
A note on two source location problems

Guy Kortsarz

Department of Computer Science, Rutgers, Camden, USA

guyk@crab.rutgers.edu.

Zeev Nutov

Computer Science Division, The Open University of Israel

nutov@openu.ac.il

Abstract

We consider Source Location (SL) problems: given a capacitated network G = (V,E),

cost c(v) and a demand d(v) for every v ∈ V , choose a min-cost S ⊆ V so that λ(v, S) ≥

d(v) holds for every v ∈ V , where λ(v, S) is the maximum flow value from v to S. In the

directed variant, we have demands din(v) and dout(v) and we require λ(S, v) ≥ din(v)

and λ(v, S) ≥ dout(v). Undirected SL is (weakly) NP-hard on stars with r(v) = 0 for

all v except the center. But, it is known to be polynomially solvable for uniform costs

and uniform demands. For general instances, both directed an undirected SL admit a

(lnD+1)-approximation algorithms, where D is the sum of the demands; up to constant

this is tight, unless P=NP. We give a pseudopolynomial algorithm for undirected SL on

trees with running time O(|V |∆3), where ∆ = maxv∈V d(v). This algorithm is used to

derive a linear time algorithm for undirected SL with ∆ ≤ 3. We also consider the Single

Assignment Source Location (SASL) where every v ∈ V should be assigned to a single

node s(v) ∈ S. While the undirected SASL is in P, we give a (ln |V | + 1)-approximation

algorithm for the directed case, and show that this is tight, unless P=NP.

1 Introduction

Let G = (V,E) be a simple (possibly directed) graph with integral capacities {u(e) : e ∈ E};

we refer to the pair (G, u) as a network. Let n = |V | and m = |E|. Given a network, let λ(v, S)

denote the maximum flow value in the network from v to S, where λ(v, S) = ∞ for v ∈ S. We

1

consider the following Source Location (SL) problem: given a network (G, u), integral node

demands {d(v) : v ∈ V } and costs {c(v) : v ∈ V }, choose a minimum-cost subset of sources

S ⊆ V so that λ(v, S) ≥ d(v) for all v ∈ V . In the directed variant, we have demands d+(v)

and d−(v) and we require λ(S, v) ≥ d+(v) and λ(v, S) ≥ d−(v) for all v ∈ V . In the Single

Assignment Source Location (SASL) every v ∈ V should be assigned to a single node s(v) ∈ S

so that λ(v, s(v)) ≥ d(v) (λ(s(v), v)) ≥ d+(v) and λ(v, s(v)) ≥ d−(v) in the directed case) for

all v ∈ V .

SL problems naturally arise in various applications. For example, given a network in which

nodes represent users, determine a location of servers so that each user v can communicate

with at least one server even if d(v) − 1 link failures occur. If the cost of locating a server

at v is c(v), our goal is to find the cheapest location to ensure the required reliability of

communication. This is a special case of SL where all edges have capacity 1.

A ρ-approximation algorithm for a minimization problem is a polynomial time algorithm

that produces a solution of value no more than ρ times the value of an optimal solution. We

say that an optimization problem is ρ-hard if, up to constants, an approximation ratio better

than ρ for it is not possible, unless P=NP. For example, a problem is Ω(lnn)-hard if there

exists a constant B > 0 such that the problem cannot have a B lnn-approximation algorithm,

unless P=NP. It is well known that the Set-Cover (SC) problem on a groundset of size n is

Ω(lnn)-hard [10].

For SL problems the following results were known. Undirected SL is NP-hard even on

stars [2], but is polynomially solvable for uniform requirements or for uniform costs [13, 2].

Both directed and undirected SL admit a (1 + lnD)-approximation algorithm [3] (see also

[11]), where D is the sum of the demands. It is easy to show that the directed case is at least

as hard as the Set-Cover problem (even for 0, 1 demands), and thus is Ω(lnD)-hard. In [11]

it is shown in that the undirected SL is also Ω(lnn)-hard, and that similar approximation

ratios and hardness results hold for the node-connectivity variant of the problem. A related

problem on digraphs with both uniform requirements and uniform costs is considered in [6, 4].

A variant when the flow demands should be satisfied simultaneously is studied in [1]. For the

case of node-connectivity demands see, c.f., [9, 11].

An edge from x to y is denoted by xy. For X ⊆ V let δ(X) = {xy ∈ E : x ∈ X, y ∈ V −X}

be the cut induced by X in G, and let u(δ(X)) =
∑

e∈δ(X) u(e) denote its capacity. SL problems

can be formulated as a covering problem. For X ⊆ V let d(X) = maxv∈X d(v) be the demand

of X (where d(∅) = 0). For undirected SL, we say that X ⊆ V is deficient if d(X) > u(δ(X)).

By the Max-Flow-Min-Cut Theorem, S is a feasible solution to SL if, and only if, S covers

the family F of minimal deficient sets; |F| might be exponential in n even if G is a star (see

2

[2]). We prove:

Theorem 1.1 There is an O(n∆3) time algorithm for undirected SL on trees, where ∆ =

maxv∈V d(v).

A similar result was independently obtained in [11].

In practical applications the connectivity demands are usually rather small. While the

directed SL is Ω(ln n)-hard even for ∆ = 1, we use Theorem 1.1 to prove:

Theorem 1.2 Undirected SL with ∆ ≤ 3 can be solved in linear time.

Undirected SASL is polynomially solvable [12]. We consider the directed case and prove:

Theorem 1.3 Directed SASL admits a (lnn+ 1)-approximation algorithm, and it is Ω(lnn)-

hard even if ∆ = 1.

Theorems 1.1, 1.2, and 1.3 are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 1.1

To prove Theorem 1.1 we use dynamic programming. Throughout this section, assume that

G = T is a tree. Let s ∈ V be an arbitrary node of T designated as a root. The choice

of s induces a parent-child relation on V . Let Tv denote the subtree of T induced by the

descendants of v. Let ch(v) denote the number of children of v. A node v is a leaf if ch(v) = 0.

The height h(v) of v is the number of edges in the longest path from v to a leaf in Tv. The

leaves have height 0. We will assume some fixed order a1, . . . , ach(v) of the children of every

node v in the tree. For a node v of T with children a1, . . . , ach(v) and 0 ≤ i ≤ ch(v) let

T i
v = Tv −∪j>iTaj

denote the subtree of Tv induced by v and the subtrees of its first i children

a1, . . . , ai (where T 0
v is the trivial tree containing only v).

The algorithm fills a 5-dimensional array C[v, i, q, f, b] where v ∈ V , 0 ≤ i ≤ ch(v),

0 ≤ q, f ≤ R integers, and b ∈ {0, 1}. The interpretation is as follows. Let S ′ = S ∩ V (T i
v) be

the sources in T i
v. If T i

v 6= T , then flow can reach T i
v for “free” from T \ T i

v. Given q, f and b,

we look for the best feasible set S of sources under the following additional restrictions:

(i) λ(v, S ′) = q and λ(v, S − S ′) = f ; namely, at least f flow units should arrive to v from

T \ T i
v and S ′ should be able to provide q flow units to v.

(ii) If b = 1 then v ∈ S, and if b = 0 then v /∈ S.

Formally, to model f flow units arriving from “outside” of T i
v into v let T i

v(f) be obtained

by adding to T i
v a new node a and edge av with r(a) = c(a) = 0 and u(av) = f .

3

q"

S"

min {f+q’,u(va)}

f

i+1

min {u(a v),q"}i+1

Tv
i q’

S’

i+1

v

a

a

Figure 1: Decomposition of flow contributions.

The entry C[v, i, q, f, b] should store the optimum cost of a solution S to the problem on

T i
v(f), so that:

(i) λ(S − a, v) = q, and (ii) b = 1 if v ∈ S and b = 0 otherwise.

If such S does not exist, then C[v, i, q, f, b] = ∞. Clearly, the optimal solution value on T is:

min
q,b

{ C[s, ch(s), q, 0, b] }.

The f entry is 0 since when i = ch[s] then T i
s = T , and so the root can not get “outside flow”.

The array C is filled by increasing height of nodes, starting from leaves. We have:

C[v, 0, 0, f, 1] = c(v) if f < d(v) (v becomes a source);

C[v, 0, 0, f, 0] = 0 if f ≥ d(v) (a is always a source);

C[v, 0, 0, f, 0] = ∞ otherwise (v /∈ S, a cannot satisfy the demand of v).

In particular, the rule above applies for leaves, since they have no children.

Assume now that the entries C[v, j, q, f, b] have been computed for all 0 ≤ j ≤ i ≤ ch(v)−1.

We show how to fill the C[v, i+ 1, q, f, b] entries. We have (see Fig. 1):

C[v, i+ 1, q, f, b] = min {C[v, i, q′, f ′, b] + C[ai+1, ch(ai+1), q
′′, f ′′, b′′] }, (1)

where the minimum is taken over b′′ ∈ {0, 1} and all 0 ≤ q′, q′′ ≤ R such that:

q = q′ + min{q′′, u(ai+1v)}; (2)

f ′ = f + min{q′′, u(ai+1v)}; (3)

4

f ′′ = min{f + q′, u(vai+1)}. (4)

The total flow reaching from outside T i+1
v into the root v is f . Let S ′ = S ∩ T i

v and

S ′′ = S ∩ Tai+1
. We enumerate over all possible q′: the flow from S ′ to v, and all the

possible flow q′′ from S ′′ to ai+1. Given q′, q′′, then the cost over T i
v is C[v, i, q′, f ′, b] with

f ′ = f + min{q′′, u(ai+1v)}. This is because the tree rooted at ai+1 is “external” to T i
v. The

cost over Tai+1
is C[ai+1, ch(ai+1), q

′′, f ′′, b′′] with f ′′ = min{f + q′, u(vai+1)}. Indeed, the

number of external flow units that can reach ai+1 is the f external flow units plus q′′ from S ′,

unless it exceeds the u(ai+1v) capacity.

Hence, every entry is computable using previously computed entries. Once all the C entries

are computed, it is easy to recover S. Given C, we use the following recursive algorithm. We

pick the smallest cost C[s, ch(s), q, f, b] over all q, f, b. Let q, f, b be the optimum triplet. If

b = 1 then s ∈ S, and s 6∈ S otherwise.

We then use Equalities (2), (3) and (4) to define q′, f ′, f ′′, b′′. Then, recursively extend

S by running the algorithm on C[v, i, q′, f ′, b] and C[ai+1, ch(ai+1), q
′′, f ′′, b′′]. This ends the

description of the algorithm.

Let us now discuss the running time of the algorithm. At every iteration we have six

parameters 0 ≤ q, q′, q′′, f, f ′, f ′′ ≤ ∆ to determine for computing the minimum. However,

three parameters e.g., q, f, q′′ determine the others via equations (2), (3), and (4). We have

one iteration per edge of T , thus n− 1 iterations. Thus the total time complexity is O(n∆3)

as claimed.

3 Proof of Theorem 1.2

We can assume that G is connected, and focus on the more complicated case ∆ = 3. We

will show a 2-stage reduction from the case ∆ = 3 to an equivalent problem on a tree with

capacities in {1, 2}. It is known that for any integer k the relation Rk on nodes of a graph

“(x, y) ∈ Rk if λ(x, y) ≥ k” is an equivalence. Its equivalence classes are called classes of

k-(edge)-connectivity, or k-classes for short. Recall that for SL a set X ⊆ V is deficient if

d(X) > u(δ(X)).

Lemma 3.1 For any k ≥ ∆, if a deficient set X intersects a k-class Y , then Y ⊆ X.

Proof: Suppose to the contrary that there is y ∈ Y −X. Let x ∈ Y ∩X. Then

u(δ(X)) ≥ λ(x, y) ≥ k ≥ ∆ ≥ d(X),

5

T

(b)(a)

G

Figure 2: (a) G for k = 3 (bold edges have capacity 2); (b) T (dashed edges show removed

cycles).

contradicting that X is deficient. 2

Lemma 3.1 implies that for any k ≥ ∆, instead of considering the original network G, we

can consider the network G obtained from G by shrinking every k-class X of G into a single

node vX and setting d(vX) = d(X) and c(vX) = minv∈X c(v). The corresponding quotient

mapping ψ(v) = vX takes the nodes of a k-class X to the node vX . For a set S of sources

of G, the corresponding set S of sources of G is defined by choosing for every vX ∈ S a node

u ∈ X such that c(u) = c(vX). We summarize the first stage of our reduction as follows:

Corollary 3.2 S is a feasible solution for G if, and only if, ψ(S) is a feasible solution for G.

In particular, if S is an optimal solution for G, then choosing the cheapest node from every

k-class X with vX ∈ S gives an optimal solution for G.

A connected graph is a cactus-tree if any two cycles in it have at most one node in common

(that is, every its block is an edge or a cycle). It is well known that for k = 3 G is a cactus

tree, such that each its bridge has capacity in {1, 2}, and any its edge belonging to a cycle has

capacity 1 (see Fig. 2a). We note that the k-classes (and thus the corresponding graph G) can

be computed in n− 1 k-flow computations (thus in O(knm) time) using the Gomory-Hu cut

tree [5]; the complexity can be further reduced to O(k2n2) using sparse certificates. But for

k = 3, G can be computed in linear time [7, Theorem 7.3.3]. The other parts of our reduction

can be also implemented in linear time.

We now describe how to solve the problem for the particular case when the input graph

is a cactus-tree as above and k = 3, by establishing a reduction to the tree case considered in

Section 2.

The second stage of our reduction is: construct from G a tree T by “implanting” instead

every cycle a star with edges having capacity 2 (see Fig. 2b); the center of each star is “empty”,

and has cost infinity and requirement 0. Let O denote the centers of the stars implanted. Note

that the nodes that are not in O and edges that are not incident to nodes in O are common

6

to G and to T .

Lemma 3.3 Let S be a set of nodes of G and let v be a node of G that is not in S. Then

λG(v, S) = λT (v, S).

Proof: Consider the connected components G1, . . . ,Gq of G − v that intersect S and the

corresponding connected components T1, . . . , Tq of T −v. Let Si = Gi∩S = Ti∩S, i = 1, . . . , q,

(the second inequality follows from the fact that S∩O = ∅). It is not hard to see that there is a

bridge (with capacity 1) that separates Si from v in G if and only if there is such a bridge in T ;

thus in this case we must have λG(v, Si) = λT (v, Si) = 1. Otherwise, λG(v, Si) = λT (v, Si) = 2.

Hence

λG(v, Si) = λT (v, Si), i = 1, . . . , q.

The claim follows, since clearly

λG(v, S) =
q

∑

i=1

λG(v, Si), λT (v, S) =
q

∑

i=1

λT (v, Si).

2

Corollary 3.4 S is a feasible solution for G if, and only if, S is a feasible solution for T not

containing any center of a star implanted. Thus S is an optimal solution for G if, and only

if, S is an optimal solution for T .

Corollary 3.4 implies that instead of solving the problem on G we can solve the problem

on T . By Theorem 1.1, this can be done in O(n) time. Since the 3-classes can be found in

linear time, T can be constructed in linear time. Thus the overall time complexity is linear.

This finishes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Note that S ⊆ V is a feasible solution for directed SASL if, and only if, for every w ∈ V there

is s ∈ S so that: if din(w) > 0 then λ(s, w) ≥ din(w) and if dout(w) > 0 then λ(w, s) ≥ dout(w).

That is, for every w ∈ V with max{din(w), dout(w)} > 0, S intersects the set Dw defined as

follows. Let Din
w = {v ∈ V : λ(v, w) ≥ din(w)}, Dout

w = {v ∈ V : λ(w, v) ≥ dout(w)}. Then

Dw =

Din
w din(w) > 0, dout(w) = 0

Dout
w din(w) = 0, dout(w) > 0

Din
w ∩Dout

w din(w) > 0, dout(w) > 0

7

Thus for directed SASL the deficient sets are {Dw : w ∈ V,max{din(w), dout(w)} > 0}}.

Clearly, the number of deficient sets is at most n, and they all can be computed using O(n2)

max-flow computations, hence in polynomial time.

Remark In the undirected case, the deficient sets are {Dw : w ∈ V, d(w) > 0}, where

Dw = {v ∈ V : λ(w, v) ≥ d(w)}, and they can be computed using n−1 max-flow computations

via the Gomory-Hu cut-tree [5]. Moreover, for undirected SASL the deficient sets are disjoint

[12]. This immediately implies a polynomial time algorithm: choose the cheapest source from

every deficient set.

For directed SASL the algorithm is as follows. We compute the the family F of the deficient

sets. Let τ ∗ denote the optimal value of the LP-relaxation min{
∑

v∈V c(v)xv :
∑

v∈X xv ≥

1 ∀X ∈ F}. By a well known result of Lovász [8], the greedy algorithm (which repeatedly

removes the node that covers the maximum number of sets, together with these sets, until no

sets remain) computes a feasible solution S of size at most H(|F|)τ ∗ ≤ (ln |F| + 1)τ ∗, where

H(k) denotes the kth Harmonic number. Since |F| ≤ n, this gives an H(n)-approximation

algorithm for directed SASL.

Let ΓJ(X) denote the set of neighbors of a node subset X in a graph J . To show that

directed SASL is O(lnn)-hard, we use the following well known formulation of the Set-Cover

problem:

Set-Cover (SC):

Input: A bipartite graph J = (A+B, I) without isolated nodes.

Output: A minimum size subset S ⊆ A such that ΓJ(S) = B.

In this formulation, J is the incidence graph of sets and elements, where A is the family of sets

and B is the universe. Given an instance J = (A+B, I) for the SC, construct an instance for

directed SASL by directing the edges in J from B to A, and setting dout(b) = 1 and din(b) = 0

for every b ∈ B, and din(a), dout(a) = 0 for every a ∈ A. The cost of every node is 1. It is

straightforward to see that:

(i) for any feasible solution S ′ , there exists a feasible solution S ⊆ A with |S| ≤ |S ′|, and

(ii) S ⊆ A is a feasible solution for G if, and only if, S is a feasible solution for SC on J .

Since SC is Ω(lnn)-hard [10], the result follows.

Acknowledgments. We thank two anonymous referees for useful comments on a preliminary

version of this paper. The first author thank Joseph Cheriyan for helpful discussions.

8

References

[1] K. Andreev, C. Garrod, B. Maggs, and A. Meyerson. Simultaneous source location. In

APPROX 2004, pages 13–26, 2004.

[2] K. Arata, S. Iwata, K. Makino, and S. Fujishige. Locating sources to meet flow demands

in undirected networks. J. of Algorithms, 42:54–68, 2002.

[3] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and

applications. Theoretical Computer Science, 250:179–200, 2001.

[4] M. Bárász, J. Becker, and A. Frank. An algorithm for source location in directed graphs.

EGRES TR-2004-06, 2004.

[5] R. Gomory and T. Hu. Multi-terminal network flows. SIAM J. Appl. Math., 9:551–570,

1961.

[6] J. Heuvel and M. Johnson. Transversals of subtree hypergraphs and the source location

problem in digraph. CDAM Research Report LSE-CDAM-2004-10, 2004.

[7] T.-H. Hsu. Graph augmentation and related problems: theory and practice. Ph. D.

Thesis, The Univ. of Texas at Austin, 1993.

[8] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13:383–

390, 1975.

[9] H. Nagamochi, T. Ishii, and H. Ito. Minimum cost source location problem with vertex-

connectivity requirements in digraphs. Information Processing Letters, 80(6):287–294,

2001.

[10] R. Raz and S. Safra. A sub constant error probability low degree test, and a sub constant

error probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of

Computing, pages 475–484, 1997.

[11] M. Sakashita, K. Makino, and S. Fujishige. Minimum cost source location problems with

flow requirements. In LATIN, pages 769–780, 2006.

[12] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe. Some covering problems in location

theory on flow networks. IEICE Trans. Fund., E75-A:678–683, 1992.

[13] H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda. Plural cover problem on undi-

rected flow networks. IEICE Trans. Fund., (J81-A):863–869, 1998. (In Japanese).

9

