong to T ′. This is because every node b ∈ Bij has the same number of terminal descendants.
Thus the fraction of b ∈ Bij lost (namely, that do not belong to T ′) equals the fraction of terminals
lost. In summary, at every cheap level i, for every cheap Hij a fraction of at least 1/e1+8c of its
descendants terminals do not belong to T ′; indeed, ansi

y 6∈ T ′ for those terminals.
We now use Claim 4.6. Mark all Hij that belong to expensive levels and also all expensive Hij .

By Claim 4.6, the path from every y ∈ Gh ∩ T ′ to r contains at least h/4 unmarked Hij ancestors.
From this we deduce that the fraction of terminals in T ′ is at most:

(

1− 1

e9c

)h/4

.

The exponent h/4 follows from Claim 4.6. By the definition of c we get that:
(

1− 1

29c

)h/4

<
1

2c
.

The fraction of terminals that belong to T is at most the number of expensive terminals plus the
number of terminals of T ′ namely, at most 1/(2c) + 1/(2c) ≤ 1/c. The proof of Lemma 4.7 is now
complete. 2

Theorem 1.5 directly follows from Lemma 4.5 and Lemma 4.7.

5 Open problems

1. Does MBB with exponential demands admits an o(log4 n) approximation ratio? What is the
best approximation for the case of polynomial demands?

2. Can the approximation for SLST be improved?

3. Is MaxCT Ω(log n) hard to approximate?
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6 Appendix

6.1 Algorithm for MaxCT

6.1.1 A trimming procedure for minimally heavy trees

Definition 6.1 A tree T is heavy if p(T ) > P/(8ρ). A tree Tu rooted at u is minimally heavy if it
is heavy and no proper rooted subtree of Tu is heavy.

The algorithm uses the following procedure that runs on a minimally heavy tree Tu rooted at u
with c(u) ≤ c(w).

Procedure MH(Tu)
1. If p(u) > P/(16ρ) then Return T̂ = {u} and STOP.
2. T ′u ← Tu, T

′ ← ∅;
While p(T ′u − u) > P/(8ρ) do:

T ′u ← T ′u − T ′, where T ′ is a subtree of T ′u rooted by a child of u.
EndWhile

3. Return the larger profit tree T̂ among T ′ (the last deleted tree) and T ′u.

Claim 6.1 If MH is called with a minimally heavy tree Tu with p(u) ≤ P/(16ρ) and c(u) ≤ c(w)
then it returns a tree T̂ so that:
(i) P/(16ρ) ≤ p(T̂ − u) ≤ P/(8ρ).
(ii) If every proper subtree of Tu has density ≤ 8ρ(C − c(w))/P then c(T̂ ) ≤ C.

Proof: As Tu is heavy, p(Tu) ≥ P/(8ρ). Thus p(u) ≤ P/(16ρ) implies p(Tu − u) ≥ P/(16ρ).
Step 2 terminates because if a single child of u remains then p(T ′u− u) ≤ P/(8ρ) must hold since

Tu is minimally heavy. Let T ′ be the last subtree removed at step 2 and let T ′u be the tree after T ′

is removed (T ′ = ∅ and T ′u = Tu, if no subtree is removed). Then p(T ′u − u) + p(T ′) ≥ P/(8ρ) and
p(T ′u − u) ≤ P/(8ρ) by the stopping condition, while p(T ′) ≤ P/(8ρ) since Tu is minimally heavy.
Part (i) of the claim follows.

We now prove Part (ii). Suppose that every proper subtree of (the initial tree) Tu has density
at most 8ρ · (C − c(w))/P . Then max{c(T ′), c(T ′u − u)} ≤ P/(8ρ) · 8ρ(C − c(w))/P = C − c(w). To
bound the cost c(T̂ ) of T̂ in G we need (in the case T̂ = T ′u) to add the cost of u. Since c(u) ≤ c(w)
we get c(T̂ ) ≤ C − c(w) + c(u) ≤ C. 2

6.1.2 The main algorithm and its analysis

Algorithm APPROX(G,C, P,w)
1. If p(w) > P/(2ρ) then return {w} and STOP.
2. Let T0 be the tree returned by the algorithm of [24] on Gw with cost bound C − c(w).
3. Root T0 at its maximum cost node v and set Tv ← T .

While Tv has a proper subtree T ′ with c(T ′)/p(T ′) > 8ρ(C − c(w))/P do:
Tv ← Tv − T ′.

EndWhile
4. Let Tu be a minimally heavy subtree of Tv. Return MH(Tu).

Claim 6.2 After step 3 ends the following holds:
(i) Every proper subtree of Tv has density at most 8ρ(C − c(w))/P .
(ii) p(Tv) ≥ P/(4ρ) and thus Tv contains a minimally heavy subtree Tu.
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Proof: Part (i) is by the construction. We prove Part (ii). If w is not returned then p(v) ≤ p(w) ≤
P/(2ρ) and thus p(T0 − v) ≥ P/(2ρ). Also, c(T0 − v) ≤ 2C − 2c(w). Thus, c(T0 − v)/p(T0) ≤
4ρ(C − c(w))/P . All subtrees of T0 removed have density at least 8ρ(C − c(w))/P . Hence, at most
half the profit of T0 − v is removed. As p(T0 − v) ≥ P/(2ρ), the claim follows. 2

We now finish the proof of Theorem 1.4. Specifically, we claim that APPROX returns a subtree
with profit at least P/(16ρ) = P/(16A lnn) and cost at most C. If u is returned in step 1 of MH
the claim is clear as c(u) ≤ C. The same applies if w is returned in step 1 of APPROX. Else, by
Claims 6.1 and 6.2 a tree of profit at least P/(16ρ) and cost at most C is returned.

6.2 Algorithm for SLST

As was mentioned, for SLST with edge costs/lengths the algorithm of [22] computes a tree T with
c(T ) = O(log n) · opt and diam`(T ) = O(logn) · L. This is done as follows. Let C = opt. Maintain
a disjoint partition of the terminals into pairwise disjoint clusters; each cluster has a unique center.
Initialize every terminal as a cluster of size 1. Then iterate as follows. Let S be the set of cluster
centers. Throughout, only terminals will be centers. For s, t ∈ S let c(s, t) be the minimum cost of
an st-path among st-paths of length at most L. Although computing c(s, t) is an NP-hard problem,
for any ε > 0 we can approximate it using the FPTAS of [17], which computes a path Pst with
`(Pst) ≤ L and c(Pst) ≤ (1 + ε)c(s, t). Now, construct an auxiliary complete graph on S with the
costs of every edge st being c(Pst). As all terminals belong to the solution, by the so called Pairing
Lemma (see [22]) there exists a matching on the centers of cost at most (1 + ε)C, with at most one
cluster center unmatched. Compute this perfect matching. Replace every edge st in the matching
by the corresponding path Pst in G and merge the corresponding two clusters together, making its
center to be one of s, t. At every iteration, the cost invested is at most (1 + ε)C, the radius of each
cluster is increased by at most L, and the number of clusters is roughly halved. The later implies that
the number of iterations is O(log n), and the (O(logn), O(logn)) bicriteria approximation follows.

In our case of node-costs we use the decomposition of the optimum tree T ∗ into disjoint spiders.
W.l.o.g., via standard reductions (see [20]), we assume that the terminals are the leaves of T ∗.

Definition 6.2 A tree T is a spider if it has at most one node of degree ≥ 3. A spider decomposition
D of a tree T rooted at r is a collection of node-disjoint spiders, so that each of them is a rooted
subtree of T , and the sets of leaves of the spiders in D partition the set of leaves of T .

Lemma 6.3 ([20]) Any tree T rooted at r admits a spider decomposition so that every spider has
at least two leaves, or in the decomposition there is exactly one spider with one leaf and root r.

The problem of finding the cheapest spider decomposition of a graph is at least as hard as the
set-cover problem. Instead, we approximate the cost of the best spider decomposition and at the
same time control the length invoked.

Lemma 6.4 For any ε > 0 there exists a polynomial algorithm that computes a collection of rooted
trees of total cost O(logn)·opt containing all terminals, so that each tree has `-radius at most (1+ε)L,
and so that every tree, except of maybe one, contains at least two terminals.

Proof: While there are at least two terminals not belonging to any tree, iteratively find a tree F
with at least 2 terminals of radius (1 + ε)L whose cost-density, (which is its cost over the number
of terminals in it) is at most (1 + ε) times the one of the best spider decomposition of any optimum
solution. We stress that the density in question is only with respect to non-covered terminals (only
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terminals not covered by previous spiders are considered). Then we remove the covered terminals,
and iterate. Finding a tree of low density is done as follows. Guess the root v and the number q of
terminals. For every terminal t approximate using [17], the min-cost of a v to t path of length at
most L. The candidate tree for v and q is the union of the q paths from v to its best q terminals.
Compute the density of the candidate tree for v, q. Then among the trees computed return one with
the minimum density. The paths of the tree may intersect but since we are comparing against a
spider, whose paths are node disjoint (except for the root), the resulting tree has cost density no
larger than 1 + ε times the density of the best spider. An analysis similar to the classical set-cover
analysis shows that the total cost of the resulting decomposition is O(logn) times the cost of the
minimum cost spider decomposition which is O(logn) · opt. 2

The other parts of the algorithm are similar to the algorithm of [22] for the edge cost case.
Maintain a disjoint partition of the terminals into pairwise disjoint clusters; each cluster has a
unique center. Initialize every terminal as a cluster of size 1. Then iterate as follows. Let S be the
set of cluster centers. Given ε > 0, compute a family of trees as in Lemma 6.4, considering only the
set S of centers as terminals, and for every spider, merge the clusters of the centers it contains; the
center of the new cluster is set to be one of these centers. At every iteration, the cost invested is
at most (1 + ε)C · O(logn), the radius of each cluster is increased by at most L, and the number
of clusters is roughly halved. The later implies that the number of iterations is O(logn), and the
(O(log2 n), O(logn)) bicriteria approximation follows.
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