A note on two source location problems

Guy Kortsarz
Department of Computer Science, Rutgers, Camden, USA
guyk@crab.rutgers.edu.
Zeev Nutov
Computer Science Division, The Open University of Israel
nutov@openu.ac.il

Abstract

We consider Source Location (SL) problems: given a capacitated network $G=(V, E)$, cost $c(v)$ and a demand $d(v)$ for every $v \in V$, choose a min-cost $S \subseteq V$ so that $\lambda(v, S) \geq$ $d(v)$ holds for every $v \in V$, where $\lambda(v, S)$ is the maximum flow value from v to S. In the directed variant, we have demands $d^{i n}(v)$ and $d^{\text {out }}(v)$ and we require $\lambda(S, v) \geq d^{\text {in }}(v)$ and $\lambda(v, S) \geq d^{\text {out }}(v)$. Undirected SL is (weakly) NP-hard on stars with $r(v)=0$ for all v except the center. But, it is known to be polynomially solvable for uniform costs and uniform demands. For general instances, both directed an undirected SL admit a (ln $D+1$)-approximation algorithms, where D is the sum of the demands; up to constant this is tight, unless $\mathrm{P}=\mathrm{NP}$. We give a pseudopolynomial algorithm for undirected SL on trees with running time $O\left(|V| \Delta^{3}\right)$, where $\Delta=\max _{v \in V} d(v)$. This algorithm is used to derive a linear time algorithm for undirected SL with $\Delta \leq 3$. We also consider the Single Assignment Source Location (SASL) where every $v \in V$ should be assigned to a single node $s(v) \in S$. While the undirected SASL is in P, we give a $(\ln |V|+1)$-approximation algorithm for the directed case, and show that this is tight, unless $\mathrm{P}=\mathrm{NP}$.

1 Introduction

Let $G=(V, E)$ be a simple (possibly directed) graph with integral capacities $\{u(e): e \in E\}$; we refer to the pair (G, u) as a network. Let $n=|V|$ and $m=|E|$. Given a network, let $\lambda(v, S)$ denote the maximum flow value in the network from v to S, where $\lambda(v, S)=\infty$ for $v \in S$. We
consider the following Source Location (SL) problem: given a network (G, u), integral node demands $\{d(v): v \in V\}$ and costs $\{c(v): v \in V\}$, choose a minimum-cost subset of sources $S \subseteq V$ so that $\lambda(v, S) \geq d(v)$ for all $v \in V$. In the directed variant, we have demands $d^{+}(v)$ and $d^{-}(v)$ and we require $\lambda(S, v) \geq d^{+}(v)$ and $\lambda(v, S) \geq d^{-}(v)$ for all $v \in V$. In the Single Assignment Source Location (SASL) every $v \in V$ should be assigned to a single node $s(v) \in S$ so that $\lambda(v, s(v)) \geq d(v)(\lambda(s(v), v)) \geq d^{+}(v)$ and $\lambda(v, s(v)) \geq d^{-}(v)$ in the directed case) for all $v \in V$.

SL problems naturally arise in various applications. For example, given a network in which nodes represent users, determine a location of servers so that each user v can communicate with at least one server even if $d(v)-1$ link failures occur. If the cost of locating a server at v is $c(v)$, our goal is to find the cheapest location to ensure the required reliability of communication. This is a special case of SL where all edges have capacity 1.

A ρ-approximation algorithm for a minimization problem is a polynomial time algorithm that produces a solution of value no more than ρ times the value of an optimal solution. We say that an optimization problem is ρ-hard if, up to constants, an approximation ratio better than ρ for it is not possible, unless $\mathrm{P}=\mathrm{NP}$. For example, a problem is $\Omega(\ln n)$-hard if there exists a constant $B>0$ such that the problem cannot have a $B \ln n$-approximation algorithm, unless $\mathrm{P}=\mathrm{NP}$. It is well known that the Set-Cover (SC) problem on a groundset of size n is $\Omega(\ln n)$-hard $[10]$.

For SL problems the following results were known. Undirected SL is NP-hard even on stars [2], but is polynomially solvable for uniform requirements or for uniform costs [13, 2]. Both directed and undirected SL admit a $(1+\ln D)$-approximation algorithm [3] (see also [11]), where D is the sum of the demands. It is easy to show that the directed case is at least as hard as the Set-Cover problem (even for 0,1 demands), and thus is $\Omega(\ln D)$-hard. In [11] it is shown in that the undirected SL is also $\Omega(\ln n)$-hard, and that similar approximation ratios and hardness results hold for the node-connectivity variant of the problem. A related problem on digraphs with both uniform requirements and uniform costs is considered in $[6,4]$. A variant when the flow demands should be satisfied simultaneously is studied in [1]. For the case of node-connectivity demands see, c.f., $[9,11]$.

An edge from x to y is denoted by $x y$. For $X \subseteq V$ let $\delta(X)=\{x y \in E: x \in X, y \in V-X\}$ be the cut induced by X in G, and let $u(\delta(X))=\sum_{e \in \delta(X)} u(e)$ denote its capacity. SL problems can be formulated as a covering problem. For $X \subseteq V$ let $d(X)=\max _{v \in X} d(v)$ be the demand of X (where $d(\emptyset)=0$). For undirected SL, we say that $X \subseteq V$ is deficient if $d(X)>u(\delta(X))$. By the Max-Flow-Min-Cut Theorem, S is a feasible solution to SL if, and only if, S covers the family \mathcal{F} of minimal deficient sets; $|\mathcal{F}|$ might be exponential in n even if G is a star (see
[2]). We prove:
Theorem 1.1 There is an $O\left(n \Delta^{3}\right)$ time algorithm for undirected SL on trees, where $\Delta=$ $\max _{v \in V} d(v)$.

A similar result was independently obtained in [11].
In practical applications the connectivity demands are usually rather small. While the directed SL is $\Omega(\ln n)$-hard even for $\Delta=1$, we use Theorem 1.1 to prove:

Theorem 1.2 Undirected SL with $\Delta \leq 3$ can be solved in linear time.
Undirected SASL is polynomially solvable [12]. We consider the directed case and prove:
Theorem 1.3 Directed SASL admits a $(\ln n+1)$-approximation algorithm, and it is $\Omega(\ln n)$ hard even if $\Delta=1$.

Theorems 1.1, 1.2, and 1.3 are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 1.1

To prove Theorem 1.1 we use dynamic programming. Throughout this section, assume that $G=T$ is a tree. Let $s \in V$ be an arbitrary node of T designated as a root. The choice of s induces a parent-child relation on V. Let T_{v} denote the subtree of T induced by the descendants of v. Let $\operatorname{ch}(v)$ denote the number of children of v. A node v is a leaf if $\operatorname{ch}(v)=0$. The height $h(v)$ of v is the number of edges in the longest path from v to a leaf in T_{v}. The leaves have height 0 . We will assume some fixed order $a_{1}, \ldots, a_{c h(v)}$ of the children of every node v in the tree. For a node v of T with children $a_{1}, \ldots, a_{c h(v)}$ and $0 \leq i \leq \operatorname{ch}(v)$ let $T_{v}^{i}=T_{v}-\cup_{j>i} T_{a_{j}}$ denote the subtree of T_{v} induced by v and the subtrees of its first i children a_{1}, \ldots, a_{i} (where T_{v}^{0} is the trivial tree containing only v).

The algorithm fills a 5 -dimensional array $C[v, i, q, f, b]$ where $v \in V, 0 \leq i \leq \operatorname{ch}(v)$, $0 \leq q, f \leq R$ integers, and $b \in\{0,1\}$. The interpretation is as follows. Let $S^{\prime}=S \cap V\left(T_{v}^{i}\right)$ be the sources in T_{v}^{i}. If $T_{v}^{i} \neq T$, then flow can reach T_{v}^{i} for "free" from $T \backslash T_{v}^{i}$. Given q, f and b, we look for the best feasible set S of sources under the following additional restrictions:
(i) $\lambda\left(v, S^{\prime}\right)=q$ and $\lambda\left(v, S-S^{\prime}\right)=f$; namely, at least f flow units should arrive to v from $T \backslash T_{v}^{i}$ and $\quad S^{\prime}$ should be able to provide q flow units to v.
(ii) If $b=1$ then $v \in S$, and if $b=0$ then $v \notin S$.

Formally, to model f flow units arriving from "outside" of T_{v}^{i} into v let $T_{v}^{i}(f)$ be obtained by adding to T_{v}^{i} a new node a and edge $a v$ with $r(a)=c(a)=0$ and $u(a v)=f$.

Figure 1: Decomposition of flow contributions.

The entry $C[v, i, q, f, b]$ should store the optimum cost of a solution S to the problem on $T_{v}^{i}(f)$, so that:
(i) $\lambda(S-a, v)=q$, and (ii) $b=1$ if $v \in S$ and $b=0$ otherwise.

If such S does not exist, then $C[v, i, q, f, b]=\infty$. Clearly, the optimal solution value on T is:

$$
\min _{q, b}\{C[s, \operatorname{ch}(s), q, 0, b]\}
$$

The f entry is 0 since when $i=c h[s]$ then $T_{s}^{i}=T$, and so the root can not get "outside flow".
The array C is filled by increasing height of nodes, starting from leaves. We have:
$C[v, 0,0, f, 1]=c(v)$ if $f<d(v)$ (v becomes a source);
$C[v, 0,0, f, 0]=0$ if $f \geq d(v)$ (a is always a source);
$C[v, 0,0, f, 0]=\infty$ otherwise ($v \notin S, a$ cannot satisfy the demand of v).
In particular, the rule above applies for leaves, since they have no children.
Assume now that the entries $C[v, j, q, f, b]$ have been computed for all $0 \leq j \leq i \leq c h(v)-1$. We show how to fill the $C[v, i+1, q, f, b]$ entries. We have (see Fig. 1):

$$
\begin{equation*}
C[v, i+1, q, f, b]=\min \left\{C\left[v, i, q^{\prime}, f^{\prime}, b\right]+C\left[a_{i+1}, \operatorname{ch}\left(a_{i+1}\right), q^{\prime \prime}, f^{\prime \prime}, b^{\prime \prime}\right]\right\} \tag{1}
\end{equation*}
$$

where the minimum is taken over $b^{\prime \prime} \in\{0,1\}$ and all $0 \leq q^{\prime}, q^{\prime \prime} \leq R$ such that:

$$
\begin{align*}
& q=q^{\prime}+\min \left\{q^{\prime \prime}, u\left(a_{i+1} v\right)\right\} \tag{2}\\
& f^{\prime}=f+\min \left\{q^{\prime \prime}, u\left(a_{i+1} v\right)\right\} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
f^{\prime \prime}=\min \left\{f+q^{\prime}, u\left(v a_{i+1}\right)\right\} . \tag{4}
\end{equation*}
$$

The total flow reaching from outside T_{v}^{i+1} into the root v is f. Let $S^{\prime}=S \cap T_{v}^{i}$ and $S^{\prime \prime}=S \cap T_{a_{i+1}}$. We enumerate over all possible q^{\prime} : the flow from S^{\prime} to v, and all the possible flow $q^{\prime \prime}$ from $S^{\prime \prime}$ to a_{i+1}. Given $q^{\prime}, q^{\prime \prime}$, then the cost over T_{v}^{i} is $C\left[v, i, q^{\prime}, f^{\prime}, b\right]$ with $f^{\prime}=f+\min \left\{q^{\prime \prime}, u\left(a_{i+1} v\right)\right\}$. This is because the tree rooted at a_{i+1} is "external" to T_{v}^{i}. The cost over $T_{a_{i+1}}$ is $C\left[a_{i+1}, \operatorname{ch}\left(a_{i+1}\right), q^{\prime \prime}, f^{\prime \prime}, b^{\prime \prime}\right]$ with $f^{\prime \prime}=\min \left\{f+q^{\prime}, u\left(v a_{i+1}\right)\right\}$. Indeed, the number of external flow units that can reach a_{i+1} is the f external flow units plus $q^{\prime \prime}$ from S^{\prime}, unless it exceeds the $u\left(a_{i+1} v\right)$ capacity.

Hence, every entry is computable using previously computed entries. Once all the C entries are computed, it is easy to recover S. Given C, we use the following recursive algorithm. We pick the smallest cost $C[s, c h(s), q, f, b]$ over all q, f, b. Let q, f, b be the optimum triplet. If $b=1$ then $s \in S$, and $s \notin S$ otherwise.

We then use Equalities (2), (3) and (4) to define $q^{\prime}, f^{\prime}, f^{\prime \prime}, b^{\prime \prime}$. Then, recursively extend S by running the algorithm on $C\left[v, i, q^{\prime}, f^{\prime}, b\right]$ and $C\left[a_{i+1}, c h\left(a_{i+1}\right), q^{\prime \prime}, f^{\prime \prime}, b^{\prime \prime}\right]$. This ends the description of the algorithm.

Let us now discuss the running time of the algorithm. At every iteration we have six parameters $0 \leq q, q^{\prime}, q^{\prime \prime}, f, f^{\prime}, f^{\prime \prime} \leq \Delta$ to determine for computing the minimum. However, three parameters e.g., $q, f, q^{\prime \prime}$ determine the others via equations (2), (3), and (4). We have one iteration per edge of T, thus $n-1$ iterations. Thus the total time complexity is $O\left(n \Delta^{3}\right)$ as claimed.

3 Proof of Theorem 1.2

We can assume that G is connected, and focus on the more complicated case $\Delta=3$. We will show a 2 -stage reduction from the case $\Delta=3$ to an equivalent problem on a tree with capacities in $\{1,2\}$. It is known that for any integer k the relation \mathcal{R}_{k} on nodes of a graph $"(x, y) \in \mathcal{R}_{k}$ if $\lambda(x, y) \geq k "$ is an equivalence. Its equivalence classes are called classes of k-(edge)-connectivity, or k-classes for short. Recall that for SL a set $X \subseteq V$ is deficient if $d(X)>u(\delta(X))$.

Lemma 3.1 For any $k \geq \Delta$, if a deficient set X intersects a k-class Y, then $Y \subseteq X$.
Proof: Suppose to the contrary that there is $y \in Y-X$. Let $x \in Y \cap X$. Then

$$
u(\delta(X)) \geq \lambda(x, y) \geq k \geq \Delta \geq d(X)
$$

Figure 2: (a) \mathcal{G} for $k=3$ (bold edges have capacity 2); (b) \mathcal{T} (dashed edges show removed cycles).
contradicting that X is deficient.
Lemma 3.1 implies that for any $k \geq \Delta$, instead of considering the original network G, we can consider the network \mathcal{G} obtained from G by shrinking every k-class X of G into a single node v_{X} and setting $d\left(v_{X}\right)=d(X)$ and $c\left(v_{X}\right)=\min _{v \in X} c(v)$. The corresponding quotient mapping $\psi(v)=v_{X}$ takes the nodes of a k-class X to the node v_{X}. For a set \mathcal{S} of sources of \mathcal{G}, the corresponding set S of sources of G is defined by choosing for every $v_{X} \in \mathcal{S}$ a node $u \in X$ such that $c(u)=c\left(v_{X}\right)$. We summarize the first stage of our reduction as follows:

Corollary $3.2 S$ is a feasible solution for G if, and only if, $\psi(S)$ is a feasible solution for \mathcal{G}. In particular, if \mathcal{S} is an optimal solution for \mathcal{G}, then choosing the cheapest node from every k-class X with $v_{X} \in \mathcal{S}$ gives an optimal solution for G.

A connected graph is a cactus-tree if any two cycles in it have at most one node in common (that is, every its block is an edge or a cycle). It is well known that for $k=3 \mathcal{G}$ is a cactus tree, such that each its bridge has capacity in $\{1,2\}$, and any its edge belonging to a cycle has capacity 1 (see Fig. 2a). We note that the k-classes (and thus the corresponding graph \mathcal{G}) can be computed in $n-1 k$-flow computations (thus in $O(k n m)$ time) using the Gomory-Hu cut tree [5]; the complexity can be further reduced to $O\left(k^{2} n^{2}\right)$ using sparse certificates. But for $k=3, \mathcal{G}$ can be computed in linear time [7, Theorem 7.3.3]. The other parts of our reduction can be also implemented in linear time.

We now describe how to solve the problem for the particular case when the input graph is a cactus-tree as above and $k=3$, by establishing a reduction to the tree case considered in Section 2.

The second stage of our reduction is: construct from \mathcal{G} a tree \mathcal{T} by "implanting" instead every cycle a star with edges having capacity 2 (see Fig. 2b); the center of each star is "empty", and has cost infinity and requirement 0 . Let \mathcal{O} denote the centers of the stars implanted. Note that the nodes that are not in \mathcal{O} and edges that are not incident to nodes in \mathcal{O} are common
to \mathcal{G} and to \mathcal{T}.
Lemma 3.3 Let S be a set of nodes of \mathcal{G} and let v be a node of \mathcal{G} that is not in S. Then

$$
\lambda_{\mathcal{G}}(v, S)=\lambda_{\mathcal{T}}(v, S)
$$

Proof: Consider the connected components $\mathcal{G}_{1}, \ldots, \mathcal{G}_{q}$ of $\mathcal{G}-v$ that intersect S and the corresponding connected components $\mathcal{T}_{1}, \ldots, \mathcal{T}_{q}$ of $\mathcal{T}-v$. Let $S_{i}=\mathcal{G}_{i} \cap S=\mathcal{T}_{i} \cap S, i=1, \ldots, q$, (the second inequality follows from the fact that $S \cap \mathcal{O}=\emptyset$). It is not hard to see that there is a bridge (with capacity 1) that separates S_{i} from v in \mathcal{G} if and only if there is such a bridge in \mathcal{T}; thus in this case we must have $\lambda_{\mathcal{G}}\left(v, S_{i}\right)=\lambda_{\mathcal{T}}\left(v, S_{i}\right)=1$. Otherwise, $\lambda_{\mathcal{G}}\left(v, S_{i}\right)=\lambda_{\mathcal{T}}\left(v, S_{i}\right)=2$. Hence

$$
\lambda_{\mathcal{G}}\left(v, S_{i}\right)=\lambda_{\mathcal{T}}\left(v, S_{i}\right), \quad i=1, \ldots, q .
$$

The claim follows, since clearly

$$
\lambda_{\mathcal{G}}(v, S)=\sum_{i=1}^{q} \lambda_{\mathcal{G}}\left(v, S_{i}\right), \quad \lambda_{\mathcal{T}}(v, S)=\sum_{i=1}^{q} \lambda_{\mathcal{T}}\left(v, S_{i}\right)
$$

Corollary 3.4 \mathcal{S} is a feasible solution for \mathcal{G} if, and only if, \mathcal{S} is a feasible solution for \mathcal{T} not containing any center of a star implanted. Thus \mathcal{S} is an optimal solution for \mathcal{G} if, and only if, \mathcal{S} is an optimal solution for \mathcal{T}.

Corollary 3.4 implies that instead of solving the problem on G we can solve the problem on \mathcal{T}. By Theorem 1.1, this can be done in $O(n)$ time. Since the 3 -classes can be found in linear time, \mathcal{T} can be constructed in linear time. Thus the overall time complexity is linear. This finishes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Note that $S \subseteq V$ is a feasible solution for directed SASL if, and only if, for every $w \in V$ there is $s \in S$ so that: if $d^{\text {in }}(w)>0$ then $\lambda(s, w) \geq d^{\text {in }}(w)$ and if $d^{\text {out }}(w)>0$ then $\lambda(w, s) \geq d^{\text {out }}(w)$. That is, for every $w \in V$ with $\max \left\{d^{\text {in }}(w), d^{\text {out }}(w)\right\}>0, S$ intersects the set D_{w} defined as follows. Let $D_{w}^{i n}=\left\{v \in V: \lambda(v, w) \geq d^{i n}(w)\right\}, D_{w}^{\text {out }}=\left\{v \in V: \lambda(w, v) \geq d^{\text {out }}(w)\right\}$. Then

$$
D_{w}= \begin{cases}D_{w}^{\text {in }} & d^{\text {in }}(w)>0, d^{\text {out }}(w)=0 \\ D_{w}^{\text {out }} & d^{\text {in }}(w)=0, d^{\text {out }}(w)>0 \\ D_{w}^{\text {in }} \cap D_{w}^{\text {out }} & d^{\text {in }}(w)>0, d^{\text {out }}(w)>0\end{cases}
$$

Thus for directed SASL the deficient sets are $\left.\left\{D_{w}: w \in V, \max \left\{d^{\text {in }}(w), d^{o u t}(w)\right\}>0\right\}\right\}$. Clearly, the number of deficient sets is at most n, and they all can be computed using $O\left(n^{2}\right)$ max-flow computations, hence in polynomial time.

Remark In the undirected case, the deficient sets are $\left\{D_{w}: w \in V, d(w)>0\right\}$, where $D_{w}=\{v \in V: \lambda(w, v) \geq d(w)\}$, and they can be computed using $n-1$ max-flow computations via the Gomory-Hu cut-tree [5]. Moreover, for undirected SASL the deficient sets are disjoint [12]. This immediately implies a polynomial time algorithm: choose the cheapest source from every deficient set.

For directed SASL the algorithm is as follows. We compute the the family \mathcal{F} of the deficient sets. Let τ^{*} denote the optimal value of the LP-relaxation $\min \left\{\sum_{v \in V} c(v) x_{v}: \sum_{v \in X} x_{v} \geq\right.$ $1 \forall X \in \mathcal{F}\}$. By a well known result of Lovász [8], the greedy algorithm (which repeatedly removes the node that covers the maximum number of sets, together with these sets, until no sets remain) computes a feasible solution S of size at most $H(|\mathcal{F}|) \tau^{*} \leq(\ln |\mathcal{F}|+1) \tau^{*}$, where $H(k)$ denotes the k th Harmonic number. Since $|\mathcal{F}| \leq n$, this gives an $H(n)$-approximation algorithm for directed SASL.

Let $\Gamma_{J}(X)$ denote the set of neighbors of a node subset X in a graph J. To show that directed SASL is $O(\ln n)$-hard, we use the following well known formulation of the Set-Cover problem:

Set-Cover (SC):

Input: A bipartite graph $J=(A+B, I)$ without isolated nodes.
Output: A minimum size subset $S \subseteq A$ such that $\Gamma_{J}(S)=B$.
In this formulation, J is the incidence graph of sets and elements, where A is the family of sets and B is the universe. Given an instance $J=(A+B, I)$ for the SC, construct an instance for directed SASL by directing the edges in J from B to A, and setting $d^{\text {out }}(b)=1$ and $d^{\text {in }}(b)=0$ for every $b \in B$, and $d^{\text {in }}(a)$, $d^{\text {out }}(a)=0$ for every $a \in A$. The cost of every node is 1 . It is straightforward to see that:
(i) for any feasible solution S^{\prime}, there exists a feasible solution $S \subseteq A$ with $|S| \leq\left|S^{\prime}\right|$, and (ii) $S \subseteq A$ is a feasible solution for G if, and only if, S is a feasible solution for SC on J. Since SC is $\Omega(\ln n)$-hard [10], the result follows.

Acknowledgments. We thank two anonymous referees for useful comments on a preliminary version of this paper. The first author thank Joseph Cheriyan for helpful discussions.

References

[1] K. Andreev, C. Garrod, B. Maggs, and A. Meyerson. Simultaneous source location. In APPROX 2004, pages 13-26, 2004.
[2] K. Arata, S. Iwata, K. Makino, and S. Fujishige. Locating sources to meet flow demands in undirected networks. J. of Algorithms, 42:54-68, 2002.
[3] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and applications. Theoretical Computer Science, 250:179-200, 2001.
[4] M. Bárász, J. Becker, and A. Frank. An algorithm for source location in directed graphs. EGRES TR-2004-06, 2004.
[5] R. Gomory and T. Hu. Multi-terminal network flows. SIAM J. Appl. Math., 9:551-570, 1961.
[6] J. Heuvel and M. Johnson. Transversals of subtree hypergraphs and the source location problem in digraph. CDAM Research Report LSE-CDAM-2004-10, 2004.
[7] T.-H. Hsu. Graph augmentation and related problems: theory and practice. Ph. D. Thesis, The Univ. of Texas at Austin, 1993.
[8] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13:383390, 1975.
[9] H. Nagamochi, T. Ishii, and H. Ito. Minimum cost source location problem with vertexconnectivity requirements in digraphs. Information Processing Letters, 80(6):287-294, 2001.
[10] R. Raz and S. Safra. A sub constant error probability low degree test, and a sub constant error probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing, pages 475-484, 1997.
[11] M. Sakashita, K. Makino, and S. Fujishige. Minimum cost source location problems with flow requirements. In LATIN, pages 769-780, 2006.
[12] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe. Some covering problems in location theory on flow networks. IEICE Trans. Fund., E75-A:678-683, 1992.
[13] H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda. Plural cover problem on undirected flow networks. IEICE Trans. Fund., (J81-A):863-869, 1998. (In Japanese).

