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Abstract. A subset T ⊆ V of terminals is k-connected to a root s in
a directed/undirected graph J if J has k internally-disjoint vs-paths for
every v ∈ T ; T is k-connected in J if T is k-connected to every s ∈ T . We
consider the Subset k-Connectivity Augmentation problem: given a graph
G = (V,E) with edge/node-costs, node subset T ⊆ V , and a subgraph
J = (V,EJ) of G such that T is k-connected in J , find a minimum-cost
augmenting edge-set F ⊆ E ∖ EJ such that T is (k + 1)-connected in
J ∪ F . The problem admits trivial ratio O(∣T ∣2). We consider the case
∣T ∣ > k and prove that for directed/undirected graphs and edge/node-
costs, a �-approximation for Rooted Subset k-Connectivity Augmentation
implies the following ratios for Subset k-Connectivity Augmentation:

(i) b(�+ k) +
(

3∣T ∣
∣T ∣−k

)2

H
(

3∣T ∣
∣T ∣−k
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(
∣T ∣
∣T ∣−k

log k
)

,

where b = 1 for undirected graphs and b = 2 for directed graphs, and
H(k) is the kth harmonic number. The best known values of � on undi-
rected graphs are min{∣T ∣, O(k)} for edge-costs and min{∣T ∣, O(k log ∣T ∣)}
for node-costs; for directed graphs � = ∣T ∣ for both versions. Our results
imply that unless k = ∣T ∣ − o(∣T ∣), Subset k-Connectivity Augmentation
admits the same ratios as the best known ones for the rooted version.
This improves the ratios in [19, 14].

1 Introduction

In the Survivable Network problem we are given a graph G = (V,E) with
edge/node-costs and pairwise connectivity requirements {r(u, v) : u, v ∈ T ⊆ V }
on a set T of terminals. The goal is to find a minimum-cost subgraph of G that
contains r(u, v) internally-disjoint uv-paths for all u, v ∈ T . In Rooted Subset
k-Connectivity problem there is s ∈ T such that r(s, t) = k for all t ∈ T ∖ {s}
and r(u, v) = 0 otherwise. In Subset k-Connectivity problem r(u, v) = k for all
u, v ∈ T and r(u, v) = 0 otherwise. In the augmentation versions, G contains a
subgraph J of cost zero with r(u, v)− 1 internally disjoint paths for all u, v ∈ T .
A subset T ⊆ V of terminals is k-connected to a root s in a directed/undirected
graph J if J has k internally-disjoint vs-paths for every v ∈ T ; T is k-connected
in J if T is k-connected to every s ∈ T . Formally, the versions of Survivable
Network we consider are as follows, where we revise our notation to k ← k + 1.

Rooted Subset k-Connectivity Augmentation
Instance: A graph G = (V,E) with edge/node-costs, a set T ⊆ V of terminals,

root s ∈ T , and a subgraph J = (V,EJ) of G such that T ∖ {s}
is k-connected to s in J .



Objective: Find a minimum-cost augmenting edge-set F ⊆ E ∖ EJ such that
T ∖ {s} is (k + 1)-connected to s in J ∪ F .

Subset k-Connectivity Augmentation
Instance: A graph G = (V,E) with edge/node-costs, subset T ⊆ V , and a sub-

graph J = (V,EJ) of G such that T is k-connected in J .
Objective: Find a minimum-cost augmenting edge-set F ⊆ E ∖ EJ such that

T is (k + 1)-connected in J ∪ F .

The Subset k-Connectivity Augmentation is Label-Cover hard to approximate
[9]. It is known and easy to see that for both edge-costs and node-costs, if
Subset k-Connectivity Augmentation admits approximation ratio �(k) such that
�(k) is a monotone increasing function, then Subset k-Connectivity admits ratio
k ⋅�(k). Moreover, for edge costs, if in addition the approximation �(k) is w.r.t. a
standard setpair/biset LP-relaxation to the problem, then Subset k-Connectivity
admits ratio H(k) ⋅ �(k), where H(k) denotes the kth harmonic number. For
edge-costs, a standard LP-relaxation for Survivable Network (due to Frank and
Jordán [5]) is:

min

⎧⎨⎩∑
e∈E

cexe :
∑

e∈E(X,X∗)

xe ≥ r(X,X∗), X,X∗ ⊆ V,X ∩X∗ = ∅, 0 ≤ xe ≤ 1

⎫⎬⎭
where r(X,X∗) = max{r(u, v) : u ∈ X, v ∈ X∗} and E(X,X∗) is the set of
edges in E from X to X∗.

The Subset k-Connectivity problem admits trivial ratiosO(∣T ∣2) for both edge-
costs and node-costs, by computing for every u, v ∈ V an optimal edge-set of k
internally-disjoint uv-paths (this is essentially a Min-Cost k-Flow problem, that
can be solved in polynomial time), and taking the union of the computed edge-
sets. We note that for metric edge-costs the problem admits an O(1) ratio [2]. For
∣T ∣ ≥ k+1 the problem can also be decomposed into k instances of Rooted Subset
k-Connectivity problems, c.f. [11] for the case T = V , where it is also shown that
for T = V the number of of Rooted Subset k-Connectivity Augmentation instances

can be reduced to O
(
∣T ∣
∣T ∣−k log k

)
, which is O(log k) unless k = ∣T ∣ − o(∣T ∣).

Recently, Laekhanukit [14] made an important observation that the method
of [11] can be extended for the case of arbitrary T ⊆ V . Specifically, he proved
that if ∣T ∣ ≥ 2k, then O(log k) instances of Rooted Subset k-Connectivity Augmen-
tation will suffice. Thus for ∣T ∣ ≥ 2k, the O(k)-approximation algorithm of [19]
for Rooted Subset k-Connectivity Augmentation leads to the ratio O(k log k) for
Rooted Subset k-Connectivity Augmentation. By cleverly exploiting an additional
property of the algorithm of [19] (see [14, Lemma 14]), he reduced the ratio to
O(k) in the case ∣T ∣ ≥ k2.

However, using a different approach, we will show that all this is not neces-
sary, as for both directed and undirected graphs and edge-costs and node-costs,
Subset k-Connectivity Augmentation can be reduced to solving one instance (or
two instances, in the case of directed graphs) of Rooted Subset k-Connectivity

Augmentation and O
(

3∣T ∣
∣T ∣−k

)2
H
(

3∣T ∣
∣T ∣−k

)
instances of Min-Cost k-Flow problem.



This leads to a much simpler algorithm, improves the result of Laekhanukit [14]
for ∣T ∣ < k2, and applies also for node-costs and directed graphs. In addition,
we give a more natural and much simpler extension of the algorithm of [11] for

T = V , that also enables the same bound O
(
∣T ∣
∣T ∣−k log k

)
as in [11] for arbitrary

T with ∣T ∣ ≥ k + 1, and in addition applies also for directed graphs, for node-
costs, and for an arbitrary type of edge-costs, e.g., metric costs, or uniform costs,
or 0, 1-costs. When we say “0, 1-edge-costs” we mean that the input graph G is
complete, and the goal is to add to the subgraph J of G formed by the zero-cost
edges a minimum size edge-set F (any edge is allowed) such that J ∪F satisfies
the connectivity requirements. Formally, our result is the following.

Theorem 1. For both directed and undirected graphs, and edge-costs and node-
costs the following holds. If Rooted Subset k-Connectivity Augmentation admits
approximation ratio � = �(k, ∣T ∣), then for ∣T ∣ ≥ k + 1 Subset k-Connectivity
Augmentation admits the following approximation ratios:

(i) b(� + k) +
(
∣T ∣
∣T ∣−k

)2
O
(

log ∣T ∣
∣T ∣−k

)
, where b = 1 for undirected graphs and

b = 2 for directed graphs.

(ii) � ⋅O
(
∣T ∣
∣T ∣−k log min{k, ∣T ∣ − k}

)
, and this is so also for 0, 1-edge-costs.

Furthermore, if for edge-costs the approximation ratio � is w.r.t. a standard LP-
relaxation for the problem, then so are the ratios in (i) and (ii).

For ∣T ∣ > k, the best known values of � on undirected graphs are O(k)
for edge-costs and min{O(k log ∣T ∣), ∣T ∣} for node-costs [19]; for directed graphs
� = ∣T ∣ for both versions. For 0, 1-edge-costs � = O(log k) [20] for undirected
graphs and � = O(log ∣T ∣) [18] for directed graphs. For edge-costs, these ratios
are w.r.t. a standard LP-relaxation. Thus Theorem 1 implies the following.

Corollary 1. For ∣T ∣ ≥ k + 1, Subset k-Connectivity Augmentation admits the
following approximation ratios.

– For undirected graphs, the ratios are O(k)+
(
∣T ∣
∣T ∣−k

)2
O
(

log ∣T ∣
∣T ∣−k

)
for edge-

costs, O(k log ∣T ∣)+
(
∣T ∣
∣T ∣−k

)2
O
(

log ∣T ∣
∣T ∣−k

)
for node-costs, and ∣T ∣

∣T ∣−k ⋅O
(
log2 k

)
for 0, 1-edge-costs.

– For directed graphs, the ratio is 2(∣T ∣+ k) +
(
∣T ∣
∣T ∣−k

)2
O
(

log ∣T ∣
∣T ∣−k

)
for both

edge-costs and node-costs, and ∣T ∣
∣T ∣−k ⋅O (log ∣T ∣ log k) for 0, 1 edge-costs.

For Subset k-Connecivity, the ratios are larger by a factor of H(k) for edge-costs,
and by a factor k for node-costs.

Note that except the case of 0, 1-edge-costs, Corollary 1 is deduced from
part (i) of Theorem 1. However, part (ii) of Theorem 1 might become relevant
if Rooted Subset k-Connectivity Augmentation admits ratio better than O(k). In
addition, part (ii) applies for any type of edge-costs, e.g. metric or 0, 1-edge-costs.



We conclude this section by mentioning some additional related work. The
case T = V of Rooted Subset k-Connectivity problem is the k-Outconnected Sub-
graph problem; this problem admits a polynomial time algorithm for directed
graphs [6], which implies ratio 2 for undirected graphs. For arbitrary T , the
problem harder than Directed Steiner Tree [15]. The case T = V of Subset k-
Connectivity problem is the k-Connected Subgraph problem. This problem is NP-

hard, and the best known ratio for it is O
(

log k log n
n−k

)
for both directed and

undirected graphs [17]; for the augmentation version of increasing the connectiv-

ity by one the ratio in [17] is O
(

log n
n−k

)
. For metric costs the problem admits

ratios 2 + k−1
n for undirected graphs and 2 + k

n for directed graphs [10]. For
0, 1-edge-costs the problem is solvable for directed graphs [5], which implies ra-
tio 2 for undirected graphs. The Survivable Network problem is Label-Cover hard
[9], and the currently best known non-trivial ratios for it on undirected graphs
are: O(k3 log ∣T ∣) for arbitrary edge-costs by Chuzhoy and Khanna [3], O(log k)
for metric costs due to Cheriyan and Vetta [2], O(k) ⋅ min

{
log2 k, log ∣T ∣

}
for

0, 1-edge-costs [20, 13], and O(k4 log2 ∣T ∣) for node-costs [19].

2 Proof of Theorem 1

We start by proving the following essentially known statement.

Proposition 1. Suppose that Rooted Subset k-Connectivity Augmentation ad-
mits an approximation ratio �. If for an instance of Subset k-Connectivity Aug-
mentation we are given a set of q edges (when any edge is allowed) and p stars (di-
rected to or from the root) on T whose addition to G makes T (k+1)-connected,
then we can compute a (�p+q)-approximate solution F to this instance in polyno-
mial time. Furthermore, for edge-costs, if the �-approximation is w.r.t. a stan-
dard LP-relaxation, then c(F ) ≤ (�p + q)�∗, where �∗ is an optimal standard
LP-relaxation value for Subset k-Connectivity Augmentation.

Proof. For every edge uv among the q edges compute a minimum-cost edge-set
Fuv ⊆ E ∖ EJ such that J ∪ Fuv contains k internally-disjoint uv-paths. This
can be done in polynomial time for both edge and node costs, using a Min-Cost
k-Flow algorithm. For edge-costs, it is known that c(Fuv) ≤ �∗. Then replace
uv by Fuv, and note that T remains k-connected. Similarly, for every star S
with center s and leaf-set T ′, compute an �-approximate augmenting edge-set
FS ⊆ E ∖ EJ such that J ∪ FS contains k internally-disjoint sv-paths (or vs-
paths, in the case of directed graphs and S being directed twords the root) for
every v ∈ T ′. Then replace S by FS , and note that T remains k-connected. For
edge-costs, it is known that if the �-approximation for the rooted version is w.r.t.
a standard LP-relaxation, then c(FS) ≤ (�p+ q)�∗. The statement follows. ⊓⊔

Motivated by Proposition 1, we consider the following question:
Given a k-connected subset T in a graph J , how many edges and/or stars on T



one needs to add to J such that T will become (k + 1)-connected?

We emphasize that we are interested in obtaining absolute bounds on the
number of edges in the question, expressed in certain parameters of the graph;
namely we consider the extremal graph theory question and not the algorithmic
problem. Indeed, the algorithmic problem of adding the minimum number of
edges on T such that T will become (k + 1)-connected can be shown to admit
a polynomial-time algorithm for directed graphs using the result of Frank and
Jordán [5]; this also implies a 2-approximation algorithm for undirected graphs.
However, in terms of the parameters ∣T ∣, k, the result in [5] implies only the
trivial bound O(∣T ∣2) on the the number of edges one needs to add to J such
that T will become (k + 1)-connected.

Our bounds will be derived in terms of the family of the “deficient” sets of
the graph J . We need some definitions to state our results.

Definition 1. An ordered pair X̂ = (X,X+) of subsets of a groundset V is
called a biset if X ⊆ X+; X is the inner part and X+ is the outer part of X̂,
� (X̂) = X+ ∖X is the boundary of X̂, and X∗ = V ∖X+ is the complementary
set of X̂.

Given an instance of Subset k-Connectivity Augmentation we may assume that
T is an independent set in J . Otherwise, we obtain an equivalent instance by
subdividing every edge uv ∈ J with u, v ∈ T by a new node.

Definition 2. Given a k-connected independent set T in a graph J = (V,EJ)
let us say that a biset X̂ on V is (T, k)-tight in J if X ∩ T,X∗ ∩ T ∕= ∅, X+ is
the union of X and the set of neighbors of X in J , and ∣� (X̂)∣ = k.

An edge covers a biset X̂ if it goes from X to X∗. By Menger’s Theorem,
F is a feasible solution to Subset k-Connectivity Augmentation if, and only if, F
covers the biset-family ℱ of tight bisets; see [12, 20]. Thus our question can be
reformulated as follows:
Given a k-connected independent set T in a graph J , how many edges and/or
stars on T are needed to cover the family ℱ of (T, k)-tight bisets?

Definition 3. The intersection and the union of two bisets X̂, Ŷ is defined by
X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +). Two bisets X̂, Ŷ
intersect if X ∩Y ∕= ∅; if in addition X∗ ∩Y ∗ ∕= ∅ then X̂, Ŷ cross. We say that
a biset-family ℱ is:

– crossing if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ ℱ for any X̂, Ŷ ∈ ℱ that cross.
– k-regular if ∣� (X̂)∣ ≤ k for every X̂ ∈ ℱ , and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ ℱ for any

intersecting X̂, Ŷ ∈ ℱ with ∣X ∪ Y ∣ ≤ ∣T ∣ − k − 1.

The following statement is essentially known.

Lemma 1. Let T be a k-connected independent set in a graph J = (V,EJ), and
let X̂, Ŷ be (T, k)-tight bisets. If (X ∩ T,X+ ∩ T ), (Y ∩ T, Y + ∩ T ) cross or if
∣(X ∪ Y ) ∩ T ∣ ≤ ∣T ∣ − k − 1 then X̂ ∩ Ŷ , X̂ ∪ Ŷ are both (T, k)-tight.



Proof. The case (X ∩ T,X+ ∩ T ), (Y ∩ T, Y + ∩ T ) was proved in [20] and [14].
The proof of the case ∣(X ∪ Y ) ∩ T ∣ ≤ ∣T ∣ − k − 1 is identical to the proof of [7,
Lemma 1.2] where the case T = V is considered. ⊓⊔

Corollary 2. The biset-family

ℱ = {(X ∩ T,X+ ∩ T ) : (X,X+) is a (T, k)-tight biset in J}

is crossing and k-regular, and the reverse family ℱ̄ = {(T ∖X+, T ∖X) : X̂ ∈ ℱ}
of ℱ is also crossing and k-regular. Furthermore, if J is undirected then ℱ is
symmetric, namely, ℱ = ℱ̄ .

Given two bisets X̂, Ŷ we write X̂ ⊆ Ŷ and say that Ŷ contains X̂ if X ⊆ Y
or if X = Y and X+ ⊆ Y +; X̂ ⊂ Ŷ and Ŷ properly contains X̂ if X ⊂ Y or if
X = Y and X+ ⊂ Y +.

Definition 4. A biset Ĉ is a core of a biset-family ℱ if Ĉ ∈ ℱ and Ĉ contains
no biset in ℱ ∖{Ĉ}; namely, a core is an inclusion-minimal biset in ℱ . Let C(ℱ)
be the family of cores of ℱ and let �(ℱ) = ∣C(ℱ)∣ denote their number.

Given a biset-family ℱ and an edge-set I on T , the residual biset-family ℱI
of ℱ consists of the members of ℱ uncovered by I. We will assume that for any I,
the cores of ℱI and of ℱ̄I can be computed in polynomial time. For ℱ being the
family of (T, k)-tight bisets this can be implemented in polynomial time using
the Ford-Fulkerson Max-Flow Min-Cut algorithm, c.f. [20]. It is known and easy
to see that if ℱ is crossing and/or k-regular, so is ℱI , for any edge-set I.

Definition 5. For a biset-family ℱ on T let �(ℱ) be the maximum number of
bisets in ℱ which inner parts are pairwise-disjoint. For an integer k let ℱk =
{X̂ ∈ ℱ : ∣X∣ ≤ (∣T ∣ − k)/2}.

Lemma 2. Let ℱ be a k-regular biset-family on T and let X̂, Ŷ ∈ ℱk intersect.
Then X̂ ∩ Ŷ ∈ ℱk and X̂ ∪ Ŷ ∈ ℱ .

Proof. Since ∣X∣, ∣Y ∣ ≤ ∣T ∣−k2 , we have ∣X∪Y ∣ = ∣X∣+∣Y ∣−∣X∩Y ∣ ≤ ∣T ∣−k−1.

Thus X̂ ∩ Ŷ , X̂ ∩ Ŷ ∈ ℱ , by the k-regularity of ℱ . Moreover, X̂ ∩ Ŷ ∈ ℱk, since

∣X ∩ Y ∣ ≤ ∣X∣ ≤ ∣T ∣−k2 . ⊓⊔

We will prove the following two theorems that imply Theorem 1.

Theorem 2. Let ℱ be a biset-family on T such that both ℱ , ℱ̄ are crossing and
k-regular. Then there exists a polynomial-time algorithm that computes an edge-

cover I of ℱ of size ∣I∣ = �
(
ℱk
)

+ �
(
ℱ̄k
)

+
(

3∣T ∣
∣T ∣−k

)2
H
(

3∣T ∣
∣T ∣−k

)
. Furthermore,

if ℱ is symmetric then ∣I∣ = �
(
ℱk
)

+
(

3∣T ∣
∣T ∣−k

)2
H
(

3∣T ∣
∣T ∣−k

)
.



Theorem 3. Let ℱ be a biset-family on T such that both ℱ and ℱ̄ are k-regular.

Then there exists a collection of O
(
∣T ∣
∣T ∣−k lg min{�, ∣T ∣ − k}

)
stars on T which

union covers ℱ , and such a collection can be computed in polynomial time. Fur-
thermore, the total number of edges in the stars is at most �

(
ℱk
)

+ �
(
ℱ̄k
)

+(
∣T ∣
∣T ∣−k

)2
⋅O
(

log ∣T ∣
∣T ∣−k

)
.

Note that the second statement in Theorem 3 implies (up to constants) the
bound in Theorem 2. However, the proof of Theorem 2 is much simpler than the
proof of Theorem 3, and the proof of Theorem 2 is a part of the proof of the
second statement in Theorem 3.

Let us show that Theorems 2 and 3 imply Theorem 1. For that, all we
need is to show that by applying one time the �-approximation algorithm for
the Rooted Subset k-Connectivity Augmentation, we obtain an instance with
�
(
ℱk
)
, �
(
ℱ̄k
)
≤ k + 1. This is achieved by the following procedure due to

Khuller and Raghavachari [8] that originally considered the case T = V , see also
[1, 4, 10]; the same procedure is also used by Laekhanukit in [14].

Choose an arbitrary subset T ′ ⊆ T of k + 1 nodes, add a new node s (the
root) and all edges between s and T ′ of cost zero each, both to G and to J .
Then, using the �-approximation algorithm for the Rooted Subset k-Connectivity
Augmentation, compute an augmenting edge set F such that J ∪ F contains k
internally disjoint vs-paths and sv-paths for every v ∈ T ′. Now, add F to J and
remove s from J . It is a routine to show that c(F ) ≤ bopt, and that for edge-costs
c(F ) ≤ b�∗. It is also known that if X̂ is a tight biset of the obtained graph J ,
then X ∩ T ′, X∗ ∩ T ′ ∕= ∅, c.f. [1, 14]. Combined with Lemma 2 we obtain that
�
(
ℱk
)
, �
(
ℱ̄k
)
≤ ∣T ′∣ ≤ k + 1 for the obtained instance, as claimed.

3 Proof of Theorem 2

Definition 6. Given a biset-family ℱ on T , let �(ℱ) denote the maximum
degree in the hypergraph ℱ in = {X : X̂ ∈ ℱ} of the inner parts of the bisets in
ℱ . We say that T ′ ⊆ T is a transversal of ℱ if T ′ ∩X ∕= ∅ for every X ∈ ℱ in;
a function t : T → [0, 1] is a fractional transversal of ℱ if

∑
v∈X t(v) ≥ 1 for

every X ∈ ℱ in.

Lemma 3. Let ℱ be a crossing biset-family. Then �(C(ℱ)) ≤ �
(
ℱ̄
)
.

Proof. Since ℱ is crossing, the members of C(ℱ) are pairwise non-crossing. Thus
if ℋ is a subfamily of C(ℱ) such that the intersection of the inner parts of the
bisets in ℋ is non-empty, then ℋ̄ is a subfamily of ℱ̄ such that the inner parts of
the bisets in ℋ̄ are pairwise disjoint, so ∣ℋ̄∣ ≤ �

(
ℱ̄
)
. The statement follows. ⊓⊔

Lemma 4. Let T ′ be a transversal of a biset-family ℱ ′ on T and let I ′ be an
edge-set on T obtained by picking for every s ∈ T ′ an edge from s to every
inclusion member of the set-family {X∗ : X̂ ∈ ℱ ′, s ∈ X}. Then I ′ covers ℱ ′.
Moreover, if ℱ ′ is crossing then ∣I ′∣ ≤ ∣T ′∣ ⋅ �(ℱ̄ ′).



Proof. The statement that I ′ covers ℱ ′ is obvious. If ℱ ′ is crossing, then for every
s ∈ T the inclusion-minimal members of {X∗ : X̂ ∈ ℱ ′, s ∈ X} are pairwise-
disjoint, hence their number is at most �(ℱ̄ ′). The statement follows. ⊓⊔

Lemma 5. Let ℱ be a k-regular biset-family on T . Then the following holds.

(i) �(ℱ) ≤ �
(
ℱk
)

+ 2∣T ∣
∣T ∣−k .

(ii) If �
(
ℱk{e}

)
= �

(
ℱk
)

holds for every edge e on T then �
(
ℱk
)
≤ ∣T ∣
∣T ∣−k .

(iii) There exists a polynomial time algorithm that finds a transversal T ′ of C(ℱ)

of size at most ∣T ′∣ ≤
(
�
(
ℱk
)

+ 2∣T ∣
∣T ∣−k

)
⋅H(�(C(ℱ))).

Proof. Part (i) is immediate.
We prove (ii). Let Ĉ ∈ C

(
ℱk
)

and let ÛC be the union of the bisets in ℱk

that contain Ĉ and contain no other member of C
(
ℱk
)
. If ∣UC ∣ ≤ ∣T ∣ − k − 1

then ÛC ∈ ℱ , by the k-regularity of ℱ . In this case �
(
ℱk{e}

)
≤ �

(
ℱk
)
− 1 for

any edge from C to U∗C . Hence ∣UC ∣ ≥ ∣T ∣ − k must hold for every Ĉ ∈ C(ℱ).

By Lemma 2, the sets in the set family {UC : Ĉ ∈ C(ℱ)} are pairwise disjoint.
The statement follows.

We prove (iii). Let T k be an inclusion-minimal transversal of ℱk. By Lemma 2,∣∣T k∣∣ = �
(
ℱk
)
. Setting t(v) = 1 if v ∈ T k and t(v) = 2

∣T ∣−k otherwise, we obtain

a fractional transversal of C(ℱ) of value at most �
(
ℱk
)

+ 2∣T ∣
∣T ∣−k . Consequently,

the greedy algorithm of Lovász [16] finds a transversal T ′ as claimed. ⊓⊔

The algorithm for computing I as in Theorem 2 starts with I = ∅ and then
continues as follows.

Phase 1
While there exists an edge e on T such that �

(
ℱkI∪{e}

)
≤ �

(
ℱkI
)
− 1, or such

that �
(
ℱ̄kI∪{e}

)
≤ �

(
ℱ̄kI
)
− 1, add e to I.

Phase 2
Find a transversal T ′ of C(ℱ ′) as in Lemma 5(iii), where ℱ ′ = ℱI . Then find an
edge-cover I ′ of ℱ ′ as in Lemma 4 and add I ′ to I.

The edge-set I computed covers ℱ by Lemma 4. Clearly, the number of edges
in I at the end of Phase 1 is at most �

(
ℱk
)

+ �
(
ℱ̄k
)
, and is at most �

(
ℱk
)

if
ℱ is symmetric. Now we bound the size of I ′. Note that at the end of Phase 1

we have �
(
ℱkI
)
, �
(
ℱ̄kI
)
≤ ∣T ∣
∣T ∣−k (by Lemma 5(ii)) and thus �

(
ℱ̄I
)
≤ 3∣T ∣
∣T ∣−k (by

Lemma 5(i)) and �(C(ℱI)) ≤ �
(
ℱ̄I
)
≤ �

(
ℱ̄kI
)

+ 2∣T ∣
∣T ∣−k ≤

3∣T ∣
∣T ∣−k (by Lemma 3).

Consequently, ∣T ′∣ ≤
(
�
(
ℱkI
)

+ 2∣T ∣
∣T ∣−k

)
⋅H(�(C(ℱI))) ≤ 3∣T ∣

∣T ∣−k ⋅H
(

3∣T ∣
∣T ∣−k

)
. From

this we get ∣I ′∣ ≤ ∣T ′∣ ⋅ �
(
ℱ̄I
)
≤
(

3∣T ∣
∣T ∣−k

)2
⋅H
(

3∣T ∣
∣T ∣−k

)
.

The proof of Theorem 2 is now complete.



4 Proof of Theorem 3

We start by analyzing the performance of a natural Greedy Algorithm for covering
�
(
ℱk
)
, that starts with I = ∅ and while �(ℱkI ) ≥ 1 adds to I a star S for which

�(ℱkI∪S) is minimal. It is easy to see that the algorithm terminates since any star
with center s in the inner part of some core of ℱkI and edge set {vs : v ∈ T ∖{s}}
reduces the number of cores by one. The proof of the following statement is
similar to the proof of the main result of [11].

Lemma 6. Let ℱ be a k-regular biset-family and let S be the collection of stars
computed by the Greedy Algorithm. Then

∣S∣ = O

(
∣T ∣
∣T ∣ − k

ln min
{
�
(
ℱk
)
, ∣T ∣ − k

})
.

Recall that given Ĉ ∈ C
(
ℱkI
)

we denote by ÛC the union of the bisets in ℱkI
that contain Ĉ and contain no other member of C

(
ℱkI
)
, and that by Lemma 2,

the sets in the set-family {UC : Ĉ ∈ C(ℱ)} are pairwise disjoint.

Definition 7 ([11]). Let us say that s ∈ V out-covers Ĉ ∈ C
(
ℱk
)

if s ∈ U∗C .

Lemma 7. Let ℱ be k-regular biset-family and let � = �
(
ℱk
)
.

(i) There is s ∈ T that out-covers at least �
(

1− k
∣T ∣

)
− 1 members of C

(
ℱk
)
.

(ii) Let s out-cover the members of C ⊆ C
(
ℱk
)

and let S be a star with one edge
from s to the inner part of each member of C. Then �(ℱk) ≤ �(ℱkS)− ∣C∣/2.

Consequently, there exists a star S on T such that

�(ℱkS) ≤ 1

2

(
1 +

k

∣T ∣

)
⋅ � +

1

2
= � ⋅ � + � . (1)

Proof. We prove (i). Consider the hypergraph ℋ =
{
T ∖ �

(
ÛC

)
: Ĉ ∈ C

(
ℱk
)}

.

Note that the number of members of C
(
ℱk
)

out-covered by any v ∈ T is at least
the degree of s in ℋ minus 1. Thus all we need to prove is that there is a node

s ∈ T whose degree in ℋ is at least �
(

1− k
∣T ∣

)
. For every C ∈ C(ℱ) we have∣∣∣T ∖ � (ÛC)∣∣∣ ≥ ∣T ∣ − k, by the k-regularity of ℱ . Hence the bipartite incidence

graph of ℋ has at least �(∣T ∣ − k) edges, and thus has a node s ∈ T of degree at

least �
(

1− k
∣T ∣

)
, which equals the degree of s in ℋ. Part (i) follows.

We prove (ii). It is sufficient to show that every Ĉ ∈ C
(
ℱkS
)

contains some

Ĉ ′ ∈ C
(
ℱk
)
∖ C or contains at least two members in C. Clearly, Ĉ contains some

Ĉ ′ ∈ C
(
ℱk
)
. We claim that if Ĉ ′ ∈ C then Ĉ must contain some Ĉ ′′ ∈ C

(
ℱk
)

distinct from Ĉ ′. Otherwise, Ĉ ∈ ℱk(C). But as S covers all members of ℱk(C),
Ĉ /∈ ℱkS . This is a contradiction. ⊓⊔



Let us use parameters �, �, 
, � and j set to

� =
1

2

(
1 +

k

∣T ∣

)
� =

1

2

 = 1− k

∣T ∣
= 2(1− �) � = 1,

and j is the minimum integer such that �j
(
� − �

1−�

)
≤ 2

1−� (note that � < 1),

namely,

j =

⌊
ln 1

2 (�(1− �)− �)

ln(1/�)

⌋
≤
⌊

ln 1
2�(1− �)

ln(1/�)

⌋
. (2)

We assume that � ≥ 2+�
1−� to have j ≥ 0 (otherwise Lemma 6 follows). Note that

�
1−� = ∣T ∣

∣T ∣−k .

Lemma 8. Let 0 ≤ � < 1, � ≥ 0, �0 = �, and for i ≥ 1 let

�i+1 ≤ ��i + � si = 
�i−1 − � .

Then �i ≤ �i
(
� − �

1−�

)
+ �

1−� and
j∑
i=1

si ≤ 1−�j

1−� ⋅ 

(
� − �

1−�

)
+ j

(

�
1−� − �

)
.

Moreover, if j is given by (2) then �j ≤ 2+�
1−� = 5∣T ∣

∣T ∣−k and
∑j
i=1 si ≤ 2

(
� − ∣T ∣

∣T ∣−k

)
.

Proof. Unraveling the recursive inequality �i+1 ≤ ��i + � in the lemma we get:

�i ≤ �i� + �
(
1 + �+ ⋅ ⋅ ⋅+ �i−1

)
= �i� + �

1− �i

1− �
= �i

(
� − �

1− �

)
+

�

1− �
.

This implies si ≤ 

(
� − �

1−�

)
�i−1 + 
�

1−� − �, and thus

j∑
i=1

si ≤ 

(
� − �

1− �

) j∑
i=1

�i−1 + j

(

�

1− �
− �
)

= 


(
� − �

1− �

)
⋅ 1− �j

1− �
+ j

(

�

1− �
− �
)

If j is given by (2) then �j ≤ �i
(
� − �

1−�

)
+ �

1−� ≤
2

1−� + �
1−� = 2+�

1−� , and

j∑
i=1

si ≤
1− �j

1− �
⋅ 

(
� − �

1− �

)
+ j

(

�

1− �
− �
)

≤ 2

(
� − �

1− �

)
= 2

(
� − ∣T ∣
∣T ∣ − k

)
.

⊓⊔

We now finish the proof of Lemma 6. At each one of the first j iterations

we out-cover at least �
(
ℱkI
) (

1− k
∣T ∣

)
− 1 members of C

(
ℱkI
)
, by Lemmas 7.



In each one of the consequent iterations, we can reduce �
(
ℱkI
)

by at least one,

if we choose the center of the star in C for some Ĉ ∈ C
(
ℱkI
)
. Thus using

Lemma 8, performing the necessary computations, and substituting the values
of the parameters, we obtain that the number of stars in S is bounded by

j + �j ≤
⌊

ln 1
2�(1− �)

ln(1/�)

⌋
+

5∣T ∣
∣T ∣ − k

= O

(
∣T ∣
∣T ∣ − k

ln min{�, ∣T ∣ − k}
)
.

Now we discuss a variation of this algorithm that produces S with a small
number of leaves. Here at each one of the first j iterations we out-cover exactly

�
(

1− k
∣T ∣

)
− 1 min-cores. For that, we need be able to compute the bisets ÛC ,

and such a procedure can be found in [14]. The number of edges in the stars at

the end of this phase is at most 2
(
� − ∣T ∣

∣T ∣−k

)
and �j ≤ 5∣T ∣

∣T ∣−k . In the case of

non-symmetric ℱ and/or directed edges, we apply the same algorithm on ℱ̄k.
At this point, we apply Phase 2 of the algorithm from the previous section.

Since the number of cores of each one of ℱkI , ℱ̄kI is now O
(
∣T ∣
∣T ∣−k

)
, the size of

the transversal T ′ computed is bounded by ∣T ′∣ = O
(
∣T ∣
∣T ∣−k ⋅ log ∣T ∣

∣T ∣−k

)
. The

number of stars is at most the size ∣T ′∣, while the number of edges in the stars

is at most ∣T ′∣ ⋅ �
(
ℱ̄I
)

=
(
∣T ∣
∣T ∣−k

)2
⋅O
(

log ∣T ∣
∣T ∣−k

)
.

This concludes the proof of Theorem 3.
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