
Steiner Forest Orientation Problems

Marek Cygan1⋆, Guy Kortsarz2⋆⋆, and Zeev Nutov3

1 Institute of Informatics, University of Warsaw, Poland cygan@mimuw.edu.pl
2 Rutgers University, Camden guyk@camden.rutgers.edu

3 The Open University of Israel nutov@openu.ac.il

Abstract. We consider connectivity problems with orientation constra-
ints. Given a directed graph D and a collection of ordered node pairs P
let P [D] = {(u, v) ∈ P : D contains a uv-paths}. In the Steiner Forest

Orientation problem we are given an undirected graph G = (V,E) with
edge-costs and a set P ⊆ V × V of ordered node pairs. The goal is to
find a minimum-cost subgraph H of G and an orientation D of H such
that P [D] = P . We give a 4-approximation algorithm for this problem.
In the Maximum Pairs Orientation problem we are given a graph G and
a multi-collection of ordered node pairs P on V . The goal is to find
an orientation D of G such that |P [D]| is maximum. Generalizing the
result of [1] for |P | = 2, we will show that for a mixed graph G (that
may have both directed an undirected edges), one can decide in nO(|P |)

time whether G has an orientation D with P [D] = P (for undirected
graphs this problem admits a polynomial time algorithm for any P , but
it is NP-complete on mixed graphs). For undirected graphs, we will show
that one can decide whether G admits an orientation D with |P [D]| ≥ k
in O(n + m) + 2O(k·log log k) time; hence this decision problem is fixed
parameter tractable, which answers an open question from [3]. We also
show that Maximum Pairs Orientation admits ratio O(log |P |/ log log |P |),
which is better than the ratio O(log n/ log log n) of [7] when |P | < n.
Finally, we show that the following node-connectivity problem can be
solved in polynomial time: given a graph G = (V,E) with edge-costs,
s, t ∈ V , and an integer ℓ, find a min-cost subgraph H of G with an
orientation D such that D contains ℓ internally-disjoint st-paths, and ℓ
internally-disjoint ts-paths.

1 Introduction

1.1 Problems considered and our results

We consider connectivity problems with orientation constraints. Unless stated
otherwise, graphs are assumed to be undirected (and may not be simple), but
we also consider directed graphs, and even mixed graphs, which may have both

⋆ Partially supported by National Science Centre grant no. N206 567140, Foundation
for Polish Science and ONR Young Investigator award when at the University at
Maryland.

⋆⋆ Partially supported by NSF support grant award number 0829959.

directed an undirected edges. Given a mixed graph H, an orientation of H
is a directed graph D obtained from H by assigning to each undirected edge
one of the two possible directions. For a mixed graph H on node set V and a
multi-collection of ordered node pairs (that is convenient to consider as a set
of directed edges) P on V let P [H] denote the subset of the pairs (or edges)
in P for which H contains a uv-path. We say that H satisfies P if P [H] = P ,
and that H is P -orientable if H admit an orientation D that satisfies P . We
note that for undirected graphs it is easy to check in polynomial time whether
H is P -orientable, c.f. [10] and Section 3 in this paper. Let n = |V | denote the
number of nodes in H and m = |E(H)|+ |P | the total number of edges and arcs
in H and ordered pairs in P .

Our first problem is the classic Steiner Forest problem with orientation con-
straints.

Steiner Forest Orientation

Instance:: A graph G = (V,E) with edge-costs and a set P ⊆ V × V of
ordered node pairs.

Objective: Find a minimum-cost subgraph H of G with an orientation D that
satisfies P .

Theorem 1. Steiner Forest Orientation admits a 4-approximation algorithms.

Our next bunch of results deals with maximization problems of finding an
orientation that satisfies the maximum number of pairs in P .

Maximum Pairs Orientation

Instance: A graph G and a multi-collection of ordered node pairs (i.e., a set
of directed edges) P on V .

Objective: Find an orientation D of G such that the number |P [D]| of pairs
satisfied by P is maximum.

Let k Pairs Orientation be the decision problem of determining whether Ma-

ximum Pairs Orientation has a solution of value at least k. Let P -Orientation be
the decision problem of determining whether G is P -orientable (this is the k
Pairs Orientation with k = |P |). As was mentioned, for undirected graphs P -

Orientation can be easily decided in polynomial time [10]. Arkin and Hassin [1]
proved that on mixed graphs, P -Orientation is NP-complete, but it is polynomial
time solvable for |P | = 2. Using new techniques, we widely generalize the result
of [1] as follows.

Theorem 2. Given a mixed graph H and P ⊆ V ×V one can decide in nO(|P |)

time whether H is P -orientable; namely, P -Orientation with a mixed graph H can
be decided in nO(|P |) time. In particular, the problem can be decided in polynomial
time for any instance with constant |P |.

In several papers, for example in [13], it is stated that any instance of Ma-

ximum Pairs Orientation admits a solution D such that |P [D]| ≥ |P |/(4 log n).

Furthermore Gamzu et al. [7] show that Maximum Pairs Orientation admits an
O(log n/ log log n)-approximation algorithm. In [3] it is shown that k Pairs Orien-

tation is fixed parameter tractable4 when parameterized by the maximum num-
ber of pairs that can be connected via one node. They posed an open question if
the problem is fixed parameter tractable when parameterized by k (the number
of pairs that should be connected), namely, whether k Pairs Orientation can be
decided in f(k)poly(n) time, for some computable function f . Our next result
answers this open question, and for |P | < n improves the approximation ratio
O(log n/ log log n) for Maximum Pairs Orientation of [13, 7].

Theorem 3. Any instance of Maximum Pairs Orientation admits a solution D,
that can be computed in polynomial time, such that |P [D]| ≥ |P |/(4 log2(3|P |)).
Furthermore

(i) k Pairs Orientation can be decided in O(n +m) + 2O(k·log log k) time; thus it
is fixed parameter tractable when parameterized by k.

(ii) Maximum Pairs Orientation admits an O(log |P |/ log log |P |)-approximation
algorithm.

Note that |P | may be much smaller than n, say |P | = 2
√
logn. While this

size of P does not allow exhaustive search in time polynomial in n, we do get
an approximation ratio of O(

√
log n/ log log n), which is better than the ratio

O(log n/ log log n) of Gamzu et al. [7].
One may also consider “high-connectivity” orientation problems, to sat-

isfy prescribed connectivity demands. Several papers considered min-cost edge-
connectivity orientation problems, c.f. [12]. Almost nothing is known about min-
cost node-connectivity orientation problems. We consider the following simple
but still nontrivial variant.

ℓ Disjoint Paths Orientation
Instance: A graph G = (V,E) with edge-costs, s, t ∈ V , and an integer ℓ.
Objective: Find a minimum-cost subgraph H of G with an orientation D

such thatD contains ℓ internally-disjoint st-paths, and ℓ internally-
disjoint ts-paths.

Checking whether ℓ Disjoint Paths Orientation admits a feasible solution can
be done in polynomial time using the characterization of feasible solutions of
Egawa, Kaneko, and Matsumoto [4] (see Theorem 6 in Section 6); we use this
characterization to prove the following.

Theorem 4. ℓ Disjoint Paths Orientation can be solved in polynomial time.

Theorems 1, 2, 3, are proved in sections 2, 3, 4, respectively. Theorem 4 is
proved in the Appendix/full version, due to space limitation.

4 “Fixed parameter tractable” means the following. In the parameterized complexity
setting, an instance of a decision problem comes with an integer parameter k. A
problem is said to be fixed parameter tractable (w.r.t. k) if there exists an algorithm
that decides any instance (I, k) in time f(k)poly(|I|) for some (usually exponential)
computable function f .

1.2 Previous and related work

Let λH(u, v) denote the (u, v)-edge-connectivity in a graph H, namely, the maxi-
mum number of pairwise edge-disjoint uv-paths in H. Similarly, let κH(u, v) de-
note the (u, v)-node-connectivity inH, namely, the maximum number of pairwise
internally node-disjoint uv-paths in H. Given edge-connectivity demand func-
tion r = {r(u, v) : (u, v) ∈ V ×V }, we say that H satisfies r if λH(u, v) ≥ r(u, v)
for all (u, v) ∈ V × V ; similarly, for node connectivity demands, we say that H
satisfies r if κH(u, v) ≥ r(u, v) for all (u, v) ∈ V × V .

Survivable Network Orientation

Instance: A graph G = (V,E) with edge-costs and edge/node-connectivity
demand function r = {r(u, v) : (u, v) ∈ V × V }.

Objective: Find a minimum-cost subgraph H of G with orientation D that
satisfies r.

So far we assumed that the orienting costs are symmetric; this means that
orienting an undirected edge connecting u and v in each one of the two direc-
tions is the same, namely, that c(u, v) = c(v, u). This assumption is reasonable
in practical problems, but in a theoretic more general setting, we might have
non-symmetric costs cuv 6= cvu. Note that the version with non-symmetric costs
includes the min-cost version of the corresponding directed connectivity prob-
lem, and also the case when the input graph G is a mixed graph, by assigning
large/infinite costs to non-feasible orientations. For example, Steiner Forest Ori-
entation with non-symmetric costs includes the Directed Steiner Forest problem,
which is Label-Cover hard to approximate [2]. This is another reason to consider
the symmetric costs version.

Khanna, Naor, and Shepherd [12] considered several orientation problems
with non-symmetric costs. They showed that when D is required to be k-edge-
outconnected from a given roots s (namely,D contains k-edge-disjoint paths from
s to every other node), then the problem admits a polynomial time algorithm.
In fact they considered a more general problem of finding an orientation that
covers an intersecting supermodular or crossing supermodular set-function. See
[12] for precise definitions. Further generalization of this result due to Frank,
T. Király, and Z. Király was presented in [6]. For the case when D should
be strongly connected, [12] obtained a 4-approximation algorithm; note that
our Steiner Forest Orientation problem has much more general demands, that
are not captured by intersecting supermodular or crossing supermodular set-
functions, but we consider symmetric edge-costs (otherwise the problem includes
the Directed Steiner Forest problem). For the case when D is required to be k-
edge-connected, k ≥ 2, [12] obtained a pseudo-approximation algorithm that
computes a (k − 1)-edge-connected subgraph of cost at most 2k times the cost
of an optimal k-connected subgraph.

We refer the reader to [5] for a survey on characterization of graphs that admit
orientations satisfying prescribed connectivity demands, and here mention only
the following central theorem, that can be used to obtain a pseudo-approximation
for edge-connectivity orientation problems.

Theorem 5 (Well-Balanced Orientation Theorem, Nash-Williams [14]).
Any undirected graph H = (V,EH) has an orientation D for which λD(u, v) ≥
⌊

1
2λH(u, v)

⌋

for all (u, v) ∈ V × V .

We note that given H, an orientation as in Theorem 5 can be computed in
polynomial time. It is easy to see that if H has an orientation D that satisfies r
then H satisfies the demand function q defined by q(u, v) = r(u, v)+r(v, u). The-
orem 5 implies that edge-connectivity Survivable Network Orientation admits a
polynomial time algorithm that computes a subgraph H of G and an orientation
D of H such that c(H) ≤ 2opt and

λD(u, v) ≥ ⌊(r(u, v) + r(v, u))/2⌋ ≥ ⌊max{r(u, v), r(v, u)}/2⌋ ∀(u, v) ∈ V ×V .

This is achieved by applying Jain’s [11] algorithm to compute a 2-approximate
solution H for the corresponding undirected edge-connectivity Survivable Net-

work instance with demands q(u, v) = r(u, v) + r(v, u), and then computing an
orientation D of H as in Theorem 5. This implies that if the costs are sym-
metric, then by cost at most 2opt we can satisfy almost half of the demand of
every pair, and if also the demands are symmetric then we can satisfy all the
demands. The above algorithm also applies for non-symmetric edge-costs, invok-
ing an additional cost factor of maxuv∈E c(v, u)/c(u, v). Summarizing, we have
the following observation, which we failed to find in the literature.

Corollary 1. Edge-connectivity Survivable Network Orientation (with non-sym-
metric costs) admits a polynomial time algorithm that computes a subgraph H
of G and an orientation D of H such that c(H) ≤ 2opt ·maxuv∈E c(v, u)/c(u, v)
and λD(u, v) ≥

⌊

1
2 (r(u, v) + r(v, u))

⌋

for all (u, v) ∈ V × V . In particular, the
problem admits a 2-approximation algorithm if both the costs and the demands
are symmetric.

2 Algorithm for Steiner Forest Orientation (Theorem 1)

In this section we prove Theorem 1. For a mixed graph or an edge set H on
a node set V and X,Y ⊆ V let δH(X,Y) denote the set of all (directed and
undirected) edges in H from X to Y and let dH(X,Y) = |δH(X,Y)| denote
their number; for brevity, δH(X) = δH(X, X̄) and dH(X) = dH(X, X̄), where
X̄ = V \X.

Given an integral set function f on subsets of V we say that H covers f if
dH(X) ≥ f(X) for all X ⊆ V . Define a set-function fr by fr(∅) = fr(V) = 0
and for every ∅ 6= X ⊂ V

fr(X) = max{r(u, v) : u ∈ X, v ∈ X̄}+max{r(v, u) : u ∈ X, v ∈ X̄} . (1)

Note that the set-function fr is symmetric, namely, that fr(X) = fr(X̄) for all
X ⊆ V .

Lemma 1. If H has an orientation D that satisfies an edge-connectivity demand
function r then H covers fr.

Proof. Let X ⊆ V . By Menger’s Theorem, any orientation D of H that satisfies
r has at least max{r(u, v) : u ∈ X, v ∈ X̄} edges from X to X̄, and at least
max{r(v, u) : u ∈ X, v ∈ X̄} edges from X̄ to X. The statement follows. ⊓⊔

Recall that in the Steiner Forest Orientation problem we have r(u, v) = 1 if
(u, v) ∈ P and r(u, v) = 0 otherwise. We will show that if rmax = max

u,v∈V
r(u, v) =

1 then the inverse to Lemma 1 is also true, namely, if H covers fr then H
has an orientation that satisfies r; for this case, we also give a 4-approximation
algorithm for the problem of computing a minimum-cost subgraph that covers
fr. We do not know if these results can be extended for rmax ≥ 2.

Lemma 2. For rmax = 1, if H covers fr then H has an orientation that satisfies
r.

Proof. Observe that if (u, v) ∈ P (namely, if r(u, v) = 1) then u, v belong to the
same connected component of H. Hence it sufficient to consider the case when H
is connected. Let D be an orientation of H obtained as follows. Orient every 2-
edge-connected component of H to be strongly connected (recall that a directed
graph is strongly connected if there is a directed path from any its node to the
other); this is possible by Theorem 5. Now we orient the bridges of H. Consider
a bridge e of H. The removal of e partitions V into two connected components
X, X̄. Note that δP (X, X̄) = ∅ or δP (X̄,X) = ∅, since fr(X) ≤ dH(X) = 1. If
δP (X, X̄) 6= ∅, we orient e from X to X̄; if δP (X̄,X) 6= ∅, we orient e from X̄ to
X; and if δP (X, X̄), δP (X̄,X) = ∅, we orient e arbitrarily. It is easy to see that
the obtained orientation D of H satisfies P . ⊓⊔

We say that an edge-set or a graph H covers a set-family F if dH(X) ≥ 1
for all X ∈ F . A set-family F is said to be uncrossable if for any X,Y ∈ F the
following holds: X ∩ Y,X ∪ Y ∈ F or X \ Y, Y \X ∈ F . The problem of finding
a minimum-cost set of undirected edges that covers an uncrossable set-family F
admits a primal-dual 2-approximation algorithm, provided the inclusion-minimal
members of F can be computed in polynomial time [8]. It is known that the
undirected Steiner Forest problem is a particular case of the problem of finding
a min-cost cover of an uncrossable family, and thus admits a 2-approximation
algorithm.

Lemma 3. Let H = (V, J∪P) be a mixed graph, where edges in J are undirected
and edges in P are directed, such that for every uv ∈ P both u, v belong to the
same connected component of the graph (V, J). Then the set-family F = {S ⊆
V : dJ(S) = 1 ∧ dP (S), dP (S̄) ≥ 1} is uncrossable, and its inclusion minimal
members can be computed in polynomial time.

Proof. Let C be the set of connected components of the graph (V, J). Let C ∈
C. Any bridge e of C partitions C into two parts C ′(e), C ′′(e) such that e is
the unique edge in J connecting them. Note that the condition dJ (S) = 1 is
equivalent to the following condition (C1), while if condition (C1) holds then
the condition dP (S), dP (S̄) ≥ 1 is equivalent to the following condition (C2)
(since no edge in P connects two distinct connected components of (V, J)).

(C1) There exists CS ∈ C and a bridge eS of CS , such that S is a union of one of
the sets X ′ = C ′

S(eS), X
′′ = C ′′

S(eS) and sets in C \ {CS}.
(C2) dP (X

′, X ′′), dP (X ′′, X ′) ≥ 1.

Hence we have the following characterization of the sets in F : S ∈ F if, and only
if, conditions (C1),(C2) hold for S. This implies that every inclusion-minimal
members of F is C ′(e) or C ′′(e), for some bridge e of C ∈ C. In particular, the
inclusion-minimal members of F can be computed in polynomial time.

X

Y’

YeX

X’

Y

e

Fig. 1. Illustration to the proof of Lemma 3; components distinct from CX , CY are
shown by gray ellipses.

Now let X,Y ∈ F (so conditions (C1),(C2) hold for each one of X,Y),
let CX , CY ∈ C be the corresponding connected components and eX , eY the
corresponding bridges (possibly CX = CY , in which case we also may have
eX = eY), and let X ′, X ′′ and Y ′, Y ′′ be the corresponding partitions of CX and
CY , respectively. Since eX , eY are bridges, at least one of the sets X ′ ∩ Y ′, X ′ ∩
Y ′′, X ′′ ∩ Y ′, X ′′ ∩ Y ′′ must be empty, say X ′ ∩ Y ′ = ∅. Note that the set-family
F is symmetric, hence to prove that X ∩ Y,X ∪ Y ∈ F or X \ Y, Y \ X ∈ F ,
it is sufficient to prove that A \ B,B \ A ∈ F for some pair A,B such that
A ∈ {X, X̄}, B ∈ {Y, Ȳ }. E.g., if A = X and B = Ȳ , then A \ B = X ∩ Y and
B \A = V \ (X ∪ Y), hence A \B,B \A ∈ F together with the symmetry of F
implies X ∩ Y,X ∪ Y ∈ F . Similarly, if A = X̄ and B = Ȳ , then A \B = Y \X
and B \ A = X \ Y , hence A \ B,B \ A ∈ F implies Y \ X,X \ Y ∈ F . Thus
w.l.o.g. we may assume that X ′ ⊆ X and Y ′ ⊆ Y , see Figure 1, and we show
that X \ Y, Y \X ∈ F . Recall that X ′ ∩ Y ′ = ∅ and hence X ∩ Y is a (possibly
empty) union of some sets in C \ {CX , CY }. Thus X \ Y is a union of X ′ and
some sets in C\{CX , CY }. This implies that conditions (C1),(C2) hold for X \Y ,
hence X \ Y ∈ F ; the proof that Y \X ∈ F is similar. This concludes the proof
of the lemma. ⊓⊔

Lemma 4. Given a Steiner Forest Orientation instance, the problem of compu-
ting a minimum-cost subgraph H of G that covers fr admits a 4-approximation
algorithm.

Proof. The algorithm has two phases. In the first phase we solve the correspond-
ing undirected Steiner Forest instance with the same demand function r. The
Steiner Forest problem admits a 2-approximation algorithms, hence c(J) ≤ 2opt.

Let J be a subgraph of G computed by such a 2-approximation algorithm. Note
that fr(S) − dJ (S) ≤ 1 for all X ⊆ V . Hence to obtain a cover of fr it is suf-
ficient to cover the family F = {S ⊆ V : fr(S) − dJ(S) = 1} of the deficient
sets w.r.t. J . The key point is that the family F is uncrossable, and that the
inclusion-minimal members of F can be computed in polynomial time. In the
second phase we compute a 2-approximate cover of this F using the algorithm of
[8]. Consequently, the problem of covering fr is reduced to solving two problems
of covering an uncrossable set-family.

To show that F is uncrossable we use Lemma 3. Note that for any uv ∈ P
both u, v belong to the same connected component of (V, J), and that fr(S) −
dJ(S) = 1 if, and only if, dJ (S) = 1 and dP (S), dP (S̄) ≥ 1, hence F = {S ⊆
V : dJ(S) = 1 ∧ dP (S), dP (S̄) ≥ 1}. Consequently, by Lemma 3, the family F is
uncrossable and its inclusion-minimal members can be computed in polynomial
time. This concludes the proof of the lemma. ⊓⊔

The proof of Theorem 1 is complete.

3 Algorithm for P -Orientation on mixed graphs
(Theorem 2)

In this section we prove Theorem 2. The following (essentially known) statement
is straightforward.

Lemma 5. Let G be a mixed graph, let P be a set of directed edges on V , and let
C be a subgraph of G that admits a strongly connected orientation. Let G′, P ′ be
obtained from G,P by contracting C into a single node. Then G is P -orientable
if, and only if, G′ is P ′-orientable. In particular, this is so if C is a cycle. �

Corollary 2. P -orientation (with an undirected graph G) can be decided in poly-
nomial time.

Proof. By repeatedly contracting a cycle of G, we obtain an equivalent instance,
by Lemma 5. Hence we may assume that G is a tree. Then for every (u, v) ∈ P
there is a unique uv-path in G, which imposes an orientation on all the edges
of this path. Hence if suffices to check that no two pairs in P impose different
orientations of the same edge of the tree. ⊓⊔

Our algorithm for mixed graphs is based on a similar idea. We say that a
mixed graph is an ori-cycle if it admits an orientation that is a directed simple
cycle. We need the following statement.

Lemma 6. Let G = (V,E ∪A) be a mixed graph and let G′ be obtained from G
by contracting every connected component of the undirected graph (V,E) into a
single node. If there is a directed cycle (possibly a self-loop) C ′ in G′ then there
is an ori-cycle C in G, and such C can be found in polynomial time.

Proof. If C ′ is also a directed cycle in G, then we take C = C ′. Otherwise,
we replace every node vX of C ′ that corresponds to a contracted connected
component X of (V,E) by a path, as follows. Let a1 be the arc entering vX
in C ′ and let a2 be the arc leaving vX in C ′. Let v1 be the head of a1 and
similarly let v2 be a the tail of a2. Since X is a connected component in (V,E),
there is a v1v2-path in (V,E), and we replace X by this path. The result is the
required ori-cycle C (possibly a self-loop) in G. It is easy to see that such C can
be obtained from C ′ in polynomial time. ⊓⊔

By Lemmas 6 and 5 we may assume that the directed graph G′ obtained from
G by contracting every connected components of (V,E), is a directed acyclic
multigraph (with no self-loops). Let p = |P |. Let f : V → V (G′) be the func-
tion which for each node v of G assigns a node f(v) in G′ that represents the
connected component of (V,E) that contains v (in other words the function f
shows a correspondence between nodes before and after contractions).

The first step of our algorithm is to guess the first and the last edge for
each pair i of the p pairs in P , by trying all nO(p) possibilities. If for pair i
an undirected edge is selected as the first or the last one on the corresponding
path, then we orient it accordingly and move it from E to A. Thus by functions
last, first : {1, . . . , p} → A we denote the guessed first and last arc for each of
the p paths.

Now we present a branching algorithm with exponential time complexity
which we later convert to nO(p) time by applying a method of memoization. Let
π be a topological ordering of G′. By cur : {1, . . . , p} → A we denote the most
recently chosen arc from A for each of the i-paths (initially cur(i) = first(i)).
In what follows we consider subsequent nodes vC of G′ with respect to π and
branch on possible orientations of the connected component C of G. We use this
orientation to update the function cur for all the arguments i such that cur(i) is
an arc entering a node mapped to vC .

Let vC ∈ V (G′) be the first node w.r.t. to π which was not yet considered
by the branching algorithm. Let I ⊆ {1, . . . , p} be the set of indices i such that
cur(i) = (u, v) ∈ A for f(v) = vC , and cur(i) 6= last(i). If I = ∅ than we skip
vC and proceed to the next node in π. Otherwise for each i ∈ I we branch on
choosing an arc (u, v) ∈ A such that f(u) = vC , that is we select an arc that the
i-path will use just after leaving the connected component of G corresponding
to the node vC (note that there are at most |A||I| = nO(p) branches). Before
updating the arcs cur(i) for each i ∈ I in a branch, we check whether the
connected component C of (V,E) consisting of nodes f−1(vC) is accordingly
orientable by using Lemma 2 (see Figure 2). Finally after considering all the
nodes in π we check whether for each i ∈ {1, . . . , p} we have cur(i) = last(i). If
this is the case our algorithm returns YES and otherwise it returns NO in this
branch.

The correctness of our algorithm follows from the invariant that each node
vC is considered at most once since and all the updated values cur(i) are changed
to arcs that are to the right with respect to π.

vC

1a

a3

a2 b2

b1

a2

1a b1

b2

C

Fig. 2. Our algorithm considers what orientation the connected component C (of
(V,E)) will have. Currently we have cur(1) = a1, cur(2) = a2 and cur(3) = a3, hence
I = {1, 2}. If in a branch we set new values cur(1) = b1 and cur(2) = b2 then by
Lemma 2 we can verify that it is possible to orient C, so that there is a path from
the end-point of a1 to the start-point of b1 and from the end-point of a2 to the start-
point of b2. However the branch with new values cur(1) = b2 and cur(2) = b1 will be
terminated, since it is not possible to orient C accordingly.

Observe that when considering a node vC it is not important what orienta-
tions previous nodes in π have, because all the relevant information is contained
in the cur function. Therefore to improve the currently exponential time com-
plexity we apply the standard technique of memoization, that is, store results of
all the previously computed recursive calls. Consequently for any index of the
currently considered node in π and any values of the function cur, there is at
most one branch for which we compute the result, since for the subsequent recur-
sive calls we use the previously computed results. This leads to nO(p) branches
and nO(p) total time and space complexity.

4 Algorithms for Maximum Pairs Orientation (Theorem 3)

In this section we prove Theorem 3.

Lemma 7. There exists a linear time algorithm that given an instance of Max-

imum Pairs Orientation or of k Pairs Orientation, transforms it into an equivalent
instance such that the input graph is a tree with at most 3p− 1 nodes.

Proof. As is observed in [10], and also follows from Lemma 5, we can assume
that the input graph G is a tree; such tree can be constructed in linear time
by contracting the 2-edge-connected components of G. For each edge e of G we
compute an integer P (e), that is the number of pairs (s, t) in P , such that e
belongs to the shortest path between s and t in G. If for an edge e we have
P (e) ≤ 1, we contract this edge, since we can always orient it as desired by at
most one st-path. Note that after this operation each leaf belongs to at least two
pairs in P . If a node v has degree 2 in the tree and does not belong to any pair,
we contract one of the edges incident to v; this is since in any inclusion minimal
solution, one of the two edges enters v if, and only if, the other leaves v.

The linear time implementation of the presented reductions is as follows.
First, using a linear time algorithm for computing 2-edge-connected components,
and by scanning every edge in E ∪P , we can see which components it connects,
thus obtaining an equivalent instance where G is a tree. To compute all the
values P (e), we root the tree in an arbitrary node and create a multiset of
pairs P ′ = {(s, lca(s, t)), (t, lca(s, t)) : (s, t) ∈ P}, where lca(s, t) is the lowest
common ancestor of s and t, which can be computed in linear time [9]. Let
a(v) = |{(v, x) ∈ P ′}| − |{(x, v) ∈ P ′}| and observe that if u is a parent of v in
the tree G, then P (uv) equals the sum of values a(u′) over all descendants u′

of the node u. Therefore we can compute all the values P (e) in linear time and
contract all the edges with P (e) = 1. Note that after the contractions are done
we need to relabel pairs in P , since some nodes may have their labels changed,
but this can be also done in linear time by storing new label for each node in a
table. Finally using a graph search algorithm we find maximal paths such that
each internal node is of degree two and does not belong to any pair. For each
such path we contract all but one edge.

We claim that after these reductions are implemented, the tree G′ obtained
has at most 3p − 1 nodes. Let ℓ be the number of leaves and t the number of
nodes of degree 2 in G′. As each node of degree less than 3 in G′ is an si or ti,
ℓ+ t ≤ 2p. Since each leaf belongs to at least two pairs in P , ℓ ≤ p. The number
of nodes of degree at least 3 is at most ℓ−1 and so |V (G′)| ≤ 2ℓ+ t−1 ≤ 3p−1.
This concludes the proof of the lemma. ⊓⊔

After applying Lemma 7, the number of nodes n of the returned tree is at
most 3p − 1. Therefore, by [13], one can find in polynomial time a solution
D, such that |P [D]| ≥ p/(4 log2 n) ≥ p/(4 log2(3p)). Therefore, if for a given k
Pairs Orientation instance we have k ≤ p/(4 log2(3p)), then clearly it is a YES
instance. However if k > p/(4 log2(3p)), then p = Θ(k log k). In order to solve
the k Pairs Orientation instance we consider all possible

(

p
k

)

subsets P ′ of exactly
k pairs from P , and check if the graph is P ′-orientable. Observe that

(

p

k

)

≤ pk

k!
≤ pk

(k/e)k
≤ pk

(p/(4e log2(3p)))
k
= (4e log2(3p))

k = 2O(k log log k)

where the second inequality follows from Stirling’s formula. Therefore the run-
ning time is O(m+ n) + 2O(k log log k), which proves (i).

Combining Lemma 7 with the O(log n/ log log n)-approximation algorithm of
Gamzu et al. [7] proves (ii). Thus the proof of Theorem 3 is complete.

5 Conclusions and open problems

In this paper we considered minimum-cost and maximum pairs orientation prob-
lems. Our main results are a 4-approximation algorithm for Steiner Forest Ori-

entation, an nO(|P |) time algorithm for P -Orientation on mixed graphs, and an
O(n + m) + 2O(k·log log k) time algorithm for k Pairs Orientation (which implies
that k Pairs Orientation is fixed parameter tractable when parameterized by k,

solving an open question from [3]). We now mention some open problems, most
of them related to the work of Khanna, Naor, and Shepherd [12].

As was mentioned, [12] showed that the problem of computing a minimum-
cost k-edge-outconnected orientation can be solved in polynomial time, even for
non-symmetric edge-costs. To the best of our knolwdge, for node-connectivity,
and even for the simpler notion of element-connectivity, no non-trivial approx-
imation ratio is known even for symmetric costs and k = 2. Moreover, even
the decision version of determining whether an undirected graph admits a 2-
outconnected orientation is not known to be in P nor NP-complete.

For the case when the orientation D is required to be k-edge-connected,
k ≥ 2, [12] obtained a pseudo-approximation algorithm that computes a (k−1)-
edge-connected subgraph of cost at most 2k times the cost of an optimal k-
connected subgraph. It is an open question if the problem admits a non-trivial
true approximation algorithm even for k = 2.

References

1. E. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete Applied
Mathematics, 116(3):271–278, 2002.

2. Y. Dodis and S. Khanna. Design networks with bounded pairwise distance. In
STOC, pages 750–759, 1999.

3. B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann. Exploiting
bounded signal flow for graph orientation based on cause-effect pairs. In Pro-
ceedings of the First international ICST conference on Theory and practice of
algorithms in (computer) systems, pages 104–115, 2011.

4. Y. Egawa, A. Kaneko, and M. Matsumoto. A mixed version of Menger’s theorem.
Combinatorica, 11:71–74, 1991.

5. A. Frank and T. Király. Combined connectivity augmentation and orientation
problems. Discrete Applied Mathematics, 131(2):401–419, 2003.

6. A. Frank, T. Király, and Z. Király. On the orientation of graphs and hypergraphs.
Discrete Applied Mathematics, 131:385400, 2003.

7. I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical networks.
In WABI, pages 215–225, 2010.

8. M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson.
Improved approximation algorithms for network design problems. In SODA, pages
223–232, 1994.

9. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

10. R. Hassin and N. Megiddo. On orientations and shortest paths. Linear Algebra
and Its Applications, pages 589–602, 1989.

11. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

12. S. Khanna, J. Naor, and B. Shepherd. Directed network design with orientation
constraints. In SODA, pages 663–671, 2000.

13. A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orient-
ing graphs based on cause-effect pairs and its applications to orienting protein
networks. In WABI, pages 222–232, 2008.

14. Nash-Williams. On orientations, connectivity and odd vertex pairings in finite
graphs. Canad. J. Math., 12:555–567, 1960.

6 Appendix: Algorithm for ℓ Disjoint Paths Orientation

(Theorem 4)

In this section we prove Theorem 4. We need the following characterization due
to [4] of feasible solutions to ℓ Disjoint Paths Orientation.

Theorem 6 ([4]). Let H = (V,EH) be an undirected graph and let s, t ∈ V .
Then H has an orientation D such that κD(s, t), κD(t, s) ≥ ℓ if, and only if,

λH\C(s, t) ≥ 2(ℓ− |C|) for every C ⊆ V \ {s, t} with |C| < ℓ . (2)

Furthermore, if H satisfies (2), then an orientation D of H that satisfies
κD(s, t), κD(t, s) ≥ ℓ can be computed in polynomial time.

Now, let us use the following version of Menger’s Theorem for node and
edge capacitated graphs; this version can be deduced from the original Menger’s
Theorem by elementary constructions.

Lemma 8. Let s, t be two nodes in a directed/undirected graph H = (V,E) with
edge and node capacities {u(a) : a ∈ E∪(V \{s, t}}. Then the maximum number
of st-paths such that every a ∈ E ∪ (V \ {s, t}) appears in at most u(a) of them
equals to min{u(A) : A ⊆ E ∪ (V \ {s, t}), λH\A(s, t) = 0}. �

From Lemma 8 we deduce the following.

Corollary 3. An undirected graph H = (V,E) satisfies (2) if, and only if, the
following condition holds: H contains 2ℓ edge-disjoint st-paths such that every
v ∈ V \ {s, t} belongs to at most 2 of them.

Proof. Assign capacity u(e) = 1 to every e ∈ E and capacity u(v) = 2 to every
v ∈ V \ {s, t}. By Lemma 8, the condition in the corollary is equivalent to the
condition

min{u(C ∪ F) : F ⊆ E,C ⊆ (V \ {s, t}), λH\(C∪F)(s, t) = 0} ≥ 2ℓ .

Since u(C) = 2 for all C ⊆ V \ {s, t} and u(F) = |F | for all F ⊆ E, the latter
condition is equivalent to the condition

min{|F | : F ⊆ E, λ(H\C)\F (s, t) = 0} ≥ 2ℓ− 2|C| ∀C ⊆ V \ {s, t} with |C| < ℓ .

The above condition is equivalent to (2), since for every C ⊆ V \ {s, t} we
have min{|F | : F ⊆ E, λ(H\C)\F (s, t) = 0} = λH\C(s, t), by applying Menger’s
Theorem on the graph H \ C. The statement follows. ⊓⊔

Now consider the following problem.

Node-Capacitated Min-Cost k-Flow
Instance: A graph G = (V,E) with edge-costs, s, t ∈ V , node-capacities

{bv : v ∈ V \ {s, t}}, and an integer k.
Objective: Find a set Π of k edge-disjoint paths such that every v ∈ V \{s, t}

belongs to at most bv paths in Π.

From Corollary 3, we see that ℓ Disjoint Paths Orientation is a particular case
of Node-Capacitated Min-Cost k-Flow when H is undirected, k = 2ℓ, and all node
capacities are 2.

Node-Capacitated Min-Cost k-Flow can be solved in polynomial time, for both
directed and undirected graphs, by reducing the problem to the standard Edge-

Capacitated Min-Cost k-Flow problem. For directed graphs this can be done by
a standard reduction of converting node-capacities to edge-capacities: replace
every node v ∈ V \ {s, t} by the two nodes v+, v−, connected by the edge v+v−

having the same capacity as v, and redirect the heads of the edges entering v
to v+ and the tails of the edges leaving v to v−. The undirected case is easily
reduced to the directed one, by solving the problem on the bidirection graph of
G, obtained from G by replacing every undirected edge e connecting u, v by a
pair of antiparallel directed edges uv, vu of the same cost as e.

The proof of Theorem 4 is complete.

