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Abstract
We consider the problem of threshold secret sharing in groups with hierarchical structure. In

such settings, the secret is shared among a group of participants that is partitioned into levels.
The access structure is then determined by a sequence of threshold requirements: a subset of
participants is authorized if it has at least k0 members from the highest level, as well as at least
k1 > k0 members from the two highest levels and so forth. Such problems may occur in settings
where the participants differ in their authority or level of confidence and the presence of higher level
participants is imperative to allow the recovery of the common secret. Even though secret sharing in
hierarchical groups has been studied extensively in the past, none of the existing solutions addresses
the simple setting where, say, a bank transfer should be signed by three employees, at least one of
whom must be a department manager. We present a perfect secret sharing scheme for this problem
that, unlike most secret sharing schemes that are suitable for hierarchical structures, is ideal. As in
Shamir’s scheme, the secret is represented as the free coefficient of some polynomial. The novelty of
our scheme is the usage of polynomial derivatives in order to generate lesser shares for participants
of lower levels. Consequently, our scheme uses Birkhoff interpolation, i.e., the construction of a
polynomial according to an unstructured set of point and derivative values. A substantial part of
our discussion is dedicated to the question of how to assign identities to the participants from the
underlying finite field so that the resulting Birkhoff interpolation problem will be well posed. In
addition, we devise an ideal and efficient secret sharing scheme for the closely related hierarchical
threshold access structures that were studied by Simmons and Brickell.

Keywords. Secret sharing schemes, threshold schemes, hierarchical/multilevel access structures,
ideal schemes, Birkhoff interpolation.
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1 Introduction

A (k, n)-threshold secret sharing is a method of sharing a secret among a given set of n participants,
U , such that every k of those participants (k ≤ n) could recover the secret by pooling their shares
together, while no subset of less than k participants can do so [5, 17]. Generalized secret sharing
refers to situations where the collection of permissible subsets of U may be any collection Γ ⊆ 2U

having the monotonicity property, i.e., if A ∈ Γ and A ⊂ B ⊆ U then B ∈ Γ. Given such
a collection, the corresponding secret sharing scheme is a method of sharing a secret among the
participants of U such that only subsets in Γ (that is referred to as the access structure) may recover
the secret, while all other subsets cannot.

There are many real-life examples of threshold secret sharing. Typical examples include sharing
a key to the central vault in a bank, the triggering mechanism for nuclear weapons, or key escrow.
We would like to consider here a special kind of generalized secret sharing scenarios that is a
natural extension of threshold secret sharing. In all of the above mentioned examples, it is natural
to expect that the participants are not equal in their privileges or authorities. For example, in
the bank scenario, the shares of the vault key may be distributed among bank employees, some of
whom are tellers and some are department managers. The bank policy could require the presence
of, say, 3 employees in opening the vault, but at least one of them must be a department manager.
Or in key escrow, the dealer might demand that some escrow agents (say, family members) must
be involved in any emergency access to his private files. Such settings call for special methods of
secret sharing. To this end, we define hierarchical secret sharing as follows:
Definition 1.1 Let U be a set of n participants and assume that U is composed of levels, i.e.,
U =

⋃m
i=0 Ui where Ui ∩ Uj = ∅ for all 0 ≤ i < j ≤ m. Let k = {ki}m

i=0 be a monotonically
increasing sequence of integers, 0 < k0 < · · · < km. Then the (k, n)–hierarchical threshold access
structure is

Γ =
{
V ⊂ U :

∣∣∣V ∩
(
∪i

j=0Uj

)∣∣∣ ≥ ki ∀i ∈ {0, 1, . . . ,m}
}

. (1)

A corresponding (k, n)–hierarchical threshold secret sharing scheme is a scheme that realizes this
access structure; namely, a method of assigning each participant u ∈ U a share σ(u) of a given
secret S such that authorized subsets V ∈ Γ may recover the secret from the shares possessed by
their participants, σ(V) = {σ(u) : u ∈ V}, while the shares of unauthorized subsets V /∈ Γ do not
reveal any information about the value of the secret. Viewing the secret S as a random variable
that takes values in a finite domain S, these two requirements may be stated as follows:

H(S|σ(V)) = 0 ∀V ∈ Γ (accessibility) (2)

and
H(S|σ(V)) = H(S) ∀V /∈ Γ . (perfect security) (3)

Letting Σu denote the set of possible shares for participant u ∈ U , the information rate of the
scheme is

ρ = min
u∈U

log2 |S|
log2 |Σu| .

If ρ = 1, the scheme is called ideal.

The zero conditional entropy equality (2) should be understood in a constructive sense. Namely,
if it holds then V may compute S. Also note that conditions (2)+(3) imply that the information
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rate is bounded from above by 1; hence, ρ = 1 represents the ideal situation (all shares are of the
minimal possible size, namely, the size of the secret).

Ito, Saito and Nishizeki [12] were the first to study secret sharing for general access structures.
They provided constructions illustrating that any monotone access structure can be realized by
a perfect secret sharing scheme. Their construction was simplified and extended by Benaloh and
Leichter [3]. Those constructions are based on monotone formulas that realize the characteristic
function of the access structure (namely, the function f : {0, 1}n → {0, 1} such that f(x1, . . . , xn) =
1 if and only if the subset V ⊆ U that corresponds to {1 ≤ i ≤ n : xi = 1} is in Γ). However, for
threshold access structures the resulting schemes are far from being ideal. Even for the simplest
threshold problem of only one level (i.e., all participants are equal), an optimal formula is of size
O(n log n) [10], which implies an information rate of O(1/ log n) for the corresponding secret sharing
scheme.

Using the monotone formula construction with threshold gates, where each threshold gate is
realized by Shamir’s threshold secret sharing scheme, we arrive at the following solution to the
problem [22]: The secret is an element of a finite field, S ∈ F; the dealer generates m random and
independent secrets Si ∈ F, 1 ≤ i ≤ m, and defines S0 = S −∑m

i=1 Si. Then, for every 0 ≤ i ≤ m,
the dealer distributes the secret Si among all participants of ∪i

j=0Uj using Shamir’s (ki,
∑i

j=0 |Uj |)-
threshold secret sharing scheme. The secret S may be recovered only if all Si, 0 ≤ i ≤ m, are
recovered. As the recovery of Si requires the presence of at least ki participants from ∪i

j=0Uj , the
access requirements are met by this scheme. This scheme is perfect since if V /∈ Γ, it fails to satisfy
at least one of the threshold conditions in (1) and, consequently, it is unable to learn a thing about
the corresponding share Si; such a deficiency implies (3). However, this scheme is not ideal: its
information rate is 1/(m + 1) since the shares of participants from U0 are composed of m + 1 field
elements.

In this paper, we present a simple solution for the hierarchical secret sharing problem that is
both perfect and ideal. Our construction is a realization of the general vector space construction
of Brickell [6]. The idea of Brickell was as follows: Let F be a finite field such that S ∈ F and let
Fd be the d-dimensional vector space over that field, for some integer d. Assume that there exists
a function φ : U → Fd with the property

(1, 0, . . . , 0) ∈ Span{φ(u) : u ∈ V} ⇔ V ∈ Γ . (4)

Then the dealer selects random and independent values ai ∈ F, 2 ≤ i ≤ d, and then

σ(u) = φ(u) · a where a = (S, a2, . . . , ad) . (5)

This scheme is perfect and ideal (in general linear secret sharing schemes, or monotone span pro-
grams [13], φ may assign more than one vector to each participant). The main problem is of-course
finding a mapping φ that satisfies condition (4). We find herein a proper mapping φ for the case
of hierarchical threshold secret sharing. Our idea is based on Birkhoff interpolation (also known as
Hermite-Birkhoff or lacunary interpolation). The basic threshold secret sharing of Shamir [17] was
based upon Lagrange interpolation, namely, the construction of a polynomial of degree less than
or equal to k from its values in k + 1 distinct points. There are two other types of interpolation
that are encountered in numerical analysis. In such problems, one is given data of the form

djP

dxj
(xi) := P (j)(xi) = ci,j (k + 1 equations) (6)
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and seeks a polynomial of degree less than or equal to k that agrees with the given data (6). If for
each i (namely, at each interpolation point) the sequence of the derivative orders j that are given
by (6) is an unbroken sequence that starts at zero, j = 0, . . . , ji, then the problem falls under the
framework of Hermite interpolation. In that case the problem always admits a unique solution P .
The more general case is when the data is lacunary in the sense that, at some sample points, the
sequence of orders of derivatives is either broken or does not start from j = 0. This case is referred
to as Birkhoff interpolation and it differs radically from the more standard Hermite or Lagrange
interpolation. In particular, Birkhoff interpolation problems may be ill posed in the sense that a
solution may not exist or may not be unique.

In our method, like in Shamir’s, the secret is the free coefficient of some polynomial P (x) ∈
Fk−1[x], where F is a large finite field and k = km is the maximal threshold, i.e., the total number of
participants that need to collaborate in order to reconstruct the secret. Each participant u ∈ U is
given an identity in the field, denoted also by u, and a share that equals P (j)(u) for some derivative
order j that depends on the position of u in the hierarchy. The idea is that the more important
participants (namely, participants who belong to levels with lower index) will get shares with
lower derivative orders, since lower derivatives carry more information than higher derivatives. By
choosing the derivative orders properly, we are able to meet the threshold access requirements (1).
As a consequence, when an authorized subset collaborates and attempts to recover the secret, they
need to solve a Birkhoff interpolation problem. Hence, a great part of our analysis is devoted to the
question of how to assign participants with identities in the field so that, on one hand, the Birkhoff
interpolation problems that are associated with the authorized subsets would be well posed, and, on
the other hand, the Birkhoff interpolation problems that are associated with unauthorized subsets
do not leak any information on the secret.

1.1 Related work

The problem of secret sharing in hierarchical (or multilevel) structures, was studied before under
different assumptions, e.g. [4, 6, 7, 8, 18, 19]. Already Shamir, in his seminal work [17], has
recognized that in some settings it would be desired to grant different capabilities to different
participants according to their level of authority. He suggested to accomplish that by giving the
participants of the more capable levels a greater number of shares. More precisely, if U has an
hierarchical structure as in Definition 1.1, the participants in Ui, 0 ≤ i ≤ m, get wi shares of the
form (u, P (u)), u ∈ F, where w0 > w1 > · · · > wm, whence the information rate of the scheme is
1/w0. This way, the number of participants from a higher level that would be required in order
to reconstruct the secret would be smaller than the number of participants from a lower level that
would need to cooperate towards that end.

Simmons [18], and later Brickell [6], considered another hierarchical setting. Assume a scenario
where an electronic fund transfer (up to some maximum amount) may be authorized by any two
vice presidents of a bank, or, alternatively, by any three senior tellers. A natural requirement
in such a scenario is that also a mixed group of one vice president and two senior tellers could
recover the private key that is necessary to sign and authorize such a transfer. Motivated by this
example, Simmons studied a general hierarchical threshold secret sharing problem that agrees with
the problem in Definition 1.1 with one difference: while we require in (1) a conjunction of threshold
conditions, Simmons studied the problem with a disjunction of the threshold conditions. Namely,
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in his version of the problem,

Γ =
{
V ⊂ U : ∃i ∈ {0, 1, . . . , m} for which

∣∣∣V ∩
(
∪i

j=0Uj

)∣∣∣ ≥ ki

}
. (7)

His solution to that version is based on a geometric construction that was presented by Blakley
[5]. Assume that the secret S is d-dimensional (typically d = 1; however, Simmon’s construction
may easily deal with the simultaneous sharing of d > 1 secrets as well). Then the construction is
embedded in Fr, where F is a large finite field and r = km + d− 1. Simmons suggested to construct
a chain of affine subspaces W0 ⊂ W1 ⊂ · · · ⊂ Wm of dimensions ki − 1, 0 ≤ i ≤ m, together with
a publicly known affine subspace WS of dimension d, with the property that Wi ∩WS = {S} for
all 0 ≤ i ≤ m (i.e., each Wi intersects WS in a single point whose d coordinates in WS are the
d components of the secret S). Then, each participant from level Ui gets a point in Wi \ Wi−1,
0 ≤ i ≤ m (W−1 = ∅), such that every ki points from ∪i

j=0Uj span the entire subspace Wi. Hence, if

a subset of participants V satisfies at least one of the threshold conditions, say,
∣∣∣V ∩

(
∪i

j=0Uj

)∣∣∣ ≥ ki

for some i, 0 ≤ i ≤ m, then the corresponding Wi may be constructed and intersected with WS
to yield the secret S. The information rate of the scheme, assuming the typical setting in which
d = 1, is 1/km since the shares of the participants from Um are points in Fkm . It should be also
noted that the selected points must be in general position, and the verification of that may have
an exponential cost.

Brickell [6] offered two schemes for the same problem, both ideal. The first one suffers from the
same problem as Simmons’, in the sense that the dealer is required to check (possibly exponentially)
many matrices for non-singularity. In the second scheme this difficulty is replaced by the need to
find an algebraic number of some degree over a prime order field. More specifically, if q is a prime
number such that q > max0≤i≤m |Ui| the dealer has to find α ∈ Fq that satisfies an irreducible
polynomial over Fq of degree m · k2

m.
Shamir’s version of the hierarchical setting is slightly more relaxed than Simmons’ and Brickell’s.

In the former, the number of participants that are required for recovery is determined by a weighted
average of the thresholds that are associated with each of the levels that are represented in the
subset of participants. In the latter, the necessary number of participants is the highest of the
thresholds that are associated with the levels that are represented. However, it is natural to expect
that more rigid conditions will be imposed in some scenarios. Namely, even though higher level
(i.e., important) participants could be replaced by lower level ones, a minimal number of higher
level participants would still need to be involved in any recovery of the secret. For example, the
common practice of authorizing electronic fund transfers does call for the presence of at least one
vice president or manager department. The above described solutions of Shamir and Simmons are
incapable of imposing such restrictions since they allow the recovery of the secret for any subset of
lower-level participants that is sufficiently large. This difference in the definition of the problem is
manifested by the replacement of the existential quantifier ∃ in (7) with the universal quantifier ∀
in (1).

We proceed to examine the interrelation between the three above mentioned types of access
structures. Fixing U , the set of participants, we let WTAS denote the class of all weighted threshold
access structures of Shamir’s type on U , HTAS∃ denote the class of all hierarchical threshold access
structures of the type that Simmons and Brickell studied, and HTAS∀ denote the class of all
hierarchical threshold access structures of the type that we introduce and study herein. We note
that

WTAS, HTAS∃, HTAS∀ ⊂ 22U .
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The intersection of those three classes is the class of basic threshold access structures (namely,
WTAS with equal weights, or HTAS of either kind with only one level in the hierarchy). Since all
minimal subsets of a HTAS∀ access structure are of the same size while this is not true for a HTAS∃
access structure (of more than one level), we deduce that there is no inclusion between those two
classes. The results of this paper and of [2] imply that there is also no inclusion between WTAS and
the two hierarchical threshold classes (the fact that WTAS \HTAS∃ 6= ∅ and WTAS \HTAS∀ 6= ∅
stems from the fact that there are WTAS access structures that are not ideal, while, as shown
herein, all access structures of either HTAS∃ or HTAS∀ are ideal; the fact that HTAS∃ and
HTAS∀ are not sub-classes of WTAS stems from the characterization of all ideal WTAS access
structures that is given in [2]).

If Γ is a monotone access structure over U , its dual is defined by Γ∗ = {V : Vc /∈ Γ}. It is easy
to see that the two types of hierarchical threshold access structures, HTAS∃ and HTAS∀, are dual
in that sense. In view of a result due to Gal [11], if an access structure Γ may be realized by an
ideal secret sharing scheme, so can its dual Γ∗. Therefore, the ideality of the access structures that
we study herein, (1), follows from the ideality of the access structures (7), as established in [6],
combined with the above mentioned duality result. The schemes that we offer herein for realizing
(1) are different from the schemes that one would get from combining the techniques presented
in [6] and [11], and they rely upon different ideas. Moreover, they have an explicit and simple
closed form (as opposed to the schemes that are implied by [6, 11]), they do not present some of the
difficulties that appear in Brickell’s schemes (namely, needing to check possibly exponentially many
matrices for non-singularity or to find algebraic numbers of certain degrees over a finite field), and,
in typical settings, they require slightly smaller field sizes (see the concluding remark of Section 4
for a detailed discussion of this issue).

Padró and Sáez [15] studied the information rate of secret sharing schemes with a bipartite access
structure. A bipartite access structure is one in which there are two subsets of participants, U =
U0∪U1, and all participants in the same subset play an equivalent role in the structure. They showed
that the ideal bipartite access structures are exactly those that are vector space access structures,
namely, those which are consistent with Brickell’s construction [6]. Furthermore, they showed that
all such ideal access structures are quasi-threshold in the sense that a subset V ⊂ U is authorized
if |V|, |V ∩ U0| and |V ∩ U1| satisfy some threshold conditions [15, Theorem 5]. They characterized
four types of quasi-threshold access structures, denoted Ωi, 1 ≤ i ≤ 4. It may be shown that
when there are two levels, i.e., m = 1, our conjunctive threshold access structures, (1), fall under
types Ω2, Ω3 and Ω4, while Simmons’ disjunctive threshold access structures, (7), fall under type
Ω1. What we show in this paper is that in the multipartite case, the conjunctive threshold access
structures, as well as their disjunctive counterpart, are vector space access structures and that
Birkhoff interpolation yields an explicit construction.

We conclude this survey with a recent paper by Tassa and Dyn [21]. That paper studies three
types of multipartite access structures and introduces ideal perfect secret sharing schemes for these
types of access structures that are based on bivariate interpolation. One of these families is the
family of hierarchical threshold access structures that are the subject of the present paper, and
they are realized there by bivariate Lagrange interpolation with data on lines in general position.
Hence, while in the present study the desired hierarchy between the different levels is achieved by
using polynomial derivatives and Birkhoff interpolation, the schemes in [21] show that the same
hierarchical effect may be obtained by introducing a second dimension.
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1.2 Organization of the paper

In Section 2 we review the basic terminology and results from the theory of Birkhoff interpolation
[14]. We present those results in the context of the reals, R, which is the natural context in
numerical analysis. However, as R is not the field of choice in cryptography, one should be very
careful when borrowing results from such a theory and migrating them to the context of finite fields.
The algebraic statements usually travel well and survive the migration; the analytic ones, however,
might not. Part of our analysis will be dedicated to those issues. Section 3 is devoted to our
scheme. After presenting the scheme, we discuss in Section 3.1 conditions for accessibility, (2), and
perfect security, (3). Then, we proceed to examine strategies for allocating participant identities
in the underlying finite field so that accessibility and perfect security are achieved. In Section
3.2 we consider the strategy of random allocation of participant identities and prove that such a
strategy guarantees that both (2) and (3) hold with almost certainty. In Section 3.3 we consider
a simple monotone allocation of participant identities. Borrowing an interesting result from the
theory of Birkhoff interpolation, we prove that such an allocation is guaranteed to provide both
accessibility and perfect security, (2)+(3), provided that the prime order of the field is sufficiently
large with respect to n (number of participants) and km (minimal number of participants in an
authorized subset), Theorem 3.6. In order to illustrate the discussion in Section 3.3, we list in
Appendix A all possible scenarios when km ≤ 4. In Section 4 we turn our attention to the closely
related hierarchical threshold access structures that were studied by Simmons [18] and Brickell [6].
Relying on a duality result from the theory of monotone span programs, we show how the ideality
of those access structures follows from the ideality of the conjunctive threshold access structures.
We then show how the schemes that we proposed for the conjunctive hierarchical threshold access
structures may be modified in order to be suitable for hierarchical threshold access structures of
the disjunctive type. Finally, in Section 5 we describe two closely related open problems.

A preliminary version of this paper appeared in [20].

2 Birkhoff interpolation

Let

• X = {x1, . . . , xk} be a given set of points in R, where x1 < x2 < · · · < xk;

• E = (ei,j) k
i=1

`
j=0 be a matrix with binary entries, I(E) = {(i, j) : ei,j = 1} and d = |I(E)| (we

assume hereinafter that the right-most column in E is nonzero);

• C = {ci,j : (i, j) ∈ I(E)} be a set of d real values.

Then the Birkhoff interpolation problem that corresponds to the triplet 〈X, E,C〉 is the problem
of finding a polynomial P (x) ∈ Rd−1[x] that satisfies the d equalities

P (j)(xi) = ci,j , (i, j) ∈ I(E) . (8)

The matrix E is called the interpolation matrix.
Lagrange and Hermite interpolations may be viewed as special cases of Birkhoff interpolation:

the interpolation matrix in Lagrange interpolation has only one column (since all data corresponds
to the zeroth order derivative), while Hermite interpolation matrices are those in which each row

7



(that stands for an interpolation point xi) begins with 1s, followed by 0s (namely, the sequence of
given values at that point is of the form P (j)(x), 0 ≤ j ≤ ji, for some ji ≥ 0). Unlike Lagrange or
Hermite interpolation that are unconditionally well-posed, the Birkhoff interpolation problem may
not admit a unique solution. The system of equations (8) translates into a square linear system
of equations A~x = ~b where the vector of unknowns ~x consists of the coefficients of the requested
polynomial P , the matrix A is determined by X and E, and the right hand side ~b consists of the
data in C. The pair 〈X,E〉 is called regular if the resulting matrix A is regular, so that the system
(8) has a unique solution for any choice of C, while otherwise it is called singular. The matrix E
is called regular or poised if 〈X, E〉 is regular for all X = {x1 < x2 < · · · < xk} ⊂ R.

The following lemma provides a simple necessary condition that E must satisfy, lest 〈X,E〉
would be singular for all X [16].
Lemma 2.1 (Pólya’s condition) A necessary condition that the interpolation matrix E must satisfy
in order for the corresponding Birkhoff interpolation problem to be well posed is that for each
0 ≤ t ≤ `, ` being the highest derivative order in the data, there are given at least t + 1 values of
derivatives of P of order less than or equal to t; i.e.,

|{(i, j) ∈ I(E) : j ≤ t}| ≥ t + 1 , 0 ≤ t ≤ ` . (9)

Proof. Let P (x) =
∑d−1

s=0 asx
s be the unknown interpolant. Assume that condition (9) fails to hold

for some 0 ≤ t ≤ `. Concentrating on the equations in (8) that correspond to the pairs (i, j) ∈ I(E)
where j ≤ t, we note that these are the only equations in (8) that involve one of the first t + 1
unknowns, as, 0 ≤ s ≤ t (indeed, all other equations in (8) correspond to derivative orders that
are higher than t and, consequently, they do not involve those unknowns). Hence, the restriction
of the linear system in (a0, . . . , ad−1) to a system in (a0, . . . , at) yields a system where the number
of equations is smaller than the number of unknowns. Such systems are singular. 2

Pólya’s is a necessary condition. Sufficient conditions, on the other hand, are scarce. We
continue to describe one such condition that will serve us later on in our application to secret
sharing. To this end we define the following.
Definition 2.1 A 1-sequence in the interpolation matrix E is a maximal run of consecutive 1s in
a row of the matrix E; namely, it is a triplet of the form (i, j0, j1) where 1 ≤ i ≤ k, 0 ≤ j0 ≤ j1 ≤ `,
such that ei,j = 1 for all j0 ≤ j ≤ j1 while ei,j0−1 = ei,j1+1 = 0 (letting ei,−1 = ei,`+1 = 0).
A 1-sequence (i, j0, j1) is called supported if E has 1s both to the northwest and southwest of the
leading entry in the sequence; i.e., there exist inw < i, isw > i and jnw, jsw < j0 such that einw,jnw =
eisw,jsw = 1.

The following theorem was first proved by K. Atkinson and A. Sharma [1].
Theorem 2.2 Assume that x1 < x2 < · · · < xk. Then the interpolation problem (8) has a unique
solution if the interpolation matrix E satisfies Pólya’s condition and contains no supported 1-
sequences of odd length.

Lemma 2.1, being algebraic, is not restricted to the reals and applies over any field. Theorem
2.2, on the other hand, is more problematic. It relies upon the existence of order in R (that theorem
is, in fact, a consequence of Rolle’s theorem). Hence, as finite fields are not ordered and have no
equivalent to Rolle’s theorem, Theorem 2.2 does not apply to them. As a counter example, consider
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the interpolation problem with X = {1, 2, 4} and

E =




1 0
1 0
0 1


 . (10)

Namely, we seek a polynomial P (x) = a2x
2 + a1x + a0 that satisfies

P (1) = c1,0 , P (2) = c2,0 , P ′(4) = c3,1 .

The corresponding system of linear equations in the unknowns (a0, a1, a2) has the following matrix
of coefficients:

A〈X,E〉 =




1 1 1
1 2 4
0 1 8


 . (11)

It is easy to see that E, (10), satisfies the conditions of Theorem 2.2 and, indeed, det(A〈X,E〉) =
5 6= 0. However, if we consider the same problem over the field F5, (11) becomes singular.

Despite this problem, Theorem 2.2 will be of use if we impose further restrictions on the set of
points in X. This will be dealt with in Section 3.3.

3 An ideal hierarchical secret sharing scheme

Consider the hierarchical secret sharing problem (k, n), k = {ki}m
i=0, as defined in Definition 1.1.

Let F be a finite field of size q which is at least as large as the number of possible secrets. Let
k = km be the overall number of participants that are required for recovery of the secret. Then:

1. The dealer selects a random polynomial P (x) ∈ Fk−1[x], where

P (x) =
k−1∑

i=0

aix
i and a0 = S . (12)

2. The dealer identifies each participant u ∈ U with a field element. For simplicity, the field
element that corresponds to u ∈ U will be also denoted by u (whence U may be viewed as a
subset of F).

3. The dealer distributes shares to all participants in the following manner: Each participant
of the ith level in the hierarchy, u ∈ Ui, 0 ≤ i ≤ m, receives the share P (ki−1)(u), i.e.,
the (ki−1)th derivative of P (x) at x = u, where k−1 = 0. (A reminder: given a polynomial
P (x) =

∑k−1
i=0 aix

i over any field F, its derivative is defined formally as P ′(x) =
∑k−1

i=0 iaix
i−1.)

For example, assume that there are three levels in the hierarchy, U = U0 ∪ U1 ∪ U2, and that the
thresholds are k = (k0, k1, k2) = (2, 4, 7); namely, V ⊂ U is authorized if and only if it has at least
7 participants, of whom at least 4 are from U0 ∪ U1, of whom at least 2 are from U0. Then, as
k = k2 = 7 in this example, the dealer selects a random polynomial of degree 6, P (x) =

∑6
i=0 aix

i,
where a0 = S. He then distributes the shares as follows: participants u ∈ U0 will get the share
P (u) (namely, the value of P at the field element that identifies the corresponding participant);
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participants u ∈ U1 will get the share P ′′(u), since k0 = 2; and those of the lowest level, U2, will
get P (4)(u), since k1 = 4.

This scheme is of-course ideal, as every participant receives a share that is a field element, just
like the secret. Note that Shamir’s secret sharing scheme [17] is a special case of our scheme since in
that case all users belong to the same level (i.e., U = U0) and, consequently, there are no derivatives
and all users get shares of the form P (u).

3.1 Conditions for accessibility and perfect security

The main questions that arise with regard to the scheme are whether it complies with conditions
(2) and (3). Let V = {v1, . . . , v|V|} ⊂ U and assume that

v1, . . . , v`0 ∈ U0

v`0+1, . . . , v`1 ∈ U1
...

v`m−1+1, . . . , v`m ∈ Um

where 0 ≤ `0 ≤ · · · ≤ `m = |V| . (13)

V is authorized if and only if `i ≥ ki for all 0 ≤ i ≤ m. Let r : F → Fk be defined as r(x) =
(1, x, x2, . . . , xk−1) and, for all i ≥ 0, let r(i)(x) denote the ith derivative of that vector. Using this
notation, we observe that the share that is distributed to participants u ∈ Ui is σ(u) = r(ki−1)(u) ·a
where a = (a0 = S, a1, . . . , ak−1) is the vector of coefficients of P (x). Hence, when all participants
of V, (13), pool together their shares, the system that they need to solve in the unknown vector a
is MVa = σ, where the coefficient matrix is (written by its rows),

MV =
(
r(v1), . . . , r(v`0) ; r(k0)(v`0+1), . . . , r(k0)(v`1) ; . . . ;

r(km−1)(v`m−1+1), . . . , r(km−1)(v`m)
)

, (14)

while
σ = (σ(v1), σ(v2), . . . , σ(v`m))T .

In view of the discussion in Section 2, the matrix MV is not always solvable, even if V ∈ Γ. Our
first observation is as follows.
Proposition 3.1 The Birkhoff interpolation problem that needs to be solved by an authorized subset
satisfies Pólya’s condition (9). Conversely, the Birkhoff interpolation problem that needs to be solved
by an unauthorized subset does not satisfy Pólya’s condition.

Proof. Let V be an authorized subset and let t be any derivative order in the range 0 ≤ t ≤ km−1.
As the thresholds are strictly increasing, k−1 = 0 < k0 < k1 < · · · < km, there exists 0 ≤ i ≤ m
for which ki−1 ≤ t < ki. Hence, V has the values of P and its derivatives up to and including
P (t) in

∣∣∣V ∩
(
∪i

j=0Uj

)∣∣∣ points. But since V ∈ Γ,
∣∣∣V ∩

(
∪i

j=0Uj

)∣∣∣ ≥ ki ≥ t + 1, as required by
Pólya’s condition. Next, assume that V is an unauthorized subset. Then there exists 0 ≤ i ≤ m

for which
∣∣∣V ∩

(
∪i

j=0Uj

)∣∣∣ < ki. Then Pólya’s condition fails to hold for t = ki − 1, since the shares
of participants in V from levels Uj , j ≥ i + 1, correspond to derivatives of order ki and up. 2

Next, assume that 0 ∈ U is a special phantom participant and that it belongs to the highest
level U0. This assumption enables us to answer both questions of accessibility and perfect security
by examining the regularity of certain matrices.
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Theorem 3.2 Assume that 0 ∈ U0 and that for any minimal authorized subset V ∈ Γ (namely,
|V| = k), the corresponding square matrix MV , (14), is regular, i.e., detMV 6= 0 in F. Then
conditions (2) (accessibility) and (3) (perfect security) hold.

Proof. Let V be a ”genuine” authorized subset, namely V ∈ Γ and 0 /∈ V. If V is minimal, |V| = k,
then MV is square and regular; therefore, V may recover the polynomial P (x) and, consequently,
the secret S. If V is not minimal, |V| > k, there exists a subset V0 ⊂ V of size |V0| = k that
is authorized. Since all |V| equations in the linear system of equations MVa = σ are consistent
and since, by assumption, the sub-matrix MV0 is regular, then MVa = σ has a unique solution
a, the first component of which is the secret S. Therefore, the assumptions of the theorem imply
accessibility.

Next, we prove that those assumptions also imply the perfect security of the scheme. Let
V ∈ 2U\{0} \Γ be an unauthorized subset and assume that V is as in (13). We aim at showing that
even if all participants in V pool their shares together, they cannot reveal a thing about the secret
S. Every unauthorized subset may be completed into an authorized subset (though not necessarily
minimal) by adding to it at most k participants. Without loss of generality, we may assume that
V is missing only one participant in order to become authorized. Therefore, if we add to V the
phantom participant 0 we get an authorized subset, V1 = {0}∪V ∈ Γ, since 0 belongs to the highest
level U0.

Let us assume first that |V| = k − 1. Then |V1| = k and, consequently, MV1 is square and
regular. Therefore, the row in MV1 that corresponds to the user 0 is independent of the rows that
correspond to the original k − 1 members of V, i.e.,

r(0) = (1, 0, . . . , 0) /∈ row-space(MV) .

Hence, the value of the secret S is completely independent of the shares of V.
Next, assume that |V| > k− 1. Assume that the single participant that V is missing in order to

become authorized is missing at the jth level for some 0 ≤ j ≤ m; i.e., using the notations of (13),

`i ≥ ki 0 ≤ i ≤ j − 1 , `j = kj − 1 and `i ≥ ki − 1 j + 1 ≤ i ≤ m . (15)

Since |V| = `m > k− 1, we conclude that `m− `j > k− kj . All `m− `j rows in MV that correspond
to the participants of V from levels Uj+1 through Um have at least kj leading zeros, since they
all correspond to derivatives of order kj or higher. Therefore, those rows belong to a subspace of
Fk of dimension k − kj . Hence, we may extract from among them k − kj rows that still span the
same subspace as the original `m − `j rows. Let W denote the subset of V that corresponds to the
(`m − `j)− (k − kj) redundant rows from among the last `m − `j rows in MV and let V0 = V \W.
By (15),

|V0| = |V| − |W| = `m − [(`m − `j)− (k − kj)] = `j + k − kj = k − 1 .

Clearly, the removal from V of the participants in W cannot create new deficiencies, whence, V0,
like V, also lacks only a single participant at the jth level in order to become authorized. Hence,
we may apply to it our previous arguments and conclude that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV0) .

But since
row-space(MV0) = row-space(MV) ,

11



we arrive at the sought-after conclusion that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV) ,

which implies perfect security. 2

3.2 Random allocation of participant identities

The first strategy of allocating participant identities that we consider is the random one. Namely,
recalling that |U| = n and |F| = q, the random strategy is such that

Prob(U = W) =
1(q−1
n

) ∀ W ⊂ F \ {0} , |W| = n . (16)

Theorem 3.3 Assume a random allocation of participant identities, (16). Let V be a randomly
selected subset from 2U . Then if V ∈ Γ

Prob (H(S|σ(V)) = 0) ≥ 1− ε , (17)

while otherwise
Prob (H(S|σ(V)) = H(S)) ≥ 1− ε , (18)

where
ε =

(k − 2)(k − 1)
2(q − k)

. (19)

Proof. If V ∈ Γ there exists a minimal authorized subset V0 ⊆ V, |V0| = k, such that if detMV0 6= 0
V may recover S. If, on the other hand, V /∈ Γ, we saw in Theorem 3.2 that if 0 ∈ U0 there exists a
minimal authorized subset V0 such that detMV0 6= 0 implies that V cannot learn any information
about S. Hence, in order to prove both statements of the theorem, (17) and (18), it suffices to
assume that 0 ∈ U0 and then show that if V ∈ Γ is a minimal authorized subset, MV has a nonzero
determinant in probability at least 1− ε.

To that end, let V be such a subset and assume that its participants are ordered according to
their position in the hierarchy, (13). We proceed to show that

Prob (det(MV) = 0) ≤ (k − 2)(k − 1)
2(q − k)

. (20)

Noting that (20) clearly holds when k = 1, 2, we continue by induction on k. There are two cases
to consider:

1. The last row in MV is r(h)(vk) where h < k−1 (this happens if km−1 < km−1 or if V∩Um = ∅).
2. The last row in MV is r(k−1)(vk) (this happens when km−1 = km− 1 and V ∩Um 6= ∅; in that

case vk is the only participant in V ∩ Um, since V is minimal).

We begin by handling the first case. Let v = (v1, . . . , vk−1) and (v, vk) = (v1, . . . , vk). Let
µk−1 = µk−1(v) denote the determinant of the (k − 1) × (k − 1) minor of MV that is obtained

12



by removing the last row and last column in MV . Then, expanding the determinant by the last
row, we may write it as a polynomial in vk,

det(MV) =
k−2−h∑

i=0

civ
i
k +

(k − 1)!
(k − 1− h)!

· µk−1 · vk−1−h
k , (21)

for some constants ci that depend on v. Let Ω denote the collection of all v ∈ Fk−1 for which
µk−1 = µk−1(v) = 0. Then

Prob(det(MV) = 0) =

=
∑

v∈Fk−1\Ω
Prob(det(MV) = 0|v) · Prob(v) +

∑

v∈Ω

Prob(det(MV) = 0|v) · Prob(v) . (22)

If v ∈ Fk−1 \ Ω then det(MV) is a polynomial of degree k − 1− h in vk, (21). Hence, there are at
most k − 1− h values of vk for which det(MV) = 0. This implies that

Prob(det(MV) = 0|v) ≤ k − 1− h

(q − 1)− (k − 1)
∀v ∈ Fk−1 \ Ω (23)

(recall that the participant identities are distinct and are randomly selected from F \ {0}). Note
that h could take any value between 0 and k − 2. However, if h = 0 it means that all participants
in V belong to the highest level, so that MV is a Vandermonde matrix. In that case, the matrix
is invertible and, consequently, Prob(det(MV) = 0) = 0. Therefore, the worst case in (23) is when
h = 1. Hence, we rewrite (23) as follows:

Prob(det(MV) = 0|v) ≤ k − 2
q − k

∀v ∈ Fk−1 \ Ω . (24)

If v ∈ Ω then the degree of det(MV) as a polynomial in vk is less than k − 1− h. The problem is
that it may completely vanish and then det(MV) would be zero for all values of vk. However, as v
is a vector of dimension k − 1, we may invoke the induction assumption (i.e., (20) for k − 1) and
conclude that

Prob(v ∈ Ω) ≤ (k − 3)(k − 2)
2(q − k + 1)

. (25)

Finally, combining (22), (24) and (25) we may prove (20) in this case:

Prob(det(MV) = 0) ≤ k − 2
q − k

+
(k − 3)(k − 2)
2(q − k + 1)

≤ (k − 2)(k − 1)
2(q − k)

.

In the second case, det(MV) does not depend on vk as the last row in the matrix in this case is
(0, . . . , 0, (k− 1)!). Hence, we may solve for ak−1 and reduce the system to a system in only (k− 1)
unknowns, {ai}k−2

i=0 . Consequently, we may apply induction in order to conclude that

Prob (det(MV) = 0) ≤ (k − 3)(k − 2)
2(q − k + 1)

<
(k − 2)(k − 1)

2(q − k)
.

The proof is thus complete. 2
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Examples.
1. Consider a secret sharing problem with k = (k0 = 3, k1 = 4, k2 = 6). Let V be an authorized

subset that has `0 = 3 participants from U0, `1 = 5 participants from U0∪U1 and `2 = 6 participants
overall. Then V needs to solve a linear system for the polynomial coefficients a = (a0, . . . , a5) where
the corresponding matrix is

MV =




1 v1 v2
1 v3

1 v4
1 v5

1

1 v2 v2
2 v3

2 v4
2 v5

2

1 v3 v2
3 v3

3 v4
3 v5

3

0 0 0 6 24v4 60v2
4

0 0 0 6 24v5 60v2
5

0 0 0 0 24 120v6




. (26)

Here, det(MV) = 120µ5v6 + c0, where µ5 and c0 depend on {vi}5
i=1 (see (21)). If

µ5 = det




1 v1 v2
1 v3

1 v4
1

1 v2 v2
2 v3

2 v4
2

1 v3 v2
3 v3

3 v4
3

0 0 0 6 24v4

0 0 0 6 24v5



6= 0

then det(MV) will vanish for only one value of v6. If, on the other hand, µ5 = 0, there are two
scenarios: either c0 6= 0, in which case the matrix is non-singular independently of v6, or c0 = 0, in
which case the matrix is singular for all values of v6. The proof of the theorem took into account
the latter scenario which is worse. Therefore, MV is singular in probability (6−2)(6−1)

2(q−6) = 10
q−6 at

most.
2. Assume now that k = (k0 = 3, k1 = 5, k2 = 6) and V has the same structure as in the

previous example. Then,

MV =




1 v1 v2
1 v3

1 v4
1 v5

1

1 v2 v2
2 v3

2 v4
2 v5

2

1 v3 v2
3 v3

3 v4
3 v5

3

0 0 0 6 24v4 60v2
4

0 0 0 6 24v5 60v2
5

0 0 0 0 0 120




. (27)

Here, a5 may be found and then we are left with the first 5 equations in (a0, . . . , a4). Then, we
conclude that MV is singular in probability (5−2)(5−1)

2(q−5) = 6
q−5 at most. In fact, in this particular

example we can see that the matrix MV is invertible for all values v1 < v2 < · · · < v6. Namely,
concentrating on secret sharing settings with k as above, all authorized subsets of this type (i.e.,
with the same values of `0, `1, `2) are at no risk of being unable to recover the secret.

Theorem 3.3 implies that if k, the number of overall participants that are required in an au-
thorized subset, is a small number, the failure probability is Θ(1/q). Since q should be at least as
large as the number of possible secrets (and, hence, is usually very large), the failure probability is
not much larger than the probability of simply guessing the secret.

As the number of minimal authorized subsets in U ∪ {0} is
(n+1

k

)
, Theorems 3.2 and 3.3 imply

the following.
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Corollary 3.4 Assume a random allocation of participant identities, (16). Then the probability
that the resulting scheme has accessibility, (2), for all authorized subsets and perfect security, (3),
for all unauthorized subsets is at least 1−(n+1

k

) ·ε, where ε is as in (19). Consequently, hierarchical
threshold access structures with n participants and minimal authorized subsets of size k may be
realized ideally by a linear secret sharing scheme over fields F of size

q = |F| >
(

n + 1
k

)
· (k − 2)(k − 1)

2
+ k .

The random allocation is therefore a safe bet. Since usually n and k are not too large, the dealer
may adopt this strategy and be certain in a high probability that both requirements – accessibility,
and perfect security – will be satisfied.

If the number of minimal authorized subsets in U ∪ {0}, (n+1
k

)
, is manageable, the dealer could

use the random allocation as a basis for finding a full-proof allocation of identities: The dealer will
assign the identities to participants one at a time. For each newly generated participant identity,
the dealer will scan all minimal authorized subsets that involve only participants from those that
were assigned an identity thus far (including the phantom participant u = 0). If one of those
subsets V happen to have a singular matrix MV – an event of probability Θ(1/q) – the dealer will
select a new random identity for the new participant. After finding a successful identity for that
participant, the dealer will proceed to the next one until all participants are associated with some
identity u ∈ F.

Such a verification is feasible with modest values of n, say n ≤ 30 and all values of 1 ≤ k ≤ n.
By carrying out a more careful scanning of all minimal authorized subsets, one can skip subsets
that give rise to matrices that are unconditionally invertible and therefore significantly reduce the
running time of the allocation process. One simple observation along those lines is the following:
let `i = |V ∩ ⋃i

j=0 Uj |, 0 ≤ i ≤ m, be as in (13). Then if for each i there exists j(i) such that
`i = kj(i), the matrix MV is unconditionally invertible since it is block-triangular and the square
blocks on the diagonal are generalized Vandermonde blocks (the number of blocks equals the size
of the set {j(i)}0≤i≤m).

A verification process of that sort is not feasible for large values of n. In such cases, the dealer
must perform an oblivious random allocation and rely on the negligible probability for a failure, as
provided by Theorem 3.3 and Corollary 3.4.

3.3 Monotone allocation of participant identities

Here, we present a simple allocation method that guarantees both accessibility, (2), and perfect
security, (3), if the field F is of a sufficiently large prime order q.

For every 0 ≤ i ≤ m we define ni = |⋃i
j=0 Ui| and let n−1 = 0. The simpler version of our

method associates all ni − ni−1 members of Ui with the identities [ni−1 + 1, ni] ⊂ F. The more
flexible version of this method leaves gaps between the m + 1 intervals of identities, in order to
allow new participants to be added to any level while still maintaining the monotonic principle,

u ∈ Ui , v ∈ Uj , i < j ⇒ u < v , (28)

where the inequality is in the usual sense between integers in the interval [0, q − 1].
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In Lemma 3.5 and Theorem 3.6 we prove that this method guarantees accessibility and perfect
security, (2)+(3), provided that the size of the underlying field, q, is sufficiently large with respect to
the parameters of the problem. In Lemma 3.5 we prove our basic lower bound on q that guarantees
these two conditions. Then, in Theorem 3.6, we use the bound of Lemma 3.5 and carry out a more
delicate analysis that yields a better bound.
Lemma 3.5 Let (k, n) be a hierarchical threshold secret sharing problem. Assume that the partic-
ipants in U were assigned identities in F = Fq, q being a prime, in a monotone manner, namely,
in concert with condition (28), and let N = maxU . Finally, assume that

2−k · (k + 1)(k+1)/2 ·N (k−1)k/2 < q = |F| , (29)

(where k = km is the minimal size of an authorized subset). Then our hierarchical secret sharing
scheme satisfies conditions (2) and (3).

Proof. In view of Theorem 3.2, it suffices to prove that if V ∈ Γ is a minimal authorized subset,
that may include the phantom participant u = 0, then the corresponding square matrix MV , (14),
is regular. Without loss of generality we assume that the participant identities in V are given by
(13) (with `m = k) and that they are ordered in the usual sense in R, v1 < v2 < · · · < vk. First, we
prove that

det MV 6= 0 in R . (30)

Then, invoking (29), we shall prove that

| detMV | < q in R . (31)

Combining (30) and (31) we conclude that

detMV 6= 0 in F = Fq . (32)

In order to prove (30), we observe that the interpolation matrix E that corresponds to the
Birkhoff interpolation problem with which the participants in V are faced, has an echelon form.
Indeed, all rows have exactly one entry that equals 1, and the position of the 1 is monotonically
non-decreasing as we go down the rows of E: in the first `0 rows we encounter the 1 in column
j = 0, in the next `1 − `0 rows the 1 appears in column j = `0 and so forth. Hence, the matrix E
has no supported 1-sequences in the sense of Definition 2.1. Recalling Proposition 3.1, we infer that
the conditions of Theorem 2.2 are satisfied. Therefore, the corresponding Birkhoff interpolation
problem is well-posed over R, (30).

In order to bound the determinant of MV , we invoke Hadamard’s maximal determinant theorem
[9, problem 523]. According to that theorem, if A is a k × k real matrix, and

|Ai,j | ≤ 1 , 0 ≤ i, j ≤ k − 1 , (33)

then
| det(A)| ≤ 2−k · (k + 1)(k+1)/2 . (34)

Let A be the matrix that is obtained from MV if we divide its jth column by N j , 0 ≤ j ≤ k − 1.
Since that matrix A satisfies condition (33), we conclude, in view of (34) and (29), that MV satisfies
(31). That completes the proof. 2
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Theorem 3.6 Under the conditions of Lemma 3.5, the hierarchical threshold secret sharing scheme
satisfies conditions (2) and (3) provided that

α(k)N (k−1)(k−2)/2 < q = |F| where α(k) := 2−k+2 · (k − 1)(k−1)/2 · (k − 1)! . (35)

Proof. Assume that V in (13) is a minimal authorized subset and that the participant identities
are ordered in the usual sense in R, v1 < v2 < · · · < vk. Let di, 1 ≤ i ≤ k, be the order of derivative
of the share that vi got. Namely, in view of (13) and (14), di = 0 for 1 ≤ i ≤ `0, di = k0 for
`0 + 1 ≤ i ≤ `1, and so forth. We refer to d = (d1, . . . , dk) as the type of the interpolation problem
that needs to be solved by the participants of V since it characterizes the form of the coefficient
matrix MV , (14). Finally, let t be the largest integer such that di = i − 1 for all 1 ≤ i ≤ t. We
note that t is well defined and t ≥ 1 since always d1 = 0 (i.e., V must always include at least one
participant of the highest level U0).

Let P denote the problem of recovering the polynomial P from the shares of {vi}1≤i≤k. We
claim that P may be decomposed into two independent problems that may be solved in succession:

• Problem P1. Recovering P (t−1) (namely, the coefficients ai, t− 1 ≤ i ≤ k − 1, see (12)) from
the shares of vi, t ≤ i ≤ k.

• Problem P2. Recovering ai−1 from the share of vi, t− 1 ≥ i ≥ 1.

Indeed, the equations that correspond to the last k − t + 1 participants – {vi}t≤i≤k – involve only
the k− t+1 coefficients {ai}t−1≤i≤k−1 (note that if t = 1, P1 coincides with the original problem P
and then P2 is rendered void). Hence, we may first concentrate on solving the (possibly reduced)
interpolation problem P1. If that problem is solvable, we may proceed to problem P2. That problem
is always solvable by the following simple procedure: for every i, i = t − 1, . . . , 1, we perform one
integration and then, using the share of vi, we recover the coefficient ai−1 of P . Hence, we may
concentrate on determining a sufficient condition for the solvability of P1. That condition will
guarantee also the solvability of P. (Note that P1 still satisfies Pólya’s condition, Lemma 2.1.)

The dimension of the interpolation problem P1 is k − t + 1. Hence, since the left hand side in
(35) is monotonically increasing in k, we may concentrate here on the worst case where t = 1 and
the dimension of P1 is k (namely, P1 = P). The main observation, that justifies this preliminary
discussion and the decomposition of P into two sub-problems, is that in the type d of P1, d1 =
d2 = 0. Indeed, d1 = 0 and d2 ≤ 1 as enforced by Pólya’s condition; moreover, d2 6= 1 for otherwise
t ≥ 2, as opposed to our assumption that t = 1. With this in mind, we define s ≥ 2 to be the
maximal integer for which di = 0 for all 1 ≤ i ≤ s.

Next, we write down the system of linear equations that characterizes the interpolation problem
P1. To that end, we prefer to look for the polynomial P in its Newton form with respect to {vi}1≤i≤k

(as opposed to its standard representation (12)):

P (x) =
k−1∑

j=0

cj

j∏

i=1

(x− vi) . (36)

Writing down the system of linear equations in the unknowns {cj}0≤j≤k−1, we see that the corre-
sponding coefficient matrix, M̂ = M̂V , has a block triangular form,

M̂ =

(
B1 0
B2 B3

)
(37)
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where the upper-left s× s block is given by

B1 =




1 0 0 0 · · · 0
1 v2 − v1 0 0 · · · 0
1 v3 − v1

∏2
i=1(v3 − vi) 0 · · · 0

...
...

...
...

...
...

1 vs − v1
∏2

i=1(vs − vi)
∏3

i=1(vs − vi) · · · ∏s−1
i=1 (vs − vi)




(38)

(we use the notation M̂ in order to distinguish this matrix from M = MV , (14), that was the
coefficient matrix in the linear system for the unknowns ai in the standard representation of the
interpolant P (x), (12)). Invoking the same arguments as in Lemma 3.5, we conclude that

det M̂ 6= 0 in R . (39)

We need to show that
det M̂ 6= 0 in F . (40)

In order to prove (40), we first invoke (37) to conclude that

det M̂ = detB1 · det B3 . (41)

As N < q, all terms on the diagonal of B1, (38), are nonzero in F, so that B1 is invertible over F.
Therefore, by (41), we only need to show that

detB3 6= 0 in F , (42)

in order to prove (40). Since detB3 6= 0 in R, as implied by (39) and (41), this amounts to showing
that

| detB3| < q in R . (43)

In order to prove (43), we shall show that

|M̂i,j | ≤ j ·N j−1 for all s + 1 ≤ i ≤ k , s ≤ j ≤ k − 1 (44)

(note that the rows of M̂ correspond to vi, 1 ≤ i ≤ k, while the columns of M̂ correspond to the
unknown coefficient cj , 0 ≤ j ≤ k − 1). Then, we may proceed to prove (43) using Hadamard’s
inequality: let A be the matrix that is obtained from B3 after dividing its jth column, s ≤ j ≤ k−1,
by j ·N j−1. Then according to (44), the normalized block A satisfies condition (33) of Hadamard’s
maximal determinant theorem. Hence, by (34),

| detA| ≤ 2−k+s · (k − s + 1)(k−s+1)/2 .

Consequently, since s ≥ 2,

| detB3| = |det A| ·



k−1∏

j=s

j ·N j−1


 ≤ 2−k+2 · (k − 1)(k−1)/2 · (k − 1)! ·N (k−1)(k−2)/2 . (45)

Inequalities (45) and (35) prove (43).
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The only missing link is (44). In order to prove this inequality, we need to derive an expression
for the derivatives of P (x), (36). Let us introduce the notations

Pj(x) =
j∏

i=1

(x− vi) and Pj,h(x) =
dhPj(x)

dxh
, 0 ≤ j ≤ k − 1 , h ≥ 0 . (46)

Then, since Pj,h = 0 for all j < h,

P (h)(x) =
k−1∑

j=h

cjPj,h(x) . (47)

The expression for Pj,h(x) is given by

Pj,h(x) =
∑ {

Π(g1,...,gh)(x) : (g1, . . . , gh) ∈ G(j, h)
}

, (48)

where G(j, h) is the set of all j!
(j−h)! ordered selections of h elements from {1, . . . , j} and

Π(g1,...,gh)(x) =
∏
{(x− vi) : i ∈ {1, . . . , j} \ {g1, . . . , gh}} . (49)

Setting x = v`, for some s + 1 ≤ ` ≤ k, in (47), we see that the `th row in M̂ takes the form

(M̂`,j)0≤j≤k−1 =
(

0 · · · 0 Ph,h(v`) · · · Pk−1,h(v`)
)

, (50)

where h = d` is the order of derivative of the share of v`. From (48),

|Pj,h(v`)| ≤ |G(j, h)| · max
(g1,...,gh)

|Π(g1,...,gh)(v`)| .

Since, by (49), |Π(g1,...,gh)(v`)| ≤ N j−h, we conclude that

|Pj,h(v`)| ≤ j!
(j − h)!

·N j−h , h ≤ j ≤ k − 1 . (51)

As the definition of s implies that h ≥ 1 for all rows s + 1 ≤ ` ≤ k, and since j ≤ k − 1 < N , we
infer by (51) and (50) that

|M̂`,j | ≤ j ·N j−1 , h ≤ j ≤ k − 1 . (52)

Since, by (50), the inequality in (52) holds trivially for columns 0 ≤ j ≤ h− 1 as well, that proves
(44). The proof of the theorem is thus complete. 2

Condition (35) is pretty sharp. It may be seen that the worst scenario is that in which d =
(0, 0, 1, . . . , 1) – namely, k0 = 1 (the number of participants from U0 must be at least 1) and there
are two participants from U0 while all the rest are from U1. In such cases, the (real) determinant of
the block B3 in the matrix of coefficients M̂ is Θ(N (k−1)(k−2)/2), though the constant α(k) may be
somewhat improved. In the Appendix we list all possible cases where k ≤ 4. From that study one
sees that (35) is sharp for k = 2, when it reads 1 < q (i.e., there is no restriction), and k = 3, when
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k Condition (29) Condition (35)
5 N ≤ 5497 N ≤ 1234795
6 N ≤ 296 N ≤ 3637
7 N ≤ 56 N ≤ 200
8 N ≤ 19 N ≤ 38

Table 1: Values of k and N that satisfy conditions (29) and (35)

it reads 2N < q. However, when k = 4, (35) demands that 32.5N/2 ≈ 7.8N < q, while a careful
examination of all cases where k = 4 reveals that 6N < q suffices.

The improvement offered by (35) over (29) may be appreciated by comparing the logarithms to
the base 2 of the two lower bounds on q. The difference between the logarithm to the base 2 of the
lower bound in (29) and that of the lower bound in (35) is given by

(k − 1) · log N +
1
2

log
(k + 1)k+1

(k − 1)k−1
− log((k − 1)!)− 2 .

This difference shows the number of additional bits that estimate (35) allows for the prime number
q comparing to the size in bits that is allowed by estimate (29).

Table 1 includes for each value of k, 5 ≤ k ≤ 8, the maximal value of N for which the original
condition, (29), and the improved one, (35), still holds when the secret to be shared is an AES key
(namely, q is of size 128 bits). The figures in the table demonstrate the exponential drop in the
capacity of the scheme, N , when k increases. However, this should not be worrisome because n
and k in any plausible real-life application are usually small. In the unlikely scenario of k and N
so large that condition (35) fails to hold for any prime q of the size of the secret to be shared, we
may always go back to the random allocation strategy that was described in the previous section.

4 An ideal scheme for the disjunctive hierarchical secret sharing
problem

As described in the Introduction, Simmons [18] studied a closely related hierarchical secret sharing
problem, where the conjunction of threshold conditions is replaced by a disjunction (compare (1)
to (7)). His scheme is not ideal and it requires (possibly exponentially) many checks to be made
when assigning identities and shares to the participants. Brickell [6] offered two schemes for the
same problem, both ideal. The first one suffers from the same problem as Simmons’, in the sense
that the dealer is required to check (possibly exponentially) many matrices for non-singularity.
In the second scheme this difficulty is replaced by the need to find an algebraic number of some
degree over a prime order field. Here we show how the ideality of the disjunctive hierarchical access
structures follows immediately from the ideality of their conjunctive counterpart. We then proceed
to describe an ideal scheme for their realization that does not involve any of the above mentioned
difficulties of Simmons’ and Brickell’s schemes.

Karchmer and Wigderson [13] introduced monotone span programs as a linear algebraic model
of computation for computing monotone functions. A monotone span program (MSP hereinafter)
is a quintuple M = (F,M,U , φ, e) where F is a field, M is a matrix of dimensions a × b over F,
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U = {u1, . . . , un} is a finite set, φ is a surjective function from {1, . . . , a} to U , which is thought
of as labeling of the rows of M , and e is some target row vector from Fb. The MSP M realizes
the monotone access structure Γ ⊂ 2U when V ∈ Γ if and only if e is spanned by the rows of
the matrix M whose labels belong to V. The size of M is a, the number of rows in M . Namely,
in the terminology of secret sharing, the size of the MSP is the total number of shares that were
distributed to all participants in U . An MSP is ideal if a = n.

If Γ is a monotone access structure over U , its dual is defined by Γ∗ = {V : Vc /∈ Γ}. It is easy
to see that Γ∗ is also monotone. In [11] it was shown that if M = (F,M,U , φ, e) is an MSP that
realizes a monotone access structure Γ, then there exists an MSP M∗ = (F,M∗,U , φ, e∗) of the
same size like M that realizes the dual access structure Γ∗. Hence, an access structure is ideal if
and only if its dual is.

Returning to the disjunctive hierarchial access structure that was studied by Simmons, (7), we
claim the following straightforward proposition.
Proposition 4.1 Let U =

⋃m
i=0 Ui and k = {ki}m

i=0 be as in Definition 1.1. Let Γ be the correspond-
ing disjunctive access structure as defined in (7). Then Γ∗ is the conjunctive access structure that
is defined in Definition 1.1 with thresholds k∗ = {k∗i }m

i=0 where k∗i = |⋃i
j=0 Uj | − ki + 1, 0 ≤ i ≤ m.

Since the conjunctive hierarchial access structure is ideal in the sense that there exists an ideal
secret sharing scheme that realizes it (over sufficiently large fields), we conclude the following.
Corollary 4.2 The disjunctive access structure (7) is ideal.

Finally, we describe how to modify our scheme for (k, n)-conjunctive threshold access structures,
(1), in order to be suitable for (k, n)-disjunctive ones, (7). There are two small modifications that
need to be made, both reflecting the duality of the two types of problems. As before, we let k = km

be the highest threshold, and the scheme is based on a secret polynomial P (x) ∈ Fk−1[x]. But while
in the original scheme the secret was a0, in the new scheme it is going to be ak−1, the coefficient
of the highest power. Another modification is that the more important levels will now get lower
order derivatives, as opposed to the original scheme. The scheme is therefore as follows:

1. The dealer selects a random polynomial P (x) ∈ Fk−1[x], where

P (x) =
k−1∑

i=0

aix
i and ak−1 = S . (53)

2. The dealer identifies each participant u ∈ U with a field element, denoted by u.

3. The dealer distributes shares to all participants in the following manner: Each participant of
the ith level in the hierarchy, u ∈ Ui, 0 ≤ i ≤ m, receives the share P (k−ki)(u) (instead of
P (ki−1)(u) in the original scheme).

For example, assume that there are three levels in the hierarchy, U = U0 ∪ U1 ∪ U2, and that the
thresholds are k = (k0, k1, k2) = (2, 4, 7); namely, V ⊂ U is authorized if and only if it has at least
7 participants, or at least 4 participants from U0 ∪ U1, or at least 2 participants from U0. Then,
as k = k2 = 7, the dealer selects a random polynomial P (x) =

∑6
i=0 aix

i where a6 = S. He then
distributes the shares as follows: participants u ∈ U0 will get the share P (5)(u), as k−k0 = 7−2 = 5;
participants u ∈ U1 will get the share P (3)(u), since k − k1 = 3; and those of the lowest level, U2,
will get P (u).
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The idea behind this allocation is simple: given V ⊂ U , its relevant threshold is determined
by its lowest participant. If the lowest participant in V is from Ui (namely, V ⊂ ⋃i

j=0 Uj) then all
participants in V have shares with derivatives of order k− ki or higher. Hence, all linear equations
that correspond to those shares involve only the k − (k − ki) = ki highest coefficients of P (x) as
unknowns. Therefore, it is necessary to have at least ki participants in order to have a sufficient
number of equations. As before, the main concern is how to allocate the participant identities
so that we achieve both accessibility (2) and perfect security (3). The random and monotone
allocations that we described in Sections 3.2 and 3.3, and all of the results that we proved therein,
apply equally to this modified scheme.

A concluding remark. In Corollary 3.4 we showed that hierarchical threshold access structures
with n participants and minimal authorized subsets of size k may be realized ideally by a linear
secret sharing scheme over fields F of size

|F| >
(

n + 1
k

)
· (k − 2)(k − 1)

2
+ k . (54)

A similar result was proven by Brickell [6] regarding disjunctive threshold access structures, (7).
He proved that those access structures may be realized ideally by a linear secret sharing scheme
over fields F of size

|F| >
(

n

k − 1

)
· (k − 1) , (55)

where also here k = km is the highest threshold. This may be translated into another lower bound
for the conjunctive case, independent of ours, (54), using duality arguments. Since in the dual
access structure k 7→ n − k + 1, see Proposition 4.1, we infer from Brickell’s estimate (55) and
duality that conjunctive hierarchical threshold access structures may be realized ideally over fields
of size

|F| >
(

n

k

)
· (n− k) . (56)

The ratio between the two lower bounds (54) and (56) is given by

(n+1
k

) · (k−2)(k−1)
2 + k(n

k

) · (n− k)
≈ n + 1

n + 1− k
· (k − 2)(k − 1)

2(n− k)
. (57)

This ratio is less than 1 whenever

k <
−1 +

√
8n + 9

2
. (58)

Namely, for those values of k, estimate (54) is better than (56); for greater values of k the latter
estimate is better. Note that usually k is expected to be significantly smaller than n (namely, it is
expected to satisfy (58)). In any case, the ratio in (57) shows that the difference between the two
lower bounds is quite insignificant since, when comparing the number of bits that are required for
representing field elements, it translates into a small additive term.
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5 Open problems

The classes HTAS∀ and HTAS∃ may be viewed as the two extreme cases in a sequence of classes:
Definition 5.1 Let U be a set of n participants and assume that U is composed of levels, i.e.,
U =

⋃m
i=0 Ui where Ui∩Uj = ∅ for all 0 ≤ i < j ≤ m. Let k = {ki}m

i=0 be a monotonically increasing
sequence of integers, 0 < k0 < · · · < km. Then, for 1 ≤ ` ≤ m + 1, the (k, n)–hierarchical threshold
access structure of type (`,m + 1) is

Γ =
{
V ⊂ U :

∣∣∣V ∩
(
∪i

j=0Uj

)∣∣∣ ≥ ki for at least ` values of i ∈ {0, 1, . . . ,m}
}

. (59)

We see that HTAS∃ and HTAS∀ are the classes of all hierarchical threshold access structures of
types (1,m+1) and (m+1,m+1), respectively, for some value of m. It may be easily verified that
the access structures of types (`,m + 1) and (m + 2− `,m + 1) are dual. The question is whether
the access structures of types (`,m + 1) where 1 < ` < m + 1 are ideal, and if so, how can they be
realized ideally and efficiently by a secret sharing scheme.

Closely related threshold access structures that were studied by Simmons [18] and Brickell [6]
are comparmented access structures.
Definition 5.2 Let U be a set of n participants and assume that U is composed of compartments,
i.e., U =

⋃m
i=1 Ui where Ui∩Uj = ∅ for all 1 ≤ i < j ≤ m. Let k = {ki}m

i=0 be a sequence of integers
such that k0 ≥

∑m
i=1 ki. Then the (k, n)–compartmented access structure is

Γ = {V ⊂ U : |V ∩ Ui| ≥ ki ∀i ∈ {1, . . . , m} and |V| ≥ k0} . (60)

Brickell proved that those access structures are ideal, but the secret sharing scheme that he proposed
suffered from the same problem of inefficiency as some previously mentioned schemes did (namely,
the dealer must perform possibly exponentially many checks when assigning identities and shares
the participants). The question is whether there exists an efficient ideal secret sharing scheme for
such access structures.

A Appendix: Monotone allocation of identities – study cases

The goal of this study is to illustrate the analysis that we carried out in Section 3.3 and to demon-
strate its sharpness. We deal here with problems of low dimension k ≤ 4. As the case k = 2 is
trivially solvable for all given data (this may be seen also by condition (35)), we concentrate on
dimensions k = 3 and k = 4. In each of those cases we list all possible types of Birkhoff interpola-
tion that may occur in such a dimension, where the word type is in the same sense as in the proof
of Theorem 3.6. In doing so, we speak of the order of a given type, which means the order of the
highest derivative that appears in the interpolation.

A.1 k = 3

There are five different types of Birkhoff interpolation that might occur when k = 3: d = (0, 0, 0),
(0, 0, 1), (0, 1, 1), (0, 0, 2) and (0, 1, 2). Recall that the notation d was introduced in the proof of
Theorem 3.6 and it indicates the order of the derivative of the share of each of the participants
in the subset that attempts to recover the common secret. For example, d = (0, 1, 1) refers to
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the scenario where the first participant is from U0 and his share is P (v1), while the other two
participants are from U1 and their contribution is P ′(vi), i = 2, 3; i.e., the system of equations that
needs to be solved has the following matrix of coefficients,

MV =




1 v1 v2
1

0 1 2v2

0 1 2v3


 .

The solvability of each of the five types of interpolation is as follows:

• (0,0,0) is solvable, since it represents standard interpolation.

• (0,1,1) is solvable by first recovering P ′ and then P .

• (0,0,2) is solvable by first recovering P ′′ and then P .

• (0,1,2) is solvable by recovering P ′′, then P ′ and then P .

• (0,0,1) is the only interesting case in dimension k = 3. Let

0 ≤ v1 < v2 < v3 ≤ N (61)

be the identities of the three participants, where v1 and v2 are the two values in which P (x)
is known. Looking for the polynomial in its Newton form,

P (x) = c0 + c1(x− v1) + c2(x− v1)(x− v2) , (62)

the linear system that we have is characterized by the matrix

M̂V =




1 0 0
1 v2 − v1 0
0 1 (v3 − v1) + (v3 − v2)


 ,

(compare to (37), (38) and (48)–(50)). Hence, the problem is well posed if and only if

(v3 − v1) + (v3 − v2) 6= 0 in F = Fq . (63)

In view of (61), a sufficient condition that guarantees the inequality in (63) is

2N < q . (64)

Note that this condition agrees with (35) when k = 3.

A.2 k = 4

We claim that all interpolation types in dimension 4 are well posed, provided that

6N3 < q . (65)

This is a somewhat milder condition than (35) when k = 4: the power of N is the same in both
estimates but the constant in (35) is approximately 7.8 as opposed to 6 in (65). We proceed to
examine all of those types according to their order.
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Interpolation types of order 3 may involve in dimension 4 only one datum of the third order,
P (3)(v), otherwise they fail to comply with Pólya’s condition, Lemma 2.1. We may use that datum
in order to recover a3 and then we are left with a problem of dimension 3 and order 2 at the most,
as discussed in Section A.1. Hence, all types of order 3 are well posed provided that condition
(64) holds. Since (65) is stronger than (64), we conclude that it is a sufficient condition for the
solvability of all types of order 3.

Next, we concentrate on types of order 2. There are five such types that comply with Pólya’s
condition: d = (0, 0, 0, 2), (0, 0, 1, 2), (0, 1, 1, 2), (0, 0, 2, 2) and (0, 1, 2, 2). Types (0, 0, 2, 2) and
(0, 1, 2, 2) are solvable by first recovering P ′′ and then P . Type (0, 1, 1, 2) is solvable under as-
sumption (65). Indeed, if (65) holds, we may use the data in v2, v3 and v4 in order to recover P ′

(the type of interpolation problem that needs to be solved to that end is (0, 0, 1), as discussed in
Section A.1) and then use P (v0) in order to determine a0.

In order to deal with the remaining two types, (0, 0, 0, 2) and (0, 0, 1, 2), we rewrite the inter-
polant in Newton form,

P (x) = c0 + c1(x− v1) + c2(x− v1)(x− v2) + c3(x− v1)(x− v2)(x− v3) , (66)

where
0 ≤ v1 < v2 < v3 < v4 ≤ N . (67)

The matrix of coefficients for type (0, 0, 0, 2) is:

M̂V =




1 0 0 0
1 v2 − v1 0 0
1 v3 − v1 (v3 − v1)(v3 − v2) 0
0 0 2 2

∑3
i=1(v4 − vi)


 ,

(see (37), (38) and (48)–(50)). Indeed, this system is solvable since (67)+(65) guarantee that∑3
i=1(v4 − vi) 6= 0 in F = Fq. As for the type (0, 0, 1, 2), the matrix of coefficients is

M̂V =




1 0 0 0
1 v2 − v1 0 0
0 1

∑2
i=1(v3 − vi) (v3 − v1)(v3 − v2)

0 0 2 2
∑3

i=1(v4 − vi)


 , (68)

and this matrix is non-singular provided that

∆ =
2∑

i=1

(v3 − vi) ·
3∑

i=1

(v4 − vi)− (v3 − v1)(v3 − v2) 6= 0 in F = Fq . (69)

It is not hard to see that, as a real number, ∆ > 0 in the domain in R4 defined by (67). On the
other hand, (67) implies that ∆ < 2N ·3N = 6N2. Therefore, 0 < ∆ < 6N2 which, by (65), implies
(69).

Finally, we deal with types of order 1. Here, there are three types to consider: (0, 0, 0, 1),
(0, 0, 1, 1) and (0, 1, 1, 1). The third one, (0, 1, 1, 1), is unconditionally solvable since we may recover
P ′ and then, using P (v1), determine P . As for (0, 0, 1, 1), the polynomial coefficients in the Newton
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form, (66), satisfy a linear system with the following matrix of coefficients

M̂V =




1 0 0 0
1 v2 − v1 0 0
0 1

∑2
i=1(v3 − vi) (v3 − v1)(v3 − v2)

0 1
∑2

i=1(v4 − vi)
∑

1≤i<j≤3(v4 − vi)(v4 − vj)


 . (70)

Therefore, the solvability condition is

∆ = det

( ∑2
i=1(v3 − vi) (v3 − v1)(v3 − v2)∑2
i=1(v4 − vi)

∑
1≤i<j≤3(v4 − vi)(v4 − vj)

)
6= 0 in F = Fq (71)

(67) implies that 0 < ∆ < 2N · 3N2. Together with (65), we arrive at the conclusion that ∆ 6= 0
in Fq. Finally, the type (0, 0, 0, 1) gives rise to the matrix

M̂V =




1 0 0 0
1 v2 − v1 0 0
1 v3 − v1 (v3 − v1)(v3 − v2) 0
0 1

∑2
i=1(v4 − vi)

∑
1≤i<j≤3(v4 − vi)(v4 − vj)


 , (72)

which is solvable since ∑

1≤i<j≤3

(v4 − vi)(v4 − vj) 6= 0 in F = Fq , (73)

as guaranteed by (65).
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