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Abstract. Weighted threshold secret sharing was introduced by Shamir in his seminal work on
secret sharing. In such settings, there is a set of users where each user is assigned a positive weight.
A dealer wishes to distribute a secret among those users so that a subset of users may reconstruct
the secret if and only if the sum of weights of its users exceeds a certain threshold. On one hand,
there are nontrivial weighted threshold access structures that have an ideal scheme – a scheme in
which the size of the domain of shares of each user is the same as the size of the domain of possible
secrets (this is the smallest possible size for the domain of shares). On the other hand, other weighted
threshold access structures are not ideal. In this work we characterize all weighted threshold access
structures that are ideal. We show that a weighted threshold access structure is ideal if and only
if it is a hierarchical threshold access structure (as introduced by Simmons), or a tripartite access
structure (these structures generalize the concept of bipartite access structures due to Padró and
Sáez), or a composition of two ideal weighted threshold access structures that are defined on smaller
sets of users. We further show that in all those cases the weighted threshold access structure may
be realized by a linear ideal secret sharing scheme. The proof of our characterization relies heavily
on the strong connection between ideal secret sharing schemes and matroids, as proved by Brickell
and Davenport.
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1. Introduction. A threshold secret sharing scheme enables a dealer to dis-
tribute a secret among a set of users, by giving each user a piece of information called
a share, such that only large sets of users will be able to reconstruct the secret from the
shares that they got, while smaller sets gain no information on the secret. Threshold
secret sharing schemes were introduced and efficiently implemented, independently,
by Blakley [5] and Shamir [28]. Efficient threshold secret sharing schemes were used
in many cryptographic applications, e.g., Byzantine agreement [26], secure multiparty
computations [3, 10], and threshold cryptography [13].

In this paper we deal with weighted threshold secret sharing schemes. In these
schemes, considered already by Shamir [28], the users are not of the same status.
That is, each user is assigned a positive weight and a set can reconstruct the secret if
the sum of weights assigned to its users exceeds a certain threshold. As a motivation,
consider sharing a secret among the shareholders of some company, each holding a
different amount of shares. Such settings are closely related to the concept of weighted
threshold functions, which play an important role in complexity theory and learning
theory.1

Ito, Saito, and Nishizeki [16] generalized the notion of secret sharing such that
there is an arbitrary monotone collection of authorized sets, called the access structure.

∗Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel. E-mail:
beimel@cs.bgu.ac.il.

†Division of Computer Science, The Open University, Ranana, Israel, and Dept. of Computer
Science, Ben-Gurion University, Beer-Sheva 84105, Israel. E-mail: tamirta@openu.ac.il.

‡Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel. E-mail: wein-
rebe@cs.bgu.ac.il.

1A weighted threshold function is a boolean function f : {0, 1}n → {0, 1} where each variable
is assigned a positive weight and f(x1, . . . , xn) = 1 iff the sum of weights that are assigned to the
variables whose value is 1 exceeds a given threshold.

1



2 A. BEIMEL, T. TASSA, AND E. WEINREB

The requirements are that only sets in the access structure are allowed to reconstruct
the secret, while sets that are not in the access structure should gain no information
on the secret. A simple argument shows that in every secret sharing scheme, the
domain of possible shares for each user is at least as large as the domain of possible
secrets (see [19]). Shamir’s threshold secret sharing scheme is ideal in the sense that
the domain of shares of each user coincides with the domain of possible secrets. Ideal
secret sharing schemes are the most space-efficient schemes. However, some access
structures do not have an ideal secret sharing schemes that realizes them [4]. Namely,
some access structures demand share domains that are larger than the domain of
secrets. Access structures that may be realized by an ideal secret sharing scheme
are called ideal. Ideal secret sharing schemes and ideal access structures have been
studied in, e.g., [1, 6, 7, 17, 20, 21, 23, 25, 27, 32, 35, 36]. Ideal access structures
are known to have certain combinatorial properties. In particular, there is a strong
relation between ideal access structures and matroids [7].

While threshold access structures are ideal, weighted threshold access structures
are not necessarily so. For example, the access structure on four users with weights 1,
1, 1, and 2, and a threshold of 3, has no ideal secret sharing scheme (see Example 4.9
for a proof). Namely, in any perfect secret sharing scheme that realizes this access
structure, the share domain of at least one user is larger than the domain of secrets.
On the other hand, there exist ideal weighted threshold access structures, other than
the trivial threshold ones. For example, consider the access structure on nine users,
where the weights are 16, 16, 17, 18, 19, 24 ,24 ,24, and 24 and the threshold is 92.
Even though this access structure seems more complicated than the previous one, it
has an ideal secret sharing scheme (see Example 7.5). Another example of an ideal
weighted threshold access structure is the one having weights 1, 1, 1, 1, 1, 3, 3, and
3 and threshold 6 (see Example 8.10).

In this paper we give a combinatorial characterization of ideal weighted threshold
access structures. We show that if a weighted threshold access structure is ideal then
one of the following statements hold:

1. It is a multilevel or hierarchical threshold access structure. This type of access
structures was introduced by Simmons in [29]. In such settings, the users are
divided into a hierarchy of levels, and each level has an associated threshold.
A set of users is authorized if it has a subset whose size is at least the threshold
that corresponds to the level of the lowest member in that subset.

2. It is a tripartite access structure. In such access structures, the set of users is
partitioned into three classes, and a given subset is authorized iff the sizes of
its intersection with each of the three classes satisfy some threshold conditions
(see Section 7 for details).

3. The set of users is composed of strong users (users with larger weights) and
weak users (users with smaller weights) and the access structure is a combi-
natorial composition of two ideal weighted threshold access structures, one
that is defined on the subset of strong users and another that is defined on
the subset of weak users.

(Formal definitions are given in Section 3.)
Most of the access structures that play part in our characterization are well

known [25, 29, 35]. Tripartite access structures were considered by collins [11], who
gave a necessary condition for a tripartite access structure to be ideal. We consider a
specific family of tripartite access structures and design ideal secret sharing schemes
for this family. Following our work, Herranz and Saez [15] constructed ideal secret
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sharing schemes for a wider family of tripartite access structures and Farràs, Mart́ı-
Farré, and Padró [14] exactly characterize the tripartite access structures that are
ideal.

The present study generalizes the work of Morillo, Padró, Sáez, and Villar [23] who
characterized the ideal weighted threshold access structures in which all the minimal
authorized sets have at most two users. The proof of our characterization relies
heavily on the strong connection between ideal secret sharing schemes and matroids,
as presented in [7]. We utilize results regarding the structure of matroids in order to
understand the structure of ideal weighted threshold access structures. An important
tool in our analysis is composition of ideal access structures. When composing two
access structures, defined on two disjoint sets, one gets an access structure on a larger
set of users. The resulting access structure is ideal if and only if the original two are
ideal. This enables us to characterize ideal weighted threshold access structures in a
recursive manner, as described above. Composition of access structures was studied,
e.g., in [1, 4, 8, 12, 22, 34].

Related Work. Secret sharing schemes for general access structures were de-
fined by Ito, Saito, and Nishizeki in [16]. More efficient schemes were presented in,
e.g., [4, 6, 18, 31]. We refer the reader to [30, 33] for extensive surveys on secret shar-
ing schemes. However, for most access structures the known secret sharing schemes
are highly inefficient, that is, the size of the shares is exponential in n, the number of
users. It is not known whether better schemes exist. For weighted threshold access
structures the situation is somewhat better. Shamir [28] proposed a weighted thresh-
old secret sharing scheme that is based on his ideal threshold secret sharing scheme.
In that scheme, the ratio between the share size of each user and the size of the secret
equals the weight assigned to that user, which may be exponential in the number
of users n. In a recent work [2], secret sharing schemes were constructed for arbi-
trary weighted threshold access structures in which the shares are of size O(nlog n).
Furthermore, under reasonable computational assumptions, a secret sharing scheme
with computational security was constructed in [2] for every weighted threshold access
structure with a polynomial share size.

Organization. We begin in Section 2 by supplying the necessary definitions. Then,
in Section 3, we state our characterization theorem and outline its proof. We proceed
to describe in Section 4 the connection between matroids and ideal secret sharing,
and then prove, in Section 5, several properties of matroids that are associated with
weighted-threshold access structures. Thereafter, we discuss the connection between
ideal weighted threshold access structures and two families of access structures: hi-
erarchical threshold access structures in Section 6, and tripartite access structures in
Section 7. Finally, in Section 8 we complete the proof of the characterization theorem
by proving that if an ideal weighted threshold access structure is not hierarchical nor
tripartite then it is a composition of two ideal weighted threshold access structures
on smaller sets of users.

2. Definitions and Notations.

2.1. Secret Sharing. We next define secret sharing schemes and ideal secret
sharing schmes. We start by defining an access structure which is the collection of
authorized sets that can reconstruct the secret.

Definition 2.1 (Access Structure). Let U = {u1, . . . , un} be a set of users. A
collection Γ ⊆ 2U is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access
structure is a monotone collection Γ ⊆ 2U of non-empty subsets of U . Sets in Γ
are called authorized, and sets not in Γ are called unauthorized. A set B is called a
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minterm of Γ if B ∈ Γ, and for every C ( B, the set C is unauthorized. A user u is
called self-sufficient if {u} ∈ Γ. A user is called redundant if there is no minterm that
contains it. An access structure is called connected if it has no redundant users.

Definition 2.2 (Secret-Sharing Scheme). Let S be a finite set of secrets, where
|S| ≥ 2. An n-user secret-sharing scheme Π with domain of secrets S is a randomized
mapping from S to a set of n-tuples

∏n
i=1 Si, where Si is called the share-domain of

ui. A dealer shares a secret s ∈ S among the n users of some set U according to
Π by first sampling (acording to some predefined probability distribution) a vector of
shares Π(s) = (s1, . . . , sn) ∈ ∏n

i=1 Si, and then privately communicating each share
si to the user ui. We say that Π realizes an access structure Γ ⊆ 2U if the following
two requirements hold:
Correctness. The secret s can be reconstructed by any authorized set of users.

That is, for any set B ∈ Γ (where B = {ui1 , . . . , ui|B|}), there exists a re-
construction function2 ReconB : Si1 × · · · × Si|B| → S such that for every
s ∈ S and for every possible value of ΠB(s), the restriction of Π(s) to its
B-entries,

ReconB(ΠB(s)) = s.

Privacy. Every unauthorized set can learn nothing about the secret (in the infor-
mation theoretic sense) from the shares of the users in the set. Formally, for
any set C 6∈ Γ, for every two secrets a, b ∈ S, and for every possible |C|-tuple
of shares 〈si〉ui∈C :

Pr[ ΠC(a) = 〈si〉ui∈C ] = Pr[ ΠC(b) = 〈si〉ui∈C ].

In every secret-sharing scheme, the size of the domain of shares of each user is at
least the size of the domain of the secrets [19], namely |Si| ≥ |S| for all i ∈ [n]. This
motivates the next definition.

Definition 2.3 (Ideal Access Structure). A secret-sharing scheme with domain
of secrets S is ideal if the domain of shares of each user is S. An access structure
Γ is ideal if for some finite domain of secrets S there exists an ideal secret sharing
scheme realizing it.

Most previously known secret sharing schemes are linear. The concept of linear
secret sharing schemes was introduced by Brickell [6] in the ideal setting and was
latter generalized to non-ideal schemes. Linear schemes are equivalent to monotone
span programs [18]. For simplicity we only define ideal linear schemes.

Definition 2.4 (Ideal Linear Secret Sharing Scheme). Let F be a finite field.
An ideal linear secret sharing scheme over F takes the following form: The domain of
secrets and shares is S = F. The scheme is specified by n + 1 vectors in Ft for some
integer t: a vector Ti per user ui ∈ U , where i ∈ [n], and a so-called target vector
T. To share a secret s ∈ F, the dealer chooses a random vector R ∈ Ft such that
R ·T = s and then the share of user ui is R ·Ti.

The next theorem characterizes the access structure that is realized by a linear
secret sharing scheme.

Theorem 2.5 ([6, 18]). A linear secret sharing scheme with vectors {Ti}i∈[n]

and T realizes the following access structure Γ:
A ∈ Γ if and only if T ∈ span {Ti : ui ∈ A}.

2We stress that there is no requirement that ReconB can be efficiently implemented. However,
this is the case for all the secret sharing schemes designed in this paper.
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2.2. Weighted Threshold Access Structures. In this paper we concentrate
on special access structures, so-called weighted threshold access structures, which were
already introduced in [28].

Definition 2.6 (Weighted Threshold Access Structure – WTAS). Let w : U → N
be a weight function on U and T ∈ N be a threshold. Define w(A) :=

∑
u∈A w(u)

and Γ = {A ⊆ U : w(A) ≥ T}. Then Γ is called a weighted threshold access structure
(WTAS) on U .

It is easy to see that Definition 2.6 does not restrict generality when assuming
that the weights and the threshold are integers. In other words, given a WTAS with
real positive weights and threshold, there exist integer weights and threshold that
induce the very same access structure.

2.3. Terminology and Notations. First, for a positive integer n, we denote by
[n] the set {1, 2, . . . , n}. Throughout this paper we assume that the users are ordered
in a nondecreasing order according to their weights, i.e.,

0 < w(u1) ≤ w(u2) ≤ · · · ≤ w(un).

Let A = {uij}1≤j≤k be an ordered subset of U , where 1 ≤ i1 < · · · < ik ≤ n. In
order to avoid two-leveled indices, we will denote the users in such a subset with
the corresponding lower-case letter, namely, A = {aj}1≤j≤k. We denote the first
(lightest) and last (heaviest) users of A by Amin = a1 and Amax = ak respectively.
For an arbitrary ordered subset A we let As,t = {aj}s≤j≤t denote a run-subset. If
s > t, then As,t = ∅. Two types of runs that we shall meet frequently are prefixes
and suffixes. A prefix of a subset A is a run-subset of the form A1,`, while a suffix
takes the form A`,k, where 1 ≤ ` ≤ k. A suffix A`,k is a proper suffix of A1,k if ` > 1.

We conclude this section by introducing the precedence relation ≺. When applied
to users, ui ≺ uj indicates that i < j (and, in particular, w(ui) ≤ w(uj)). This relation
induces the following lexicographic order on subsets of U :

• ∅ ≺ A for all A ⊆ U such that A 6= ∅.
• If a1 ≺ b1, then A ≺ B; if b1 ≺ a1, then B ≺ A; otherwise, A ≺ B if and only

if (A \ {a1}) ≺ (B \ {b1}).
3. Characterizing Ideal WTASs. The main result of this paper is a combina-

torial characterization of ideal WTASs. We define in Definitions 3.1–3.4 the building
blocks that play an essential role in this characterization. Using these definitions, we
state Theorem 3.5, our main result, that characterizes ideal WTASs. We then outline
the proof of that theorem, where the full proof is given in the subsequent sections.

3.1. Building Blocks. Definition 3.1 (Hierarchical Threshold Access Struc-
ture – HTAS). Let m be an integer, U be a set of users, and {Li}1≤i≤m be a par-
tition of U into a hierarchy of m disjoint levels, i.e., U =

⋃m
i=1 Li. Furthermore,

let {ki}1≤i≤m be a sequence of decreasing thresholds, k1 > k2 > · · · > km. These
hierarchy and sequence of thresholds induce a hierarchical threshold access structure
(HTAS) on U :

ΓH =



A ⊆ U : There exists i ∈ [m] such that

∣∣∣∣∣∣
A ∩

m⋃

j=i

Lj

∣∣∣∣∣∣
≥ ki



 .

That is, a set A ⊆ U is in ΓH if and only if it contains at least ki users from the ith
level and above, for some i ∈ [m].
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The family of HTASs was introduced by Simmons in [29] and further studied
by Brickell who proved their ideality [6]. An explicit ideal scheme for these access
structures was constructed in [35].

Remark 3.2. Without loss of generality, we can assume that |Li| > ki − ki+1

for every i ∈ [m− 1], and |Lm| ≥ km. Indeed, if |Li| ≤ ki − ki+1 for some i ∈ [m− 1],
then the ith threshold condition in the HTAS definition implies the (i+1)th threshold
condition and, consequently, the (i + 1)th condition is redundant.

We next present tripartite access structures (TPASs), which are a generalization of
bipartite access structures that were presented in [25]. In a bipartite access structure,
the set of users is partitioned into two classes, and a subset is authorized if the sizes
of its intersection with each of these classes satisfy some predefined conditions. In
a tripartite access structure, the set of users is partitioned into three classes, and,
similarly to bipartite access structures, a given subset is authorized if the sizes of its
intersection with each of these classes satisfy some conditions. In the next definition
we describe two special types of tripartite access structures. We would like to stress
that there exist other types of tripartite access structures, but herein we concentrate
only on those two types, since only they are relevant for the characterization of ideal
WTASs. Later on we prove that these types of TPASs are ideal by constructing a
linear ideal secret sharing scheme that realizes them. That scheme is a generalization
of a scheme from [25] for bipartite access structures. Following our work, Farràs,
Mart́ı-Farrée, and Padró [14] exactly characterize the tripartite access structures that
are ideal.

Definition 3.3 (Tripartite Access Structure – TPAS). Let U be a set of n users,
such that U = A∪B∪C, where A, B, and C are disjoint, and A and C are nonempty.
Let m, d, t be positive integers such that m ≥ t. Then the following is a tripartite access
structure (TPAS) on U :

∆1 = {X ⊆ U : (|X| ≥ m and |X ∩ (B ∪ C)| ≥ m− d) or |X ∩ C| ≥ t} .

Namely, a set X is in ∆1 if either it has at least m users, (m− d) of which are from
B ∪ C, or it has at least t users from C. If |B| ≤ d + t − m, then the following is
another type of a tripartite access structure:

∆2 = {X ⊆ U : (|X| ≥ m and |X ∩ C| ≥ m− d) or |X ∩ (B ∪ C)| ≥ t} .

That is, a set X is in ∆2 if either it has at least m users, (m− d) of which are from
C, or it has at least t users from B ∪ C.

Definition 3.4 (Composition of Access Structures). Let U1 and U2 be disjoint
sets of users and let Γ1 and Γ2 be access structures on U1 and U2 respectively. Let
u1 ∈ U1, and set U = U1 ∪ U2\ {u1}. Then the composition of Γ1 and Γ2 via u1 is

Γ =
{

X ⊆ U :
X1 ∈ Γ1 or (X2 ∈ Γ2 and X1 ∪ {u1} ∈ Γ1)
where X1 = X ∩ U1 and X2 = X ∩ U2

}
;

namely, X ⊆ U is authorized in this access structure if either X1 = X ∩ U1 is
authorized in Γ1, or X1 ∪ {u1} is authorized in Γ1 and X2 = X ∩ U2 is authorized in
Γ2.

The motivation behind this definition is as follows. We start with an access
structure Γ1 on U1. Then, we allow the replacement of one of the users in U1, denoted
u1, by substitute users of a disjoint set U2, where Γ2 specifies the subsets of U2 that
are legitimate substitutes for u1. Hence, in the set U = U1∪U2\ {u1} that is obtained
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from U1 after replacing u1 with U2, a subset is authorized if it is either a subset in Γ1

that does not include u1 or it was obtained from a subset in Γ1 that did include u1,
by replacing u1 with an authorized subset of substitutes from Γ2. In Lemma 8.1 we
show that Γ is ideal if and only if both Γ1 and Γ2 are ideal.

3.2. The Characterization. Following the notation convention in Section 2.3,
the set U is viewed as a sequence which is ordered in a monotonic non-decreasing
order according to the weights. Let M be the lexicographically minimal minterm of
Γ (that is, M ∈ Γ is a minterm and M ≺ M ′ for all other minterms M ′ ∈ Γ). It
turns out that the form of M plays a significant role in the characterization of an
ideal weighted threshold access structure Γ.

If M is a prefix of U , namely M = U1,k = {u1, . . . , uk} for some k ∈ [n], then, as
we prove in Section 6.3, the access structure is a HTAS of at most three levels. If M
is a lacunary prefix, in the sense that M = U1,k \ {u`} for 1 ≤ ` < k ≤ n, then, as we
prove in Section 7, the access structure is a TPAS. Otherwise, if M is neither a prefix
nor a lacunary prefix, the access structure is a composition of two weighted threshold
access structures on smaller sets. More specifically, we identify a prefix U1,k, where
1 < k < n, that could be replaced by a single substitute user u, and then show that
Γ is a composition of a WTAS on U1,k and another WTAS on Uk+1,n ∪ {u}. Since
Γ is ideal, so are the two smaller WTASs, as implied by Lemma 8.1. Hence, this
result, which we prove in Section 8, completes the characterization of ideal WTASs
in a recursive manner.

Hence, our main result in this paper is as follows.
Theorem 3.5 (The Characterization Theorem). Let U be a set of users, w :

U → N be a weight function, T be a threshold, and Γ be the corresponding WTAS.
Then Γ is ideal if and only if one of the following three conditions holds:

• The access structure Γ is a HTAS of at most three levels.
• The access structure Γ is a TPAS.
• The access structure Γ is a composition of Γ1 and Γ2, where Γ1 and Γ2 are

ideal WTASs defined on sets of users smaller than U .
In particular, if Γ is an ideal WTAS then there exists a linear ideal secret sharing
scheme that realizes it.

Remark 3.6. In the ideal schemes for weighted threshold access structures that
we construct in this paper, the size of the domain of secrets is at most 2poly(n). This is
the field size needed for the HTAS constructions of [35] and for the TPAS construction
introduced in Section 7. As the composition of ideal access structures does not change
the size of the underlying field, we get that the field size for our entire construction is
bounded by 2poly(n). This is a comfortable bound since it implies that both the secret
and the shares may be represented by poly(n) bits.

4. Matroids and Ideal Secret Sharing Schemes. Matroids and ideal secret
sharing schemes are strongly related. If an access structure is ideal, then there is a
matroid that reflects its structure. On the other hand, every matroid that is repre-
sentable over some finite field is the reflection of some ideal access structure. In this
section we review some basic results from the theory of matroids and describe their
relation to ideal secret sharing schemes. For more background on matroid theory the
reader is referred to [24].

Matroids are a combinatorial structure that generalizes both linear spaces and
the set of circuits in an undirected graph. They are a useful tool in several fields of
theoretical computer science, e.g., optimization algorithms. A matroid M = 〈V, I〉
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is a finite set V and a collection I of subsets of V that satisfy the following three
axioms:
(I1) ∅ ∈ I.
(I2) If X ∈ I and Y ⊆ X, then Y ∈ I.
(I3) If X and Y are members of I with |X| = |Y |+ 1, then there exists an element

x ∈ X\Y such that Y ∪ {x} ∈ I.
The elements of V are called the points of the matroid and the sets in I are called
the independent sets of the matroid. Axiom (I1) assures that there is at least one
independent set in I. Axiom (I2) asserts that the collection I is closed under con-
tainment. Finally, Axiom (I3) enables the expansion of every small independent set
in I. A dependent set of the matroid is any subset of V that is not independent. The
minimal dependent sets are called circuits. A matroid is said to be connected if for
any two points there exists a circuit that contains both of them.

We now discuss the relations between ideal secret sharing schemes and matroids.
Let Γ be an access structure on a set of users U = {u1, . . . , un}. If Γ is ideal, then,
by the results of [7, 21], there exists a matroid M corresponding to Γ. The points of
M are the users in U together with an additional point, denoted u0, that could be
thought of as representing the dealer. We denote hereinafter by

C0 = {X ∪ {u0} : X is a minterm of Γ}
the set of all Γ-minterms, supplemented by u0.

Theorem 4.1 ([7, 21]). Let Γ be a connected ideal access structure on U . Then
there exists a connected matroid M on U ∪ {u0} such that C0 is exactly the set of
circuits of M containing u0.

The next result implies the uniqueness of the matroid M that corresponds to a
given connected ideal access structure, as discussed in Theorem 4.1, and, additionally,
it provides means to identify all the circuits of that matroid.

Lemma 4.2 ([24, Theorem 4.3.2]). Let e be an element of a connected matroid
M and let Ce be the set of circuits of M that contain e. Then all of the circuits of
M that do not contain e are the minimal sets of the form

(C1 ∪ C2)\
⋂
{C3 : C3 ∈ Ce, C3 ⊆ C1 ∪ C2}

where C1 and C2 are distinct circuits in Ce.
The unique matroid whose existence and uniqueness are guaranteed by Theo-

rem 4.1 and Lemma 4.2 is referred to as the matroid corresponding to Γ. This next
definition will enable us to explicitly define the matroid corresponding to Γ using the
authorized sets in Γ.

Definition 4.3 (Critical User). Let M1 and M2 be distinct minterms of Γ. A
user x ∈ M1 ∪M2 is critical for M1 ∪M2 if the set M1 ∪M2\ {x} is unauthorized.
In addition, we define

D(M1, M2) = (M1 ∪M2)\ {x ∈ M1 ∪M2 : x is critical for M1 ∪M2} .

With this definition, the following corollary is a straightforward result of Theo-
rem 4.1 and Lemma 4.2.

Corollary 4.4. Let Γ be a connected ideal access structure on U . Then, there
exists a unique connected matroid M on U ∪ {u0} such that C0 is exactly the set of
circuits of M containing u0. Furthermore, the minimal sets in

{D(M1,M2) : M1,M2 are distinct minterms of Γ}
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are the circuits of the matroid that do not contain u0.
In the sequel we use the following simple consequence of Corollary 4.4.
Corollary 4.5. Let M1 and M2 be two distinct minterms of Γ. Then D(M1,M2)

is a dependent set of M.
Note that D(M1,M2) is a dependent set of M, but is not necessarily a circuit of

M. The following basic result from matroid theory provides another way of estab-
lishing the dependency of a set in a matroid.

Lemma 4.6 ([24, Page 16]). Let C1 and C2 be two distinct circuits in a matroid,
e ∈ C1 ∩ C2, and d ∈ C1 \ C2 such that d 6= e. Then there exists a circuit C3 ⊆
(C1 ∪ C2)\ {e}, where d ∈ C3.

In most applications of the lemma we will ignore d and the fact that d ∈ C3. Since
every minterm of Γ is properly contained in a circuit of M, it forms an independent
set of M. However, these are not necessarily the only independent sets in M. The
following claim is a simple corollary of Axiom (I3) in the matroid definition.

Claim 4.7. Let M be a matroid and I be an independent set of size m. Then
any independent set of size ` < m can be extended to an independent set of size m.

Finally, the next lemma is applicable when adding an element to an independent
set results in a dependent set.

Lemma 4.8. Let I be an independent set in a matroid M and let e be an element
of M such that I ∪ {e} is dependent. Then M has a unique circuit contained in
I ∪ {e} and that circuit contains e.

To prove that an access structure is not ideal we use the above results that define
the dependent sets in the matroid corresponding to Γ. In particular, we use the basic
fact that an independent set of M cannot contain a dependent set (see Axiom (I2)).
By Theorem 4.1, for every minterm M ∈ Γ, the set M ∪{u0} is a circuit of M. Thus,
the set M is an independent set of M. Therefore, if D is a dependent set of M, it
cannot be contained in any minterm of Γ. The next example shows how to use the
above statements in order to demonstrate that a given access structure is not ideal.

Example 4.9. Consider the WTAS Γ on the set U = {u1, u2, u3, u4} with weights
w(u1) = w(u2) = w(u3) = 1 and w(u4) = 2 and threshold T = 3. The minterms
of Γ are {u1, u2, u3}, {u1, u4}, {u2, u4}, and {u3, u4}. It follows from Benaloh and
Leichter [4] that this access structure is not ideal.3 We first give a simple proof, based
on Corollary 4.5, showing that Γ is not ideal. Assume that it is ideal and consider the
minterms M1 = {u1, u4} and M2 = {u2, u4}. The set {u1, u2} is unauthorized and
thus u4 is critical for M1∪M2. On the other hand, the users u1 and u2 are not critical
for M1∪M2. Therefore, by Corollary 4.5, the set D(M1, M2) = {u1, u2} is a dependent
set of M, the matroid corresponding to Γ. However, the set {u1, u2, u3} is a minterm
of Γ and, consequently, it is independent in M. Since {u1, u2} ⊂ {u1, u2, u3}, we
arrive at the absurd conclusion that a dependent set is contained in an independent
set. This contradiction implies that Γ is not ideal.

We proceed to sketch an alternative proof for the non-ideality of Γ, similar to the
proof that was given in [4]. We present this proof for two reasons. First, we want to
show that using matroids simplifies and shortens the proofs substantially. Matroid-
based proofs, however, tend to be technical and, consequently, not very intuitive. The
alternative proof that we present herein reveals some of the intuition that is sometimes
obfuscated in matroid-based proofs.

3In [9] it was shown that if the domain of secrets is S, the size of the domain of shares of at
least one user in that access structure must be at least |S|1.5. That result improved upon previous
bounds that were derived in [8].
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Assume towards a contradiction that Γ has an ideal secret sharing scheme over
some domain of secrets S. Letting si denote the share of user ui for 1 ≤ i ≤ 4, we will
show that s2 may be computed from s1 (this statement is equivalent to the statement
in the first proof that the set {u1, u2} is dependent). Having shown that, we will
conclude that {u1, u3} can reconstruct the secret (since {u1, u2, u3} is an authorized
set and u2 is unnecessary in the presence of u1), in a contradiction with the definition
of Γ.

We need to show that s2 is uniquely determined by s1. Assume, by contradiction,
that there exists s1 ∈ S1 and s2, s

′
2 ∈ S2, where s2 6= s′2, such that both assignments

of shares to {u1, u2}, namely 〈s1, s2〉 and 〈s1, s
′
2〉, are possible. Since {u1, u2} is

unauthorized, that set cannot learn any information on the secret from its shares.
Hence, given the pair of shares 〈s1, s2〉, every secret is possible. Hence, for every
s ∈ S, there exists at least one share s4(s) for u4 such that 〈s1, s2, s4(s)〉 is a possible
assignment of shares to {u1, u2, u4} given the secret s. On the other hand, since the
shares of {u1, u2, u4} determine the secret, s4(s) must be unique, since otherwise the
domain of shares of u4 would be larger than the domain of secrets, in a contradiction
with ideality. Similarly, for every s ∈ S there exists a unique share s′4(s) such that
〈s1, s

′
2, s

′
4(s)〉 is another possible assignment of shares to {u1, u2, u4} given the secret

s.
In view of the above, the sets {s4(s) : s ∈ S} and {s′4(s) : s ∈ S} are of size |S|.

However, since they are both subsets of S4 and, by ideality, |S4| = |S|, they both equal
S4. One conclusion is that each secret s ∈ S is consistent with each share s4 ∈ S4.
Another conclusion is that there are secrets a, b ∈ S such that s4(a) = s′4(b) := s4. If
a 6= b, then the pair of shares 〈s1, s4〉 is insufficient to determine whether the secret is
a or b, in a contradiction with the correctness requirement that {u1, u4} ∈ Γ should
be able to reconstruct the secret. Thus, a = b, whence both pairs of shares 〈s2, s4〉
and 〈s′2, s4〉 are possible assignments of shares to {u2, u4} given that the secret is a.
But this implies that the size of S2 is at least |S|+ 1 (by going over all secrets s ∈ S
and looking for a corresponding assignment of shares where the share of u4 is s4),
thus contradicting ideality.

4.1. Restrictions. Definition 4.10 (Restriction). Let Y,X ⊆ U be two dis-
joint subsets of users. The restriction of Γ that is induced by Y on X is defined as
the following access structure:

ΓY,X = {Z ⊆ X : Z ∪ Y ∈ Γ} .

In other words, ΓY,X consists of all subsets of X that complete Y to an authorized
set in Γ. Since ΓY,X is defined on a smaller set of users, restrictions can be helpful in
recursively characterizing the structure of Γ. The following known result assures us
that if Γ is ideal, ΓY,X is ideal as well. For completeness, we give a proof herein.

Lemma 4.11. Let Γ be an access structure on a set of users U . Let Y,X ⊆ U be
sets such that X ∩ Y = ∅. If Γ is ideal, then ΓY,X is ideal.

Proof. Let Y = {ui1 , . . . , ui|Y |}. We construct an ideal secret sharing scheme
Π′ for ΓY,X using an ideal scheme Π for Γ. Fix an arbitrary secret s′ ∈ S , and let
sY = 〈s′i1 , . . . , s′i|Y |〉 = ΠY (s′) be a possible vector of shares for the users of Y . Let
s ∈ S be a secret to be distributed by Π′. The scheme Π′ randomly chooses an n-tuple
Π(s) = 〈s1, . . . , sn〉 such that sij = s′ij

for all 1 ≤ j ≤ |Y | (such a selection is possible
because Y is unauthorized, whence every assignment of shares to Y is consistent with
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every secret). Every user uj ∈ X is then assigned by Π′ the share sj . (The shares of
Y , namely 〈s′i1 , . . . , s′i|Y |〉, are considered “publicly known”.)

The scheme is correct since if Z ∈ ΓY,X then Y ∪ Z ∈ Γ, and thus the members
of Z, who know the shares sY of Y , can reconstruct the secret as in the scheme Π for
Γ. Similarly, the scheme is private, since if Z /∈ ΓY,X , then Y ∪ Z /∈ Γ, and thus the
users of Z, who know the shares of Y , will not have any information regarding the
secret. The scheme is ideal since the share-domain of all the users is the same as in
the original ideal scheme.

The following result gives a relation between the matroids corresponding to Γ and
ΓY,X .

Lemma 4.12. Let Γ be an ideal access structure on a set of users U . Let Y,X ⊆ U
be sets such that X ∩Y = ∅, and Y is independent in the matroid corresponding to Γ.
Then if a set I ⊆ X is independent in the matroid corresponding to ΓY,X , it is also
independent in the matroid corresponding to Γ.

Proof. Let M = 〈U ∪ {u0} , I〉 be the matroid associated with Γ. We define the
matroid M′ = 〈X ∪ {u0} , I ′〉 as follows: A set Z ⊆ X ∪ {u0} is in I ′ if and only if
Y ∪Z ∈ I. This is indeed a matroid: Axiom (I1) holds because Y ∈ I so that ∅ ∈ I ′.
As for Axiom (I2), Y ∪ B ∈ I for every B ∈ I ′; therefore, if A ⊆ B then Y ∪ A ∈ I
whence A ∈ I ′. Axiom (I3) holds as well. Let A,B ∈ I ′ be such that |A| > |B|.
Since Y ∪ A ∈ I and Y ∪ B ∈ I while |Y ∪A| > |Y ∪B|, there must be an element
x ∈ A\B such that Y ∪ (B ∪ {x}) ∈ I. Therefore, B ∪ {x} ∈ I ′, as required.

We claim that M′ is the unique matroid corresponding to ΓY,X . That is, for
every M ⊆ X, the set M ∪ {u0} is a circuit of M′ if and only if M is a minterm of
ΓY,X . Proving that, we get that if I ∈ I ′ then Y ∪ I ∈ I and, therefore, I itself is
independent in M.

Suppose M ∪ {u0} is a circuit of M′. Then Y ∪M ∪ {u0} is dependent in M,
and, consequently must contain a circuit of M. That circuit must contain M ∪ {u0}
because otherwise there would be a proper subset B ⊂ M ∪ {u0} such that Y ∪B is
dependent in M, thus implying that B is dependent also in M′, in a contradiction
with our assumption that M ∪ {u0} is a circuit of M′. Let Y ′ ∪M ∪ {u0} be that
circuit of M, where Y ′ ⊆ Y . Hence, by the characterization of the matroid that
corresponds to a given access structure, Y ′∪M is a minterm of Γ. Hence, Y ∪M is in
Γ, and, consequently, M ∈ ΓY,X . It is left to show that M is a minterm of ΓY,X . Let
M ′ be a proper subset of M . Since M ∪ {u0} is a circuit of M′, the set M ′ ∪ {u0} is
independent in M′. This implies that Y ∪M ′ ∪{u0} is independent in M. Therefore
Y ∪M ′ /∈ Γ, and thus M ′ /∈ ΓY,X . This completes the proof of the first direction.

For the second direction, assume that M is a minterm of ΓY,X . We next prove
that M ∪{u0} is dependent in M′. The set Y ∪M is authorized in Γ. Let Y ′ ⊆ Y be
such that Y ′ ∪M ∈ Γ and |Y ′| is minimal (it is possible that Y ′ = ∅). We claim that
Y ′∪M is a minterm of Γ: indeed, every user in Y ′ is critical in Y ′∪M , as implied by
the minimality of |Y ′|; on the other hand, every user in M is critical, for otherwise M
would have a proper subset M ′ ⊂ M such that Y ∪M ′ ∈ Γ, thus contradicting our
assumption that M is a minterm of ΓY,X . It follows that Y ′ ∪M ∪{u0} is a circuit of
M. Therefore, the set Y ∪M ∪ {u0} is dependent in M. This implies that M ∪ {u0}
is dependent in M′.

To complete the proof we need to prove that M ∪{u0} is a circuit in M′. Assume
towards a contradiction that M ∪ {u0} properly contains a circuit of M′. If this
circuit is of the form M ′ ∪ {u0}, for some M ′ ⊂ M , then by the proof of the first
direction, M ′ is a minterm of ΓY,X , contradicting the fact that M is a minterm of
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ΓY,X . Therefore, the circuit is some M ′ ⊆ M . This implies that Y ∪M ′ is dependent
in M. Hence, there exists Y ′′ ⊆ Y , such that Y ′′ ∪M ′ is a circuit of M. However, as
shown earlier, Y ′ ∪M ∪ {u0} is a circuit of M as well, for some Y ′ ⊆ Y . Applying
Lemma 4.6 for these two circuits, with e being an arbitrary user in M ′, and d = u0,
we get that there is a circuit contained in (M\ {e})∪Y ∪{u0}, that contains u0. This
implies that (M\ {e}) ∪ Y ∈ Γ, whence (M\ {e}) ∈ ΓY,X , in a contradiction to our
assumption that M is a minterm of ΓY,X .

A special family of restrictions of Γ are restrictions in which Y = ∅, i.e. Γ∅,X .
Such a restriction consists of all subsets of X that are authorized in Γ. We shall refer
to such a restriction simply as the restriction of Γ to X. We conclude with a trivial
claim regarding restrictions of WTASs.

Claim 4.13. Let X,Y ∈ U such that X ∩ Y = ∅. If Γ is a WTAS, then ΓY,X is
a WTAS.

5. WTASs and Matroids. In this section we prove several properties of ma-
troids that are associated with ideal WTASs. These properties will serve us later in
characterizing ideal WTASs. Let Γ be an ideal WTAS on U = {u1, . . . , un} corre-
sponding to a weight function w : U → N and a threshold T . Let M be the matroid
corresponding to Γ.

An authorized set of Γ may contain many different minterms. The following
simple lemma shows that one of these minterms is a suffix of the set.

Lemma 5.1. Any X ∈ Γ contains a suffix minterm. Namely, if X = {x1, . . . , xk}
and X ∈ Γ, then there exists i ∈ [k] such that Xi,k = {xi, . . . , xk} is a minterm.

Proof. Let s ∈ [k] be the largest index such that Xs,k is authorized. We claim
that Xs,k is a minterm. Indeed, xs is critical for Xs,k since removing it from Xs,k

we get Xs+1,k, which is unauthorized by the choice of s. Consequently, every user
xi ∈ Xs,k is critical because xs has the smallest weight in Xs,k. Therefore, Xs,k is a
minterm.

We saw that minterms of Γ are independent sets of M. Different minterms of Γ
may be of different sizes. By Claim 4.7, if M and M ′ are minterms and |M | < |M ′|,
we can add (at least |M ′| − |M |) users to M such that the resulting set is still an
independent set of M. The next lemma asserts that the users that may be added to
M must have a smaller weight than the weight of every member of M :

Lemma 5.2. Let M be a minterm of Γ. Let y ∈ U\M be a user such that
w(Mmin) ≤ w(y). Then M ∪ {y} is a dependent set of M.

Proof. Let X = (M\ {Mmin}) ∪ {y} be the set that is obtained by replacing the
minimal element of M with y. Since w(X) ≥ w(M), the set X is authorized and,
thus, it contains a minterm M ′. Moreover, M 6= M ′ since Mmin ∈ M \M ′. Therefore,
by Corollary 4.5, the set M ∪M ′ = M ∪ {y} is dependent in M.

While Γ may have minterms of different cardinalities, we show in the next lemma
that whenever two minterms have the same minimal member they must be of the
same size.

Lemma 5.3. Let X and Y be minterms of the access structure Γ such that
Xmin = Ymin. Then |X| = |Y |.

Proof. As X and Y are minterms, they are independent sets of the matroid
M. Assume that |X| < |Y |. Then, by Axiom (I3) of the matroid definition, there
exists y ∈ Y \X such that the set X ∪ {y} is independent. However, as Xmin = Ymin

is a user with the minimal weight in both X and Y , we have that w(Xmin) ≤ w(y).
Consequently, in view of Lemma 5.2, the set X∪{y} is dependent. This contradiction
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implies that |X| ≥ |Y |. Arguing along the same lines we conclude that also |X| ≤ |Y |,
whence both minterms are of the same size.

In the matroid M corresponding to an access structure Γ, each minterm M of Γ
defined a circuit M ∪ {u0} in M. This may be viewed as a local relation between the
minterms of Γ and the dependent sets of M. However, when dealing with WTASs,
the global structure of Γ enables us to prove the dependency of various sets in M.
It turns out that the lexicographic order on the minterms of Γ, with respect to the
relation ≺ (defined in Section 2.3), is strongly related to dependence in M. This is
demonstrated through the following definition and lemmas.

Definition 5.4 (Canonical Complement). Let P be a prefix of some minterm of
Γ. Let Y ⊆ U be the lexicographically minimal set such that:

• Pmax ≺ Ymin, and
• The set P ∪ Y is a minterm of Γ.

Then the set Y is called the canonical complement of P .
The following lemma shows that replacing the canonical complement by a user

that precedes the first element of the canonical complement results in a dependent
set.

Lemma 5.5. Let P be a prefix of some minterm of Γ. Let Y = {y1, . . . , yt} be
the canonical complement of P , and b be a user such Pmax ≺ b ≺ y1. Then P ∪ {b}
is dependent. Furthermore, the set P ∪ {b} includes a unique circuit, and that circuit
contains b.

Proof. If P = ∅, then, since Γ is connected, there exists a minterm that starts
with u1, whence y1 = u1. Therefore, it cannot be that b ≺ y1 and thus the claim is
trivially true. Otherwise, if P 6= ∅, denote by M1 the minterm M1 = P ∪ Y . Let
X2 = (M1\ {Pmax})∪{b} be the set resulting from replacing Pmax with b in M1. Since
w(Pmax) ≤ w(b), the set X2 is authorized (though not necessarily a minterm). Let M2

be the suffix minterm contained in X2 (such a minterm exists in view of Lemma 5.1).
It must be that b ∈ M2, since otherwise M2 ⊆ Y , where Y – the canonical complement
of P – is a proper subset of a minterm and thus is unauthorized.

Let A = M1 ∪M2 = P ∪ {b} ∪ Y . We proceed to show that every user in Y is
critical for A. This will show that D(M1,M2) ⊆ (M1 ∪M2) \Y = P ∪{b}. But since,
by Corollary 4.5, the set D(M1,M2) is dependent, this will imply that also P ∪{b} is
dependent. We also observe that it is sufficient to show that Ymin = y1 is critical for
A; this will imply that also all other members of Y , having weight that is no smaller
than w(y1), are also critical for A.

In view of the above, it suffices to show that y1 is critical for A. Suppose this is
not the case, namely, the set A\ {y1} is authorized. Since A\ {y1} results from M1

by replacing y1 by b where w(b) ≤ w(y1), and since M1 is a minterm, it must be that
A\y1 is also a minterm. But this is a contradiction to the choice of y1 as the first
element in the canonical complement of P . Hence, all the elements of Y are critical
for A, and, consequently, P ∪ {b} is dependent.

Since P is part of a minterm, it must be that P is independent. Thus, by
Claim 4.8, the set P ∪ {b} must contain a unique circuit, and that circuit contains b.

The next lemma is a generalization of Lemma 5.5. Given a prefix P of some
minterm, it gives a sufficient condition for a set B ⊆ U so that P ∪B is dependent in
M. It plays an essential role is our study of the characterization of ideal WTASs.

Lemma 5.6. Let P be a prefix of some minterm of Γ. Let Y = {y1, . . . , yt} be
the canonical complement of P , and B = {b1, . . . , bj} be a set such that Pmax ≺ Bmin
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and bj ≺ yj. Then, the set P ∪B is dependent.
Proof. The proof is by induction on j. The case j = 1 is handled by Lemma 5.5.

We assume that the lemma holds for all i ∈ [j − 1] and proceed to prove it for i = j.
If bi ≺ yi for some i ∈ [j− 1], then the statement of the lemma holds by induction (in
fact, in that case we conclude that P ∪ B1,i is dependent, which is a stronger claim
that what we need to show). Therefore, we may assume hereinafter that yi = bi or
yi ≺ bi for all i ∈ [j − 1].

Assume towards a contradiction that P ∪ B is independent. Denote D = P ∪
{y1} ∪ B and P ′ = P ∪ {y1}. The canonical complement of P ′ is Y2,t. On the other
hand, since P ′max = y1 ¹ b1 ≺ b2, and bj ≺ yj , the induction hypothesis, applied to
P ′ and B2,j , implies that P ′ ∪ B2,j is dependent. Since P ′ ∪ B2,j ⊆ D, the set D is
also dependent. Therefore, since we assumed that P ∪ B is independent, Claim 4.8
implies that D contains a unique circuit C. The uniqueness of the circuit C in D and
the fact that P ′ ∪B2,j is a dependent subset of D, imply that C ⊆ P ′ ∪B2,j . This, in
turn, implies that b1 /∈ C, unless y1 = b1. This will allow us to derive a contradiction.

There are three possible cases regarding the position of b1 with respect to the
members of Y : y1 = b1, or y1 ≺ b1 ≺ y2, or y2 ¹ b1. The first case is trivial: if
y1 = b1 then P ∪ B = P ′ ∪ B2,j and, thus, it is dependent, in a contradiction to our
assumption.

If y1 ≺ b1 ≺ y2 then by Lemma 5.5, applied to P ′ and b1, the set P ′ ∪ {b1} is
dependent and contains a circuit C ′ that contains b1. As b1 ∈ C ′ and b1 /∈ C, we
conclude that C 6= C ′. However, as C ′ ⊆ D, this contradicts the uniqueness of the
circuit C in D.

The only case left is y2 ¹ b1. As P ′ is independent, there must be an index s ∈
{2, . . . , j} such that bs ∈ C (for, otherwise, as b1 /∈ C, C ∩B = ∅, and, consequently,
C ⊆ P ′). Consider the set Bs = B\ {bs}. Since |Bs| = j− 1, P ′max = y1 ≺ b1 = Bs

min,
and the (j − 1)th element of Bs (which is either bj , if s < j, or bj−1) precedes the
(j−1)th element of the canonical complement of P ′ (which is yj), we conclude, by the
induction hypothesis, that P ′ ∪ Bs is dependent. Therefore, it contains a circuit C ′′

that does not contain bs. Since bs ∈ C but bs /∈ C ′′, we infer that C 6= C ′′. However,
as C ′′ ⊆ D, this contradicts the uniqueness of C in D. This completes the proof that
the set P ∪B is dependent.

6. WTASs and HTASs. In this section we discuss the family of hierarchi-
cal threshold access structures (HTASs), from Definition 3.1, and their relation to
WTASs. In Section 6.1 we prove certain properties of the matroids associated with
such access structures. In Section 6.2 we characterize the intersection between HTASs
and WTASs. Finally, in Section 6.3, we show that if an ideal WTAS has a minterm
in the form of a prefix of U , then it is in fact an HTAS.

When discussing a HTAS on some set U = {u1, . . . , un}, we shall assume that the
users in U are ordered according to their position in the hierarchy, from the lowest
level to the highest. Namely, that

Li = U`i,`i+1−1 = {u`i , . . . , u`i+1−1} ∀i ∈ [m](6.1)

for some sequence `1 = 1 < `2 < · · · < `m < `m+1 = n + 1. Given a nonempty subset
A ⊆ U , if Amin ∈ Li, then A is said to be of level i and it is denoted by L(A) = i.

6.1. The Matroid Associated with HTASs. Since any HTAS ΓH is ideal [6,
35], Theorem 4.1 implies that there exists a matroid M that is associated with it. We
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derive herein some properties of such matroids that will be used later in our study of
the structure of matroids corresponding to ideal WTASs.

Claim 6.1. Let ΓH and M be an HTAS and its associated matroid. Then every
circuit of M not containing u0 is a union of two distinct minterms.

Proof. By Corollary 4.4, the circuits of the matroid M that do not contain
u0 are the union of two minterms of ΓH , excluding users that are critical to that
union. All that needs to be shown is that if M1,M2 are two minterms in ΓH , no
user in their union, u ∈ M1 ∪ M2, is critical. Assume, without loss of generality,
that L(M1) = i ≤ L(M2). Then, as M1 is a minterm, we conclude that it satisfies
the ith threshold condition with an equality, namely, M1 has ki users from

⋃m
j=i Lj .

Hence, since M2 ⊆
⋃m

j=i Lj and M2 6= ∅, the union M1 ∪M2 has at least ki + 1 users
from

⋃m
j=i Lj . Therefore, we can remove any user from M1 ∪ M2 and still have an

authorized set. Hence, no user u ∈ M1 ∪M2 is critical for the union.
Claim 6.2. Let ΓH and M be an HTAS and its associated matroid. Then U1,k1+1

is a circuit of M.
Proof. Consider the two sets U1,k1 and U2,k1+1. The first one is a minterm of ΓH .

Regarding the second, there are two options: either U2,k1+1 is a minterm (satisfying
the k1-threshold condition), or it satisfies already the k2-threshold condition (this may
happen only if |L1| = `2 − 1 = k1 − k2 + 1, which is the minimal possible value for
the size of that level). In both cases, U2,k1+1 contains a minterm that includes uk1+1.
Hence, U1,k1+1 is a union of two distinct minterms and, therefore, by Corollary 4.5,
it is dependent. We claim that it is actually a circuit. If not, then it must contain
a circuit C of size smaller than k1 + 1. By Claim 6.1, this circuit is a union of two
minterms. Since its size is smaller than k1 + 1, it must be a union of two minterms
from levels L2 and above. However, by Remark 3.2, |L1| ≥ k1−k2+1, or, equivalently,
|U1,k1+1|− |L1| ≤ k2. This implies that the set U1,k1+1 contains at most k2 users from
levels L2 and above. Since any minterm from levels L2 and above must be of size at
least k2, we infer that U1,k1+1 can contain at most one minterm from those levels.
This contradicts our earlier conclusion that it is a union of two minterms from those
levels. We therefore conclude that C must be a circuit of M.

6.2. The Intersection of WTASs and HTASs. Let U be a set of users and
let Γ be a monotone access structure on U that is both a WTAS and a HTAS. Namely,
on one hand, there exist a weight function w : U → N and a threshold T ∈ N such that
Γ is the corresponding WTAS on U and, on the other hand, there exists a hierarchy
in U , where U =

⋃m
i=1 Li, and thresholds k1 > k2 > · · · > km such that Γ is also the

corresponding HTAS on U . Our goal herein is to characterize such access structures
that belong to those two classes of access structures.

It should be noted that in the following discussion we can not assume that the
levels of U in the HTAS are nicely organized in a monotonic order as in (6.1).

We proceed with some notation. Let Ai, where i ∈ [m − 1], denote a subset of
ki − ki+1 users of largest weights in Li, and let Am be a subset of km − 1 users of
largest weights in Lm. We also let ai denote a user of minimal weight in Li, for all
i ∈ [m]. Note that, by Remark 3.2, we have that ai ∈ Li \Ai for every i ∈ [m].

We set A =
⋃m

i=1 Ai and B = Am∪{am}. The set A is unauthorized since it fails
to satisfy each of the threshold conditions by exactly one user, while B is authorized
since it is composed of km users of level Lm. Therefore w(A) < T and w(B) ≥ T .
But as B = A ∪ {am} \ (A \Am), we infer that

w(A \Am) < w(am) .(6.2)



16 A. BEIMEL, T. TASSA, AND E. WEINREB

We refer to the last level Lm in an HTAS as trivial if km = 1 (namely, all users of
such a level are self-sufficient). We proceed to characterize access structures that are
both WTAS and HTAS.

Lemma 6.3. If the last level is not trivial, then the number of levels m in the
HTAS is at most 2.

Proof. Assume that m ≥ 3 and that the last level is not trivial, i.e., km ≥ 2.
Let Zm be a subset of km − 2 ≥ 0 users of largest weight in Lm. Define Zm−1 =
Am−1 ∪ {am−1} and Zm−2 = Am−2 ∪ {am−2}. Their union Z = Zm−2 ∪ Zm−1 ∪
Zm is authorized since its cardinality is |Z| = |Am−2| + |Am−1| + km = km−2, and
consequently, it satisfies the (m− 2)th threshold condition.

Next, consider the set B = Z ∪{am}\ (Am−1∪Am−2) = Zm∪{am−2, am−1, am}.
Since, by (6.2), w(Am−1 ∪ Am−2) < w(am), the definition of B implies that w(B) >
w(Z). Therefore, as Z is authorized, so is B. However, while B is authorized in
the WTAS, it is unauthorized in the HTAS, as implied by the following inequalities:
|B ∩ Lm| = |Zm ∪ {am}| = km − 1 < km , |B ∩ (Lm−1 ∪ Lm)| = km < km−1, and
|B| = km + 1 < km−2. This contradiction implies that either m ≤ 2 or the last level
is trivial.

According to Lemma 6.3, access structures that are both WTAS and HTAS and
have no self-sufficient users have a very simple hierarchical structure: either there is
one level (in which case the access structure is a simple threshold access structure) or
two levels. In the latter case, we show below that if the difference between k1 and k2

is larger than 1, the size of the first level is minimal (see Remark 3.2).
Lemma 6.4. If the last level is not trivial, m = 2, and k1 − k2 > 1, then

|L1| = k1 − k2 + 1.
Proof. Assume towards a contradiction that |L1| > k1 − k2 + 1. Let Z2 be a

subset with k2 − 2 users of largest weight in L2 and Z1 = A1 ∪ {b1, b2}, where b1 and
b2 are two users in L1 \A1 (note that our assumptions imply that Z1 and Z2 are well
defined). Their union Z = Z1 ∪ Z2 is authorized since |Z| = k1. Next, consider the
set B = Z∪{a2}\A1 = Z2∪{a2, b1, b2}. Since, by (6.2), w(A1) < w(a2), we conclude
that B is also authorized. Hence, it must be also authorized in the HTAS. However,
as |B ∩L2| = k2− 1 and |B| = k2 +1 < k1, the set B is unauthorized in the HTAS.

Lemmas 6.3 and 6.4 imply that if Γ is an access structure on U that is both a
WTAS and an HTAS, and U has no self-sufficient users (i.e., the last level in the
HTAS is not trivial), then either m = 1 or m = 2, where in the latter case either
k1 = k2 + 1 or |L1| = k1 − k2 + 1. If, on the other hand, the access structure has
self-sufficient users, i.e., the last level in the HTAS is trivial, then its restriction to the
first m−1 levels is still a WTAS as well as an HTAS, and, in addition, that restriction
has no self-sufficient users. This implies that the structure of that restriction is as
described above. This is summarized as follows:

Claim 6.5. Let Γ be both a WTAS and an HTAS. Then the HTAS-parameters
of Γ satisfy one of the following conditions:

1. m = 1.
2. m = 2 and k1 = k2 + 1.
3. m = 2 and |L1| = k1 − k2 + 1.
4. m ∈ {2, 3}, the level Lm is trivial, and the restriction of ΓH to the first m−1

levels is of the form that is described in cases (1)-(3).
To complete the characterization we proceed to prove the converse. Namely, that

any HTAS with parameters as described in Claim 6.5 is also a WTAS. This is shown
by constructing the appropriate weight function and threshold in each case.
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Claim 6.6. Let ΓH be an HTAS that satisfies one of the conditions in Claim 6.5.
Then there exist a weight function and a threshold such that ΓH coincides with the
corresponding WTAS.

Proof. Case (1) is a simple threshold, so we can assign each user the weight 1,
and set the threshold to k1. In case (2), the weight assigned to every user in L1 is
k2, the weight assigned to users in L2 is k1, and the threshold is k1 · k2. In case (3),
the weight assigned to users in L1 and L2 is 1 and k1 − k2 + 1, respectively, while
the threshold is k2(k1 − k2 + 1). In case (4), we assign weights to the users in the
first m− 1 levels and set an appropriate threshold according to the condition that is
satisfied by the restriction of ΓH to the first m − 1 levels and the rules that were
described above for the first three cases; in addition, we assign to every user in the
trivial level a weight that equals the threshold. In all four cases it is a straightforward
matter to verify that the induced WTAS coincides with the original HTAS.

6.3. Ideal WTASs with a Prefix Minterm are HTASs. In this section we
make the first step towards proving our main result, Theorem 3.5. Let Γ be an ideal
WTAS on a set U of n users, corresponding to a weight function w : U → N and a
threshold T . Assume that U possesses a prefix minterm U1,k for some k ∈ [n] (namely,
there exists k ∈ [n] such that the k users of smallest weights form a minterm). We
claim that Γ is an HTAS. We first describe the partition of U into levels and determine
the corresponding thresholds. Denoting the resulting HTAS by ΓH , we proceed to
prove that Γ = ΓH .

The decomposition of U to levels will respect the order of users according to their
weights. Namely, each level will be a run of U and our goal is to determine the
transition points between one level and the subsequent one. Since U1,k is a minterm,
U1,i is authorized for every i ∈ {k, . . . , n}. By Lemma 5.1, for every such i there exists
a run-minterm ending at ui. Let us denote the length of that run-minterm by µi. By
the non-decreasing monotonicity of the weights, we infer that the sequence of lengths
µ = (µi)k≤i≤n is monotonically non-increasing. Denote by m the number of distinct
values assumed by the sequence µ, and let us denote those values by k1 > · · · > km.
Then the HTAS ΓH is defined as follows: m is the number of levels and ki is the ith
threshold. As for the levels, we denote by `i, where i ∈ [m], the index of the first
user in the first run-minterm of length ki (e.g., `1 = 1 since U1,k is the first run-
minterm of length k = k1 and its first user is u1); then the ith level in the hierarchy
is Li = U`i,`i+1−1, where `m+1 = n + 1.

In addition, we denote by Usi,ti the right-most run-minterm whose length is ki,
where i ∈ [m], and consider the set Ai = Usi+1,`i+1−1. As Usi,ti is the last minterm
that contains ki users and U`i+1,ti+1 is the first minterm that contains ki+1 users, the
set Ai consists of the last ki − ki+1 users in Li, where km+1 = 1. (Note that if u
is the last element of the last ki-long minterm and u′ is the last element in the first
ki+1-long minterm then u and u′ are consecutive elements.) An important observation
regarding those subsets is that given i ∈ [m] and uh ∈ Ai, there is no run-minterm of
the WTAS Γ that starts with uh; indeed, if Uh,j was a run-minterm then it would be
a proper subset of the minterm Usi,ti if j ≤ ti, or a proper superset of the minterm
U`i+1,ti+1 if j ≥ ti + 1.

An illustration of the construction of the levels of the HTAS appears in Fig. 6.1.
The example in the illustration is of a WTAS with 14 users of weights 5, 5, 5, 5, 6, 6,
6, 6, 6, 6, 6, 30, 30, 30 and threshold T = 30. The vertical dashed lines indicate the
three levels in the corresponding HTAS (the third one being a trivial one) and the
horizontal lines indicate all of the run-minterms in that access structure.
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Fig. 6.1. A WTAS that is also an HTAS.

Next, we prove that the WTAS Γ coincides with the HTAS ΓH described above.
Theorem 6.7. Let Γ be an ideal WTAS on U that has a prefix minterm. Then

Γ is an HTAS.
Proof. Let ΓH be the HTAS as described above. We will prove that Γ = ΓH , thus

showing that Γ is an HTAS. We start with proving that ΓH ⊆ Γ. Let X ∈ ΓH . Then
for some i ∈ [m] the set X has at least ki users from

⋃m
j=i Lj . Letting Bi = U`i,`i+ki−1

denote the set of the first ki users from
⋃m

j=i Lj , the non-decreasing monotonicity of
the weights implies that w(X) ≥ w(Bi). By the construction of levels in ΓH , the set
Bi is a minterm of Γ, whence w(Bi) ≥ T . Therefore, w(X) ≥ T and, consequently,
X ∈ Γ.

Conversely, assume that X /∈ ΓH . Then X has at most ki−1 users from
⋃m

j=i Lj ,
for every i ∈ [m]. Consider the set A =

⋃m
i=1 Ai. By the definition of A, it has exactly

ki− 1 users from
⋃m

j=i Lj , for every i ∈ [m]. Moreover, A is the set with the maximal
weight among the sets that are unauthorized in the HTAS and thus w(X) ≤ w(A).
Therefore, it suffices to show that A /∈ Γ in order to conclude that X /∈ Γ and, thus,
complete the proof.

To this end, assume that A ∈ Γ. Then A contains some minterm M ∈ Γ. Assume
that M is of level i, L(M) = i, namely, i is the lowest level for which M ∩ Li 6= ∅.
Then M ∩ Ai is a prefix of M . In order to arrive at a contradiction, we proceed to
show that there can be no minterm of Γ that has a prefix which is a subset of Ai for
some i ∈ [m].

Assume, by contradiction, that there are such minterms, and let M ′ be the lex-
icographically minimal minterm of Γ of that sort. Let uh = M ′

min and let j be the
maximal index such that M ′ = Uh,j ∪ Z for some Z ⊂ U . Since uh ∈ Ai for some
i ∈ [m], and we observed earlier that no run-minterm of Γ starts in Ai, we con-
clude that Z 6= ∅ (and uj+1 ≺ Zmin because of the maximality of j). We claim that
j < ti. Indeed, if j ≥ ti, then M ′ is a proper superset of M̂ = U`i+1,ti ∪ {Zmin}. As
w(M̂) ≥ w(U`i+1,ti+1) ≥ T , we conclude that M̂ ∈ Γ. But then we get a contradiction
since a minterm M ′ cannot be a proper superset of an authorized set M̂ .

Next, define Q = M ′ ∪ {uj+1} \ {uj}. The set Q is authorized in Γ and, by
Lemma 5.1, it contains a suffix minterm M ′′ that must contain uj+1, for otherwise
it would be a proper subset of M ′. Therefore, M ′ ∪ M ′′ = M ′ ∪ {uj+1} = Uh,j ∪
{uj+1} ∪ Z. We claim that all members of Z are critical for this union. Assume, by
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contradiction, that M∗ = M ′ ∪ {uj+1} \ {z} is authorized, for some z ∈ Z. Since
w(uj+1) ≤ w(z) and M ′ was a minterm of Γ, also M∗ is a minterm of Γ. But M∗

is a minterm of Γ that starts within Ai and M∗ ≺ M ′, thus contradicting our choice
of M ′. Hence, by Corollary 4.5, the set Uh,j+1 is dependent in M. However, since
si < h and j + 1 ≤ ti, this dependent set is properly contained in the minterm Usi,ti ,
leading to a contradiction. Hence, A /∈ Γ, and the proof is thus complete.

7. Ideal WTASs and TPASs. In the previous section we dealt with the case
where the lexicographically minimal minterm of Γ is a prefix of U . Here, we handle the
case where the lexicographically minimal minterm of Γ is a lacunary prefix, namely,
it takes the form M = U1,d ∪ Ud+2,k for some 1 ≤ d ≤ k − 2 and k ≤ n. Throughout
this section we assume that there is at least one minterm starting with the user u2,
and that there are no self-sufficient users. If this is not the case, then Γ is a simple
composition of access structures as shown in Section 8.2. The section is organized
as follows: first we show that U2,k must be a minterm of Γ. Consequently, we show
that Γ is one of the two tripartite access structure (TPASs) that were defined in
Definition 3.3. Finally, in Section 7.1, we design linear ideal secret sharing schemes
that realize TPASs.

Consider the set U2,k. As U2,k = M ∪ {ud+1} \ {u1} and w(ud+1) ≥ w(u1), the
set U2,k is authorized. We proceed to show that it is in fact a minterm of Γ.

Claim 7.1. Let Γ be an ideal WTAS with M = U1,d ∪ Ud+2,k being its lexico-
graphical minimal minterm for some 1 ≤ d ≤ k− 2 and k ≤ n. Then if there exists a
minterm that has u2 as its minimal user, U2,k is a minterm of Γ.

Proof. Let M ′ be the lexicographically minimal minterm starting with u2. Assume
towards a contradiction that the authorized set U2,k is not a minterm. The minterm
M ′ cannot be a run-minterm since U2,k−1 is unauthorized (as its weight does not
exceed that of M \ {u1} which is a proper subset of the minterm M) and U2,k is
already an authorized set (since w(U2,k) ≥ w(M)) that is not a minterm. Let s be
the maximal index such that U2,s ⊂ M ′. In that case, as M ′ is not a run-minterm,
M ′ = U2,s ∪ Z where Z 6= ∅ and us+1 ≺ Zmin. We claim that s ≤ k − 2. Assume,
towards a contradiction, that s ≥ k−1. Then w(M ′) ≥ w(U2,k−1)+w(Z) ≥ w(U2,k).
However, as explained earlier, U2,k is an authorized subset that is not a minterm.
Hence, if we remove from U2,k its minimal user – u2 – we are left with a set that is
still authorized. But M ′ weighs more than U2,k and it also contains u2, whence also
M ′ \ {u2} is authorized. But this contradicts the fact that M ′ is a minterm. We
conclude that M ′ – the lexicographically minimal minterm starting with u2 – takes
the form M ′ = U2,s ∪Z where s ≤ k− 2 and Z is a non-empty set with Zmin Â us+1.

As Z is the canonical complement of U2,s, Lemma 5.5 implies that the set U2,s+1

is dependent. Hence, it contains a circuit C1 of the corresponding matroid M. The
circuit C1 must include the user ud+1 (the user that is missing in the minterm M),
since, otherwise, as s + 1 ≤ k − 1, the circuit C1 would be a subset of the minterm
M = U1,d ∪ Ud+2,k. We claim, and prove in the next paragraph, that U1,d+1 is also
a circuit of M. Since u1 ∈ U1,d+1 but u1 /∈ C1, the sets C1 and U1,d+1 are two
distinct circuits. In addition, both circuits include ud+1. Therefore, by Lemma 4.6,
the set C1∪U1,d+1\ {ud+1} is dependent. However, this set is contained in the minterm
M = U1,d∪Ud+2,k, which is an independent set of the matroid M. This contradiction
implies that U2,k is a minterm in Γ.

Hence, we need only to show that U1,d+1 is a circuit of M. Let Y = Ud+2,k,
X = U1,d+1 and consider ΓY,X , namely, the restriction of Γ induced by Y on X.
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By Lemma 4.11, it is an ideal WTAS, and U1,d is a prefix minterm in that access
structure. Therefore, by Theorem 6.7, the access structure ΓY,X is an HTAS, and,
by Claim 6.2, the set U1,d+1 is a circuit in the matroid corresponding to ΓY,X . By
Lemma 5.5, applied with P = U1,d, the set Ud+2,k as the canonical complement of P ,
and b = ud+1, the set P ∪ b = U1,d+1 is dependent in M. Assume, by contradiction
that it is not a circuit. Therefore, it possesses a proper subset C ′ ⊂ U1,d+1 that is
a circuit. By Lemma 4.12, the set C ′ would have to be dependent in the matroid
corresponding to ΓY,X . But as U1,d+1 is a circuit in that matroid, this is impossible.
Hence, U1,d+1 is also a circuit in M. This completes the proof.

In view of the above, as we assume herein that there are minterms that start with
u2, we conclude that U2,k is a minterm. This is a prefix minterm in the restriction of
Γ to U2,n, denoted hereinafter Γ′. Since Γ′ is ideal by Lemma 4.11, and a WTAS by
Claim 4.13, and it has a prefix minterm, Theorem 6.7 implies that it is also an HTAS.
Since we assumed that Γ has no self-sufficient users, then by Claim 6.5, the HTAS Γ′

has at most two levels.
We separate our discussion to two cases, according to the number of levels in Γ′.

First, we consider the case where Γ′ is a simple threshold access structure.
Claim 7.2. If Γ′ is an HTAS of one level (i.e., it is a threshold access structure),

then a set X ⊆ U is in Γ if and only if |X| ≥ k − 1 and |X ∩ Ud+2,n| ≥ k − 1− d.
Proof. Let us begin with sets X that do not include the user u1, namely, X ⊆ U2,n.

For such sets, the second threshold condition (|X ∩Ud+2,n| ≥ k− 1− d) is implied by
the first one (|X| ≥ k − 1). Since we assumed that Γ′, which is the restriction of Γ
to U2,n, is a simple threshold access structure, and the value of the threshold equals
|U2,k| = k − 1, the statement is straightforward in this case.

Next, consider sets X such that u1 ∈ X. If X satisfies the two conditions in the
claim, then its weight is no less than the weight of M = U1,d∪Ud+2,k. As w(M) ≥ T ,
we conclude that X ∈ Γ. Conversely, assume that X ∈ Γ but it fails to satisfy one
of the two conditions in the claim. Without loss of generality, we may assume that
X is a minterm of Γ. Thus, by Lemma 5.3, |X| = |M | = k − 1. Therefore, X may
violate only the second condition in the claim, namely, |X ∩Ud+2,n| < k− 1− d. But
then U1,d+1 ⊂ X and that cannot be since then X ≺ M = U1,d ∪ Ud+2,k and M was
assumed to be the lexicographically minimal minterm in Γ.

The access structure that is described in Claim 7.2 is a tripartite access structure
of type ∆1 (see Definition 3.3) with

A = U1,d+1, B = Ud+2,n−1, C = Un, m = k − 1, t = 2.

It should be noted that a set X belongs to ∆1 if it satisfies at least one of two
threshold conditions. The second condition is |X ∩ C| ≥ t, which, in our case, is an
empty condition (as |C| = 1 < t = 2). Hence, that access structure is in fact bipartite,
namely, the question whether X is authorized or not is determined only by the two
numbers |X ∩A| and |X ∩ (B ∪ C)|.

We are left with the case where Γ′ is an HTAS of exactly two levels. Assume that
X ∈ Γ′ if it has at least k1 users from U2,n or at least k2 users from Ur+1,n for some
3 ≤ r ≤ n− 2. As U2,k is a minterm, k1 = k − 1.

Claim 7.3. Under the above assumptions, a set X ⊆ U is in Γ if and only if
|X ∩ Ur+1,n| ≥ k2 or both |X| ≥ k1 and |X ∩ Ud+2,n| ≥ k1 − d.

Proof. Assume first that X ⊆ U satisfies one of the above two threshold condi-
tions. If |X ∩ Ur+1,n| ≥ k2 then X ∈ Γ′ and thus X ∈ Γ. If X satisfies the second
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condition then it also belongs to Γ since the set of minimal weight X that satisfies
both |X| ≥ k1 and |X ∩ Ud+2,n| ≥ k1 − d is X = M = U1,d ∪ Ud+2,k, and M ∈ Γ.

Assume next that X ∈ Γ. Without loss of generality, we may assume that X
is a minterm and prove that it satisfies one of the two threshold conditions in the
claim. We separate the discussion into two cases. If u1 /∈ X then X ∈ Γ′. Thus
either |X ∩ Ur+1,n| ≥ k2 or |X| ≥ k1. If |X| ≥ k1 then, as u1 /∈ X, it must be
that |X ∩ Ud+2,n| ≥ k1 − d. If, on the other hand, u1 ∈ X, then by Lemma 5.3,
we get that |X| = k1. But then, since no minterm contains U1,d+1, it must be that
|X ∩ Ud+2,n| ≥ k1 − d.

The access structure Γ, as appears in Claim 7.3, coincides with one of the two
TPASs in Definition 3.3. In case r ≥ d+1, we set A = U1,d+1, B = Ud+2,r, C = Ur+1,n

and then Γ is of type ∆1,

Γ = {X ⊆ U : (|X| ≥ k1 and |X ∩ (B ∪ C)| ≥ k1 − d) or |X ∩ C| ≥ k2} .

If, on the other hand, r < d + 1, we claim that Γ is of type ∆2. To that end, we set
A = U1,r, B = Ur+1,d+1, and C = Ud+2,n. By Claim 7.3, the structure of Γ is

Γ = {X ⊆ U : (|X| ≥ k1 and |X ∩ C| ≥ k1 − d) or |X ∩ (B ∪ C)| ≥ k2} .

It remains to show that the size of the set B is bounded, in accord with Definition 3.3.

Claim 7.4. If r < d + 1, then |B| < d + k2 − k1.
Proof. The access structure Γ′, the restriction of Γ to U2,n, is an HTAS of two

levels. A set X is in Γ′ if it has at least k1 users from U2,n or at least k2 users from
Ur+1,n. Therefore, U2,k = U2,k1+1 is a minterm and so is Ur+1,r+k2 . Consequently,
r + k2 > k1 +1 (since otherwise the second minterm would have been a proper subset
of the first one). As |B| = |Ur+1,d+1| = d + 1− r, we infer that |B| < d + k2 − k1.

Example 7.5. Consider the set U = {u1, . . . , u9}, and let Γ be a WTAS where
the weights are 16, 16, 17, 18, 19, 24 ,24 ,24, and 24 and the threshold is 92. First
note that there is no prefix minterm as w(U1,5) = 16 + 16 + 17 + 18 + 19 = 86 < 92
and w(U2,6) = 16 + 17 + 18 + 19 + 24 = 94 ≥ 92, and thus U1,6 is not a minterm.
The lexicographically minimal minterm is U1,3 ∪ U5,6, and so d = 3 and k = 6. The
HTAS structure resulting from the restriction of Γ to U2,9 is composed of two levels
U2,5 and U6,9, that is r = 5, with thresholds k1 = 5 and k2 = 4. Since r > d + 1, the
access structure is of type ∆1. Setting A = U1,4, B = {u5}, and C = U6,9, a set is
authorized if it has at least 4 users from C, or if it has at least 5 users, where at least
2 of whom are from B ∪ C.

We summarize this section in the next theorem.
Theorem 7.6. Let Γ be an ideal WTAS with M = U1,d ∪ Ud+2,k being its

lexicographical minimal minterm for some 1 ≤ d ≤ k − 2 and k ≤ n. If there exists a
minterm in Γ that has u2 as its minimal member and Γ has no self-sufficient users,
then Γ is a TPAS.

7.1. Ideal Linear Secret Sharing Schemes for TPASs. We now turn to
describe ideal linear secret sharing schemes that implement the TPASs ∆1 and ∆2 in
Definition 3.3. Those schemes extend the ideas of the schemes that were presented
in [25] for bipartite access structures. In fact, if we take B = ∅ then our schemes
coincide with the schemes of [25].
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Let us first briefly recall the definition of those access structures. Assume that
|U | = n and U = A ∪ B ∪ C, where A, B, and C are disjoint, and A,C 6= ∅. Let
m, d, t ∈ N be positive integers such that m ≥ t. Then

∆1 = {X ⊆ U : (|X| ≥ m and |X ∩ (B ∪ C)| ≥ m− d) or |X ∩ C| ≥ t} ,

and

∆2 = {X ⊆ U : (|X| ≥ m and |X ∩ C| ≥ m− d) or |X ∩ (B ∪ C)| ≥ t} ,

where in ∆2 the size of B is restricted to |B| ≤ d + t−m.
Let F be a sufficiency large finite field. For a λ ∈ F and an integer s define the

Vandermonde vector Vs(λ) := (1, λ, λ2, . . . , λs−1) (for clarity, we denote hereinafter
all vectors with bold-faced letters). Recall that for any set A ⊆ F if |A| ≤ s then the
vectors {Vs(λ) : λ ∈ A} are linearly independent. Thus, for any set A ⊆ F if |A| ≥ s,
the vectors {Vs(λ) : λ ∈ A} span the entire space Fs. Let E = Fm and E1 and E2

be subspaces of E of dimensions d and t, respectively, such that if d + t ≥ m then
E = E1 +E2, otherwise E1∩E2 = {~0}. Denote r = dim(E1∩E2) = max(0, d+t−m).
If r > 0, let Λ = {λ1, . . . , λr} be a set of elements from F, otherwise Λ = ∅. Let

ϕ1 : Fd → E1 and ϕ2 : Ft → E2

be two isomorphisms such that

ϕ1(Vd(λi)) = ϕ2(Vt(λi)) ∀λi ∈ Λ .(7.1)

Finally, we define the functions a : F→ E1 and b : F→ E2 as follows:

a(λ) = ϕ1(Vd(λ)) and b(λ) = ϕ2(Vt(λ)) ∀λ ∈ F .

The target vector in the ideal linear secret sharing schemes that we construct below
is b(λT ) for some λT ∈ F\Λ. Note that the target vector is in E2\E1.

Next, we describe the function η : U → E that assigns vectors from E to users in
U , so that the vectors of authorized subsets span the target vector, while the vectors
of unauthorized subsets do not, i.e., b(λT ) ∈ span{η(S)} iff S ∈ Γ. By Theorem 2.5,
this implies that the scheme realizes Γ. The technique we use is similar for both types
of access structures, Γ = ∆1 and Γ = ∆2. We assign the vectors to users one at a
time and prove correctness by induction. Assume that we already assigned vectors to
all users in U ′ ⊂ U and that we wish to find a proper assignment of a vector to an
additional user u ∈ U \ U ′. We shall denote this stage in the assignment by 〈U ′, u〉.
The goal is to find an assignment η(u) of a vector, so that the following conditions
hold:

C1. If S ⊆ U ′, S /∈ Γ but S′ := S ∪ {u} ∈ Γ, then η(u) should be such that
b(λT ) ∈ span{η(S′)}.

C2. If S ⊆ U ′, S /∈ Γ and S′ := S ∪ {u} /∈ Γ, then η(u) should be such that
b(λT ) /∈ span{η(S′)}.

We shall always look for the vector η(u) in a single-parameterized family of vectors
{ζ(λ) ∈ E : λ ∈ F} (in the constructions that we present here, ζ(λ) is one of a(λ),
b(λ), and Vm(λ)). Using Lemma 7.7 below, we shall show that at each stage of the
assignment, 〈U ′, u〉, and for every S ⊆ U ′, where S /∈ Γ, there are finitely many bad
choices of the parameter λ that give rise to vectors η(u) = ζ(λ) that would violate
the relevant condition above. Hence, since |2U ′ \ Γ| is bounded, there exists a good
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Fig. 7.1. The linear spaces in the proof of Lemma 7.7.

choice of λ such that η(u) = ζ(λ) satisfies all necessary conditions, provided that the
field is sufficiently large. Thus, in the rest of the proof we bound the number of bad
values for a specific set S.

Similarly to [25], it can be verified that the size of the field that our schemes
require, which is the size of the domain of secrets and shares, is 2O(n).

Lemma 7.7. Let X ⊆ F and Y ⊆ F\Λ be such that |X| < d and |X|+ |Y | < m.
Let V = span{a(x),b(y) : x ∈ X, y ∈ Y }. Then E1\V 6= ∅.

Proof. Hereinafter, let VX = span{a(x) : x ∈ X}, VY = span{b(y) : y ∈ Y }, and
E1,2 = E1 ∩ E2 (see Fig. 7.1 for an illustration of those linear spaces) . Let us begin
with the fairly easy case when m ≥ d + t. In that case, since E1 ∩E2 = {~0}, we claim
that V ∩E1 = VX , whence dim(E1\V ) = dim E1−dim VX = d−|X| > 0. Indeed, let u
be an arbitrary vector from V ∩E1. Then, on one hand, u = vx+vy for some vx ∈ VX

and vy ∈ VY , and on the other hand u ∈ E1. Therefore, vy = u−vx ∈ E1−VX = E1.
But since vy ∈ VY ⊆ E2 and E1 ∩ E2 = {~0}, we infer that vy = ~0. This implies that
u = vx ∈ VX .

Next, we prove the claim for the case where r = d + t−m > 0. Without loss of
generality, we may assume that |Y | = t − k for some 0 ≤ k ≤ r. Indeed, if |Y | > t
it may be reduced to Y − ⊂ Y of size |Y −| = t without affecting V . If, on the other
hand, |Y | < t − r, it may be extended to a superset Y + ⊃ Y of size |Y +| = t − r.
Since |X| + |Y +| < d + t − r = m, we may prove the statement for X and Y + and
then infer that it also holds for X and Y .

Assume, towards a contradiction, that E1 ⊆ V , whence dim(V ∩E1) = dim E1 =
d. We claim that this assumption implies the following two statements:

dim(VY ∩ E1,2) = r − k and dim(VX ∩ E1,2) < k .(7.2)

After proving these two statements, we may derive the sought-after contradiction as
follows. Since we assumed that E1 ⊆ V = VX + VY , all vectors e ∈ E1,2 may be
expressed as e = x + y where x ∈ VX and y ∈ VY . But since dim E1,2 = r >
dim(VX ∩ E1,2) + dim(VY ∩ E1,2), as implied by the two statements in (7.2), there
exists at least one vector e ∈ E1,2, such that e = x + y, for which either x ∈ E1\E2

or y ∈ E2\E1. Without loss of generality, we assume that x ∈ E1\E2. But then
x = e− y ∈ E1,2 + VY ⊆ E2, as opposed to our assumption that x /∈ E2.

Next, we prove the statements in (7.2). Let us begin with the equality in (7.2).
The dimension of E1,2 +VY is t since the t−k base vectors of VY , namely {b(y) : y ∈
Y }, may be extended to a full basis of E2 by any k base vectors of E1,2 of the form
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b(λ), λ ∈ Λ (recall that |Λ| = r ≥ k and that Y ⊂ F \ Λ). Therefore,

dim(VY ∩ E1,2) = dim VY + dim E1,2 − dim(E1,2 + VY ) = (t− k) + r − t = r − k .

In order to prove the inequality in (7.2), we first prove that

dim(VX + E1,2) = d.(7.3)

Since VX + E1,2 ⊆ E1 and dim E1 = d, all we need to show is that E1 ⊆ VX + E1,2.
We assumed that E1 ⊆ V = VX + VY . Hence, for each e ∈ E1 there exist x ∈ VX and
y ∈ VY such that e = x + y. But then y = e− x ∈ E1 + VX = E1. Since y ∈ VY ⊂ E2

we conclude that y ∈ E1,2. This implies that e ∈ VX + E1,2, whence we arrive at
the required conclusion that E1 ⊆ VX + E1,2. Finally, the inequality in (7.2) is a
straightforward consequence of (7.3). Indeed,

dim(VX ∩ E1,2) = dim VX + dim E1,2 − dim(VX + E1,2) = |X|+ r − d ;

recalling that |X| < m−|Y | = m−t+k and r = t+d−m we infer that dim(VX∩E1,2) <
k. That concludes the proof.

7.1.1. Realizing ∆1. Here, Γ is an access structure of type ∆1. We assign the
vectors in three stages. We first describe the assignment η(u) for all u ∈ C, then for
u ∈ A and finally for u ∈ B.

Step 1: Assigning vectors to users in C. Let C = {ci}1≤i≤|C|, and let γi, where
1 ≤ i ≤ |C|, be distinct elements of F\Λ, all different from λT . Then

η(ci) = b(γi) 1 ≤ i ≤ |C| .

This is essentially the Shamir t-out-of-|C| scheme. Therefore, every t users in C can
reconstruct b(λT ) while no t− 1 users can.

Step 2: Assigning vectors to users in A. Let A = {ai}1≤i≤|A|. Our claim is that,
assuming F is large enough, we may find αi ∈ F, where 1 ≤ i ≤ |A|, so that the
assignment η(ai) = a(αi) is consistent with Γ, restricted to A ∪ C, and, in addition,
for any S ⊆ A ∪ C where S /∈ Γ, the following equality holds,

dim span{η(S)} = |S ∩ (B ∪ C)|+ min(|S ∩A|, d) .(7.4)

(Herein, we could have replaced S∩ (B∪C) with S∩C since S does not include users
from B.) Namely, whenever we augment an unauthorized set S ⊆ A ∪ C with an
additional user from A, the dimension of the corresponding subspace that is spanned
by the vectors owned by S increases by 1, up to a limit of d users from A (i.e., all
users from A beyond the first d ones are redundant). Using (7.4) we guarantee that
if S ∈ Γ and |S ∩ C| < t then the vectors assigned to S span E, and in particular,
span the target vector b(λT ). We shall prove this claim by induction. Assume that
we already assigned vectors to A1,j := {a1, . . . , aj} for some 0 ≤ j < |A|, so that Γ is
respected and (7.4) holds for all S ∈ 2U ′\Γ, where U ′ = A1,j ∪C. This assumption is
obviously true for j = 0. We proceed to look for an assignment η(aj+1) = a(αj+1) for
the next user from A so that conditions C1 and C2 hold for all S ∈ 2U ′ \ Γ (in order
to keep respecting Γ) and equality (7.4) holds for all S ∈ 2U ′∪{aj+1}\Γ. As explained
earlier, it suffices to concentrate on a single set S ∈ 2U ′ \ Γ and bound the number of
bad choices of αj+1 ∈ F for that specific set.

Let S ∈ 2U ′ \ Γ be such that S′ := S ∪ {aj+1} ∈ Γ. Since |S′| = |S| + 1 but
|S′∩ (B∪C)| = |S∩ (B∪C)|, the fact that S /∈ Γ and S′ ∈ Γ implies that |S| = m−1
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and |S ∩ (B ∪ C)| ≥ m − d. This, in turn, implies that |S ∩A1,j | < d. Therefore,
by Lemma 7.7, applied to X = {αi}1≤i≤j and Y = {γi}1≤i≤|C|, the vectors owned
by S span a subspace of E1 of dimension d − 1 at the most. Hence, for all but at
most d − 1 values of αj+1 ∈ F, we have dim span{η(S′)} = dim span{η(S)} + 1.
Now, by the induction hypothesis, the set S satisfies equality (7.4). Therefore, since
|S ∩A| = |S ∩A1,j | < d, we get that

dim span{η(S)} = |S ∩ C|+ min(|S ∩A|, d) = |S ∩ C|+ |S ∩A| = |S| = m− 1 .

This implies that dim span{η(S′)} = m = dim E so that b(λT ) ∈ span{η(S′)} and
C1 holds.

Let S ∈ 2U ′ \ Γ be such that S′ := S ∪ {aj+1} /∈ Γ. If |S ∩A1,j | ≥ d, then
span{η(S′)} = span{η(S)} for any choice of αj+1; hence, no matter how we chose
αj+1 in this case, the augmented set S′ will remain incapable of spanning the target
vector. Also, since any d vectors of the form a(αi) span the same subspace E1, any
choice of αj+1 will result with an assignment that keeps respecting equality (7.4).

Hence, we restrict our attention to subsets S ∈ 2U ′ \ Γ for which |S ∩A1,j | < d.
We claim that in this case |S| ≤ m− 2. Assume, by contradiction, that |S| ≥ m− 1.
As |S ∩A1,j | < d we infer that |S ∩ C| ≥ m − d. Since |S′ ∩ C| = |S ∩ C| ≥
m − d and |S′| = |S| + 1 ≥ m, we infer that S′ ∈ Γ, as opposed to our assumption.
Hence, |S| ≤ m − 2. Our goal is to find αj+1 so that the target vector is not in
span{η(S′)} (in order to keep respecting Γ) and that equality (7.4) still holds for all
S ∈ 2U ′\Γ. Concentrating on the first part of our mission, we want to find αj+1

so that a(αj+1) /∈ span{η(S) ∪ {b(λT )}}. By Lemma 7.7, for X = {αi}1≤i≤j and
Y = {γi}1≤i≤|C| ∪ {λT }, the space span{η(S) ∪ {b(λT )}} ∩ E1 is a subspace of E1

of dimension d − 1 at the most. We infer that for all but possibly d − 1 values of
αj+1 ∈ F, the vector a(αj+1) increases the dimension of span{η(S) ∪ {b(λT )}} by
1. It is easy to see that for all such selections, we get an assignment that will also
respect equality (7.4). This completes the proof that a proper assignment of vectors
exists for all users in A ∪ C. We are ready to proceed to the third and final stage in
the assignment.

Step 3: Assigning vectors to users in B. Here we assign vectors to the users in
B (note that B may be empty). Let B = {bi}1≤i≤|B|. As before, we claim that,
provided F is large enough, there exist βi ∈ F, where 1 ≤ i ≤ |B|, so that the
assignment η(bi) = Vm(βi) is consistent with Γ, and, in addition, for any S /∈ Γ,
equality (7.4) holds. Namely, whenever we augment an unauthorized set S with an
additional user from B, the corresponding subspace that is spanned by the vectors
owned by S increases by 1. We shall prove this claim by induction. Assume that we
already assigned vectors to B1,j := {b1, . . . , bj} for some 0 ≤ j < |B|, so that Γ is
respected and (7.4) holds for all S ∈ 2U ′\Γ, where U ′ = B1,j∪A∪C. This assumption
is obviously true for j = 0. Next, we look for an assignment for the next user from B,
that is η(bj+1) = Vm(βj+1), so that conditions C1 and C2 hold for all S ∈ 2U ′ \Γ (in
order to keep respecting Γ) and equality (7.4) holds for all S ∈ 2U ′∪{bj+1}\Γ. Again,
we concentrate on a single set S ∈ 2U ′ \ Γ and bound the number of bad choices of
βj+1 ∈ F for that specific set.

Let S ∈ 2U ′ \Γ be such that S′ := S∪{bj+1} ∈ Γ. Since S /∈ Γ but S′ ∈ Γ, and the
added user bj+1 is from B, we conclude that while S fails to satisfy the first of the two
threshold conditions in the definition of ∆1, i.e., |S| < m or |S∩ (B∪C)| < m−d, the
set S′ does satisfy that condition, namely, |S′| ≥ m and |S′∩ (B∪C)| ≥ m−d. There
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are two cases to consider here, according to which of the two threshold conditions
were violated by S:

1. |S| = m− 1.
2. |S| ≥ m but |S ∩ (B ∪ C)| = m− d− 1.

In the first case, we claim that |S ∩ A| ≤ d. Indeed, since |S′ ∩ (B ∪ C)| ≥ m − d
and |S′ ∩ (B ∪ C)| = |S ∩ (B ∪ C)| + 1, we have |S ∩ (B ∪ C)| ≥ m − d − 1, whence
|S ∩ A| = |S| − |S ∩ (B ∪ C)| ≤ (m − 1) − (m − d − 1) = d. Applying the induction
hypothesis to S, we get by equality (7.4) that

dim span{η(S)} = |S∩(B∪C)|+min(|S∩A|, d) = |S∩(B∪C)|+|S∩A| = |S| = m−1 .

Therefore, for all but m− 1 values of βj+1,

dim span{η(S′)} = dim span{η(S)}+ 1 = m,

whence b(λT ) ∈ span{η(S′)}.
Next, we show how to reduce the second case to the first case. In the second case
|S ∩A| = |S| − |S ∩ (B ∪C)| ≥ m− (m− d− 1) = d + 1. Hence, S includes too many
users from A, since for all a ∈ A, the vector η(a) is chosen from the d-dimensional
space E1. Let a ∈ S ∩ A and define S1 = S \ {a} and S′1 = S1 ∪ {bj+1}. Obviously,
S1 /∈ Γ and, as can be easily verified, S′1 ∈ Γ. Since span{η(S)} = span{η(S1)}
and span{η(S′)} = span{η(S′1)}, if βj+1 is chosen properly for S1, it will be also an
appropriate choice for S. Hence, we may repeat this reduction stage until we reach a
set S1 of size |S1| = m−1, and then apply the arguments of the first case to conclude
that all but m− 1 values of βj+1 are appropriate choices.

Let S ∈ 2U ′ \ Γ be such that S′ := S ∪ {bj+1} /∈ Γ. Arguing along the same lines
as above, we may assume, without loss of generality, that |S ∩A| ≤ d, since any d
members of A span E1. We claim that |S| ≤ m−2. Indeed, if |S| ≥ m−1 then |S∩(B∪
C)| ≥ m−1−d, as |S ∩A| ≤ d. This implies that |S′∩(B∪C)| ≥ m−d and |S′| ≥ m,
whence S′ ∈ Γ, in a contradiction to our assumption. Therefore, the dimension of
span{η(S)∪ {b(λT )}} is at most m− 2 + 1. Consequently, for all but possibly m− 1
values of βj+1 ∈ F, we have Vm(βj+1) /∈ span{η(S) ∪ {b(λT )}}. Hence, for all but
possibly m − 1 values of βj+1 ∈ F, we get that b(λT ) /∈ span{η(S) ∪ {Vm(βj+1)}}.
Clearly, all such selections yield assignments that respect equality (7.4).

This concludes the description of the assignment η : U → E and the proof that it
yields an ideal linear sharing scheme that realizes a given access structure Γ of type
∆1.

7.1.2. Realizing ∆2. Here we propose an ideal linear secret sharing scheme for
access structures Γ that are a TPAS of type ∆2. Recall that, by Definition 3.3, in
such access structures |B| ≤ |Λ| = r = d + t − m. We concentrate on cases where
r > 0 (if r = 0 then B = ∅ and then we get a bipartite access structure).

Step 1: Assigning vectors to users in B ∪ C. The users in B and C are assigned
distinct vectors of the form b(βi) and b(γi), respectively, where {βi}1≤i≤|B| ⊂ Λ and
{γi}1≤i≤|C| ⊂ F\ (Λ ∪ {λT }). Clearly, any t users from B ∪C may reconstruct b(λT )
while no t− 1 users can.

Step 2: Assigning vectors to users in A. Let A = {ai}1≤i≤|A|. Our claim is that,
assuming F is large enough, we may find αi ∈ F, where 1 ≤ i ≤ |A|, so that the
assignment η(ai) = a(αi) is consistent with Γ, and, in addition, for any S ⊆ U where
S /∈ Γ, the following equality holds,

dim span{η(S)} = |S ∩ C|+ min(|S ∩ (A ∪B)|, d) .(7.5)
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We shall prove this claim by induction. Assume that we already assigned vectors to
A1,j := {a1, . . . , aj} for some 0 ≤ j < |A|, so that Γ is respected and (7.5) holds for
all S ∈ 2U ′\Γ, where U ′ = A1,j ∪ B ∪ C. This assumption is true for j = 0 since
then, on one hand, dim span{η(S)} = |S|, while on the other hand S ∩ A = ∅ and
|S∩B| ≤ |B| ≤ d+t−m ≤ d. We proceed to look for an assignment η(aj+1) = a(αj+1)
for the next user from A, so that conditions C1 and C2 hold for all S ∈ 2U ′ \ Γ and
equality (7.5) holds for all S ∈ 2U ′∪{aj+1}\Γ.

Let S ∈ 2U ′ \ Γ be such that S′ := S ∪ {aj+1} ∈ Γ. We infer that |S| = m − 1
and |S ∩ C| ≥ m − d. This implies that |S ∩ (A ∪ B)| = |S| − |S ∩ C| ≤ d − 1. By
Lemma 7.7, applied to X = {αi}1≤i≤j ∪ {βi}1≤i≤|B| and Y = {γi}1≤i≤|C| (here we
use the fact that βi ∈ Λ so that, in view of (7.1), a(βi) = b(βi)), the vectors owned
by S span a subspace of E1 of dimension d− 1 at the most. Hence, for all but d− 1
values of αj+1 ∈ F, dim span{η(S′)} = dim span{η(S)} + 1. Now, by the induction
hypothesis, the set S satisfies equality (7.5). Therefore, since |S ∩ (A ∪ B)| < d, we
get that

dim span{η(S)} = |S ∩ C|+ min(|S ∩ (A ∪B)|, d)
= |S ∩ C|+ |S ∩ (A ∪B)| = |S| = m− 1.

This implies that dim span{η(S′)} = m so that b(λT ) ∈ span{η(S′)}.
Let S ∈ 2U ′ \ Γ be such that S′ := S ∪ {aj+1} /∈ Γ. There are two cases to

consider here. If |S ∩ (A ∪B)| ≥ d, then any choice of αj+1 is good. This is because,
in view of (7.1), the vectors given to users in B are b(βi) = a(βi) where βi ∈ Λ, and,
consequently, if |S ∩ (A ∪ B)| ≥ d, the vectors held by the users of S already span
all of E1. Hence, for any choice of αj+1, span{η(S′)} = span{η(S)} and S′ will still
satisfy equality (7.5).

This leaves us with the case |S ∩ (A ∪B)| < d. In that case |S| ≤ m − 2 (since
if |S| ≥ m − 1 then |S ∩ C| = |S| − |S ∩ (A ∪B)| ≥ m − d and |S′| = |S| + 1 ≥ m,
and consequently, S′ would have been authorized). Our goal is to find αj+1 so that
the target vector is not in span{η(S′)} (in order to keep respecting Γ) and that
equality (7.5) still holds. Concentrating on the first part of our mission, we want to find
αj+1 so that a(αj+1) /∈ span{η(S) ∪ {b(λT )}}. By Lemma 7.7, for X = {αi}1≤i≤j ∪
{βi}1≤i≤|B| and Y = {γi}1≤i≤|C| ∪ {λT }, the space span{η(S) ∪ {b(λT )}} ∩ E1 is a
subspace of E1 of dimension d−1 at the most. Hence, for all but possibly d−1 values
of αj+1 ∈ F, the vector a(αj+1) increases the dimension of span{η(S) ∪ {b(λT )}} by
1. It is easy to see that for all such selections, we get an assignment that will also
respect equality (7.5).

8. A Recursive Characterization of Ideal WTASs by Means of Com-
position. In this section we show that if Γ is an ideal WTAS that is not one of the
structures that we identified in Sections 6.3 and 7, namely, an HTAS or a TPAS, then
it is a composition of two ideal WTASs that are defined on smaller sets of users. By
doing so, we obtain a recursive characterization of ideal WTASs.

8.1. WTASs and Composition of Access Structures. We begin with the
following fundamental lemma that asserts that a composition of two access structures
is ideal if and only if those two access structures are ideal.

Lemma 8.1. Let U1 and U2 be disjoint sets. Let u1 ∈ U1, and define U =
U1 ∪ U2\ {u1}. Suppose Γ1 and Γ2 are access structures on U1 and U2 respectively
such that u1 is not redundant in Γ1 and Γ2 6= ∅. Furthermore, let Γ be the composition
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of Γ1 and Γ2 via u1. Then Γ is ideal if and only if both Γ1 and Γ2 are ideal. Moreover,
if both Γ1 and Γ2 have an ideal linear secret sharing schemes, then Γ has an ideal linear
secret sharing scheme.

Proof. Assume that Γ1 and Γ2 are ideal. We show that Γ is ideal by describing
an ideal secret sharing scheme that realizes it. Given a secret s, we share it among
the users of U1 using an ideal secret sharing scheme for Γ1. Then, if s1 is the share
of u1 in that scheme, we share it among the users of U2 using an ideal secret sharing
scheme for Γ2. The resulting scheme is clearly ideal, and its correctness and perfect
security stem from the correctness and perfect security of the two schemes for Γ1 and
Γ2. It is easy to verify that if both secret sharing schemes for Γ1 and for Γ2 are linear,
then so is the resulting scheme for Γ.

Conversely, suppose that Γ is ideal. Let M ⊂ U be a minterm of Γ and let
M = M1 ∪M2 where M1 = M ∩ (U1 \ {u1}) and M2 = M ∩ U2. We choose M for
which M2 6= ∅ (since u1 is not redundant in Γ1 and Γ2 6= ∅ such a minterm exists).
By Definition 3.4, M ∈ Γ if and only if M1 ∪ {u1} ∈ Γ1 and M2 ∈ Γ2. Furthermore,

M1 ∪M ′
2 ∈ Γ iff M ′

2 ∈ Γ2 and M ′
1 ∪M2 ∈ Γ iff M ′

1 ∪ {u1} ∈ Γ1 .(8.1)

From the first observation above we conclude that Γ2 coincides with ΓM1,U2 – the
restriction of Γ that M1 induces on U2. Since by Lemma 4.11 any restriction of an
ideal access structure is ideal, we infer that Γ2 is ideal. As for Γ1, let x be an arbitrary
element of M2, let U ′ = U1\ {u1} ∪ {x}, and consider the restriction

Γ′ := ΓM2\{x},U ′ = {Q ⊆ U ′ : (M2\ {x}) ∪Q ∈ Γ}.
We claim, and prove below, that Γ′ is isomorphic to Γ1 under the natural bijection
from 2U1 to 2U ′ (i.e., A ⊆ U1 is mapped to A′ := A\{u1} ∪ {x} ∈ U ′ if u1 ∈ A, and
to A′ = A otherwise). Therefore, since Γ′ is a restriction of Γ, it is ideal, as implied
by Lemma 4.11, and, consequently, so is Γ1.

We conclude with a proof of the isomorphism. Assume that A ∈ Γ1. If u1 /∈ A
then A ∈ Γ. Hence, also A′ = A ∈ Γ and, in particular, A′ ∈ Γ′. If u1 ∈ A then
(A \ {u1}) ∪ M2 ∈ Γ (this is implied by the second observation in (8.1)); hence,
A′ ∪ (M2\{x}) ∈ Γ and, therefore, A′ ∈ Γ′. Conversely, assume that A′ ∈ Γ′, namely,
(M2\ {x}) ∪ A′ ∈ Γ. If x /∈ A′ then A′ ⊆ U1\{u1}. As M2 is a minterm of Γ2 (this
is implied by the first observation in (8.1)), M2\{x} /∈ Γ2. Hence, by Definition 3.4,
we conclude that A′ ∈ Γ1. But in that case A = A′ so that A ∈ Γ1. If x ∈ A′ then
(A′\ {x}) ∪M2 ∈ Γ from which it follows that A = (A′\ {x}) ∪ {u1} ∈ Γ1.

The recursive characterization of ideal WTASs will be obtained by distinguishing
between two types of users. Specifically, we shall identify a subset of so-called strong
users that takes the form of a suffix, S = Uk,n, where k ≥ 3, and then the complement
subset will be thought of as the subset of weak users, W = U1,k−1. A subset of strong
users will be called S-cooperative if it is unauthorized, but it may become authorized
if we add to it some weak users.

Definition 8.2 (Cooperative Set). Given Y ⊆ S, if Y /∈ Γ but W ∪ Y ∈ Γ,
then Y is called an S-cooperative set.

By Claim 4.13, the access structure ΓY,W , the restriction of Γ induced by Y on
W , is a WTAS for any partition U = W ∪ S and Y ⊆ S. We proceed to define a
condition on the set S, such that if it is satisfied for some suffix S = Uk,n, where
k ≥ 3, the access structure Γ is a composition of two ideal WTASs that are defined
on sets smaller than U .

Definition 8.3 (Strong Set). If for any two S-cooperative sets Y1, Y2 ⊆ S, the
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corresponding restrictions of Γ to W coincide, i.e. ΓY1,W = ΓY2,W , the set S is called
a strong set of users.

If S is a strong set of users, there exists an access structure on W , denoted ΓW ,
such that ΓW = ΓY,W for all cooperative subsets Y ⊂ S. In that case, every minterm
M ∈ Γ is either contained in S or, otherwise, M ∩W ∈ ΓM∩S,W . In the second case
we infer that M ∩S is S-cooperative, and since S is strong we get that M ∩W ∈ ΓW .
The following theorem shows that if S is a strong set of users, Γ is a composition of
two ideal WTASs.

Theorem 8.4. Let Γ be an ideal WTAS on U . Suppose S = Uk,n, for some
k ≥ 3, is a strong set of users. Then Γ is a composition of two ideal WTASs, each
of which is defined on a smaller set than U (one is defined on W and the other is
defined on S supplemented by an additional user).

Proof. Let Y be an arbitrary S-cooperative set, Q ⊆ W be a minterm of ΓY,W ,
and x be an arbitrary element of Q. Both ΓY,W and ΓQ\{x},S∪{x} are restrictions
of Γ. Thus, by Lemma 4.11, they are both ideal, and by Claim 4.13 they are both
WTASs. Let ∆ be the composition of ΓQ\{x},S∪{x} and ΓY,W via x (since x belongs
to the domains of both access structures, W and S ∪ {x}, we may define the compo-
sition by first replacing the user x in ΓQ\{x},S∪{x} with a copy x′ and then compose
ΓQ\{x},S∪{x} and ΓY,W via x′). We note that ∆, like Γ, is defined on U = W ∪S. We
proceed to show that Γ = ∆, thus proving the lemma (note that ΓY,W is defined on
W , whose size is k− 1 < n, and Γ′ is defined on S ∪ {x} whose size is n− k + 2 < n).

Let M be a minterm of Γ. Then either M ⊆ S, or M ∩ W 6= ∅. If M ⊆ S,
then M ∈ ΓQ\{x},S∪{x}. Since x /∈ M we conclude, by Definition 3.4, that M ∈ ∆.
If, on the other hand, M ∩ W 6= ∅, define MW = M ∩ W and MS = M ∩ S.
Therefore, MS is an S-cooperative set. Since S is a strong set of users, we infer that
ΓMS ,W = ΓY,W , whence MW ∈ ΓY,W . In addition, Q ∈ ΓY,W = ΓMS ,W . This implies
that MS ∪ Q ∈ Γ and, consequently, that MS ∪ {x} ∈ ΓQ\{x},S∪{x}. Therefore, by
Definition 3.4, M = MW ∪MS ∈ ∆.

For the other direction, let M be a minterm of ∆, and, as before, MS = M ∩ S
and MW = M ∩ W . Then either MS ∈ ΓQ\{x},S∪{x} or both MW ∈ ΓY,W and
MS ∪ {x} ∈ ΓQ\{x},S∪{x}. We separate the discussion to these two cases:

If MS ∈ ΓQ\{x},S∪{x}, then MS ∪ (Q\ {x}) ∈ Γ. That means that Q\ {x} ∈
ΓMS ,W . On the other hand, as Q is a minterm of ΓY,W , it must hold that Q\ {x} /∈
ΓY,W . Hence, ΓMS ,W 6= ΓY,W . This implies that MS is not S-cooperative. But since
MS ∪ (Q\ {x}) ∈ Γ, the only way MS is not S-cooperative is if MS is authorized by
itself in Γ. However, M = MW ∪MS was a minterm of ∆. Therefore, MW must be
empty whence M = MS . This brings us to the sought-after conclusion that M ∈ Γ.

Now suppose that MS /∈ ΓQ\{x},S∪{x} but MS ∪ {x} ∈ ΓQ\{x},S∪{x} and MW ∈
ΓY,W . Since MS ∪ {x} ∈ ΓQ\{x},S∪{x} we get that Q ∪ MS ∈ Γ. On the other
hand, MS /∈ ΓQ\{x},S∪{x}, and thus MS /∈ Γ. Therefore, MS is S-cooperative. Since
MW ∈ ΓY,W , and S is a strong set of users, this implies that MW ∈ ΓMS ,W . Therefore
MW ∪MS ∈ Γ, and thus M ∈ Γ.

8.2. Simple Compositions. In this section we show that in two simple cases,
an ideal WTAS is a composition of two ideal WTASs defined on sets smaller than U .
The first case is when there are self-sufficient users and the second is where u2 starts
no minterm of Γ.

Suppose un is a self-sufficient user. Let Γ′ = Γ∅,U1,n−1 be the restriction of Γ
to U1,n−1 (namely, all authorized sets that do not include un). By Lemma 4.11, the
access structure Γ′ is ideal, and by Claim 4.13, it is an ideal WTAS. Let Γ∨ be the
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Fig. 8.1. Notations for the composition.

simple 1-out-of-2 access structure on the set {u′, un}, where u′ is an additional dummy
user. Γ∨ is clearly an ideal WTAS. It is easy to see that Γ is the composition of Γ′

and Γ∨ via u′.
If Γ has no minterm that starts with u2 then every minterm that contains u1

must contain also u2 (otherwise, we could have replaced u1 by u2 in order to get a
minterm that starts with u2). Hence, for every U3,n-cooperative set, Y ⊆ U3,n, the
access structure that Y induces on U1,2 is the same, ΓY,U1,2 = {U1,2}. Therefore, U3,n

is a strong set of users in this case. Hence, by Theorem 8.4, the access structure Γ is
a composition of two ideal WTASs that are defined on sets smaller than U .

To conclude, we proved the following lemma:
Lemma 8.5. Let Γ be an ideal WTAS on U . If Γ has self-sufficient users, or u2

starts no minterm of Γ, then Γ is a composition of two ideal WTASs that are defined
on sets smaller than U .

8.3. Identifying Composition Structures. In this section we show that if Γ
is an ideal WTAS, but it is not one of the access structures that were characterized in
Theorems 6.7 (HTAS) and 7.6 (TPAS), then it is a composition of two ideal WTASs
as described in Section 8.1. In view of Lemma 8.5, we assume hereinafter that u2 is
the minimal user in some minterm of Γ.

Let M1 be the lexicographically minimal minterm in Γ. Let ur be the maximal
user in M1. Since Γ is neither an HTAS nor a TPAS, then, by Theorems 6.7 and 7.6,
there must be at least two users in U1,r−1 that are not in M1. Let u` be the minimal
user in M1 such that at least two users in U1,`−1 are missing from M1, and let ud be
the maximal user in M1 such that U1,d ⊂ M1. We denote the users in M1 ∩Ud+1,`−1,
if there are any, by Y = {y1, . . . , yt}. Note that if Y is not empty then Y is a run of
U , and y1 = ud+2. Next, if Y 6= ∅ we denote the set of users of U\M1 between yt and
u` (excluding those two users) by X = {x1, . . . , xs}. (Note that X = Ud+t+2,`−1.)
Otherwise, we denote the set Ud+2,`−1 as X = {x1, . . . , xs}. Finally, we denote the
users of M1∩U`,n by Z = {z1, . . . , zm}. Note that the sets X and Z are never empty,
and that z1 = u`. The above notations are depicted in Fig. 8.1.

We claim that either U`,n or Ud+2,n is a strong set of users. We start by parti-
tioning U into W = U1,`−1 and S = U`,n. We show that if all the S-cooperative sets
are of the same size, then ΓY1,W = ΓY2,W for every two cooperative sets Y1, Y2 ⊆ S,
namely, S is a set of strong users. If, however, that condition does not hold, we shall
show that Ud+2,n is a strong set.

An important result in our study is that all S-cooperative sets are at least as
large as Z, namely, their size is at least m.

Claim 8.6. Let W = U1,`−1, S = U`,n, and M be minterm of the access structure
Γ. If M ∩W 6= ∅, then M contains at least m users from S.
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Proof. Assume towards a contradiction that M is a minterm that intersects W
such that |M ∩ S| < m. Recall that every minterm of Γ is an independent set of
M, the matroid associated with Γ. Hence, the minterm M1 is an independent set
of size d + t + m of M, and thus, by Claim 4.7, every independent set of M that
is smaller than d + t + m can be expanded to an independent set of size d + t + m.
Therefore, if |M | < d + t + m, the minterm M can be expanded to an independent
set I of size d + t + m; otherwise, we set I = M . By Lemma 5.2, this expansion
can only be done by adding to M users that precede Mmin. As M intersects W ,
the users in I\M are all from W . Hence, |I ∩ S| = |M ∩ S| ≤ m − 1. Therefore,
|I ∩W | = |I| − |I ∩ S| ≥ d + t + m− (m− 1) = d + t + 1. Next, we view M1 as the
canonical complement of the empty set (see Definition 5.4). Its (d + t + 1)th element
is z1. By Lemma 5.6 for P = ∅, Y = M1, and j = d + t + 1, any d + t + 1 members of
W form a dependent set. Hence I, which was assumed to be independent, contains a
dependent set. This contradiction implies that |M ∩ S| ≥ m.

8.3.1. When All S-Cooperative Sets are of the Same Size. Here we show
that if all S-cooperative sets are of the same size, namely |Z| = m, the set S is a
strong set. We accomplish this by showing that all the S-cooperative sets of size m
induce the same access structure on W , which is the access structure induced by the
S-cooperative set Z. We begin by showing that the weight of every S-cooperative set
is at least the weight of Z.

Claim 8.7. Let V ⊆ S be an S-cooperative set. Then w(V ) ≥ w(Z).
Proof. Assume towards a contradiction that w(V ) < w(Z) and consider the set

W ∪Z. Since Z is S-cooperative, the set W ∪Z is authorized. Thus, by Lemma 5.1,
it must contain a suffix minterm of the form B ∪ Z, where B is a suffix of W . There
are two possible cases: Either B ∪ V is authorized, or not.

If B ∪ V is authorized, then, since w(V ) < w(Z), the set B ∪ V is a minterm.
Hence, as B∪V and B∪Z are two minterms that have the same minimal user, Bmin,
Lemma 5.3 implies that |V | = |Z| = m. The set B ∪ V is independent in M. If
|B∪V | < d+ t+m, Claim 4.7 implies that B∪V can be expanded to an independent
set I of size d + t + m; if |B ∪ V | ≥ d + t + m, we set I = B ∪ V . By Lemma 5.2, all
users in I\(B ∪ V ) must be from W . Hence, I includes at least d + t users from W .
On the other hand, since |V | = |Z| = m and w(V ) < w(Z), there must be an index
j such that vj ≺ zj . Since M1 is the canonical complement of the empty set ∅, we
get from Lemma 5.6, applied to P = ∅, Y = M1 and B = I1,d+t+j , that the latter set
is dependent. This is impossible since I is independent. Therefore, B ∪ V cannot be
authorized.

If B∪V is unauthorized, we let Q be the canonical complement of B. Since B∪Z
is a minterm, we get from Lemma 5.3 that |Q| = |Z| = m. On the other hand, by
Claim 8.6, since V is S-cooperative, |V | ≥ m. Since B ∪ V /∈ Γ but B ∪ Q ∈ Γ, we
infer that w(V ) < w(Q). Therefore, there must be an index j ∈ [m] such that vj ≺ qj .
Thus, by Lemma 5.6, we get that B ∪ V is dependent. On the other hand, since V is
S-cooperative and B is a suffix of W , the set B∪V may be expanded to an authorized
superset by adding to it users that precede Bmin, one by one, until the first time that
we get an authorized set. This construction, where in each stage we add a new user
that is smaller than all current users in the set, guarantees that we end up with a
minterm. But a minterm of Γ cannot contain a dependent set. Therefore, this case is
not possible either. We are lead to the conclusion that w(V ) ≥ w(Z).

We are now ready to prove that all the cooperative sets of size m induce the same
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access structure on W .
Claim 8.8. Let V be an S-cooperative set of size m. Then ΓV,W = ΓZ,W .
Proof. By Claim 8.7, w(V ) ≥ w(Z). If w(V ) = w(Z), the claim is trivial, since Γ

is a WTAS. Therefore, we assume that w(V ) > w(Z). We first show that U1,d∪Y ∪V
is a minterm of Γ. Since M1 = U1,d ∪ Y ∪ Z is authorized, the set U1,d ∪ Y ∪ V is
authorized as well. Assume it is not a minterm. Then, by Lemma 5.1 it contains
a suffix minterm of the form B ∪ V , where B is a suffix of U2,d ∪ Y . Let Q be the
canonical complement of B. Since B ∪ V is a minterm, by Lemma 5.3, it must be
that |Q| = |V | = m = |Z|. Since B ∪ Q is authorized and B ∪ Z is unauthorized,
w(Z) < w(Q). Therefore, there must be an index j ∈ [m] for which zj ≺ qj . Thus, by
Lemma 5.6, the set B∪Z is dependent. However, this set is contained in U1,d∪Y ∪Z,
which is a minterm. This contradiction implies that U1,d ∪ Y ∪ V is a minterm of Γ.
Consequently, since U1,d∪Y ∪Z is a minterm and U2,d∪Y ∪V is unauthorized (being
a proper subset of a minterm), we infer that w(Z) + w(u1) > w(V ).

We are now ready to prove that ΓZ,W = ΓV,W . Since we deal with the case where
w(Z) < w(V ), the inclusion ΓZ,W ⊆ ΓV,W is obvious. For the opposite inclusion, it is
sufficient to concentrate on minterms of ΓV,W . Let M be a minterm of ΓV,W . Thus,
M ∪ V ∈ Γ, and since M ∪ V \Mmin /∈ Γ, the set M ∪ V is a minterm in Γ. There
are two possible cases: If u1 ∈ M , the minterm M ∪ V must be of the same size as
M1 by Lemma 5.3. Since |M1| = d + t + m and |V | = m, we get that |M | = d + t.
As M1 = U1,d ∪ Y ∪ Z is the minimal minterm in Γ in terms of the precedence order
≺, the weight of U1,d ∪ Y is minimal among all sets of size d + t that are contained
in a minterm. This implies that w(M) ≥ w(U1,d ∪ Y ). This, in turn, implies that
M ∪ Z ∈ Γ and thus M ∈ ΓZ,W .

The second case is when u1 /∈ M . Assume, towards a contradiction, that M ∪Z /∈
Γ. Let Q be the canonical complement of M . By Lemma 5.3, |Q| = |V | = m = |Z|.
Since M ∪ Z /∈ Γ and M ∪Q ∈ Γ, w(Z) < w(Q). Therefore, there must be an index
j ∈ [m] such that zj ≺ qj . Thus, by Lemma 5.6, M ∪Z is dependent. However, since
M ∪ V ∈ Γ and w(Z) + w(u1) > w(V ), we get that {u1} ∪M ∪ Z ∈ Γ. Moreover, it
must be a minterm since any proper subset of {u1}∪M ∪Z is of weight that does not
exceed that of the unauthorized set M ∪ Z. We have arrived at the absurd situation
where the dependent set M ∪Z is contained in a minterm. This contradiction implies
that M ∪ Z is authorized, so M ∈ ΓZ,W .

Combining Claims 8.6 and 8.8 we arrive at the following corollary.
Corollary 8.9. If there are no S-cooperative sets of size larger than m, then S

is a strong set.
Example 8.10. Consider the set U = {u1, . . . , u8}, and let Γ be a WTAS where

the weights are 1, 1, 1, 1, 1, 3 ,3 , and 3 and the threshold is 6. The lexicographically
minimal minterm is {u1, u2, u3, u6}, and so there is no prefix minterm and no lacunary
minterm. In this example W = U1,5 and S = U6,8 and the access structure is a
composition of a 2-out-of-4 threshold access structure on S ∪ {u′} and 3-out-of-5
threshold access structure on the week side W , where u′ is an additional dummy
user.

8.3.2. When Large S-Cooperative Sets Exist. The conclusion from the
previous section is that whenever all S-cooperative sets for S = U`,n are of the same
size (i.e., |Z| = m), the set S is a strong set and, hence, by Theorem 8.4, the access
structure Γ is a composition of ideal WTASs that are defined on two smaller sets.
Here, we continue to deal with the case where there are S-cooperative sets of size
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larger than m. In that case we identify another strong set. Specifically, we show that
Ud+2,n is a strong set of users.

Recall that we assume that there are minterms that start with u2. In order to
prove that Ud+2,n is a strong set we show that for every Ud+2,n-cooperative set, V ,
the access structure that it induces on U1,d+1, namely ΓV,U1,d+1 , is a d-out-of-(d + 1)
threshold access structure. The proof has two stages:

• First we show that if M is a minterm of Γ such that |M ∩ S| > m then
M ∩ U1,d+1 = ∅ (Claim 8.15). This immediately implies that V , being a
Ud+2,n-cooperative set, intersects S in exactly m users (Corollary 8.16).

• In the second stage, we analyze the restricted access structure that Z induces
on W , namely ΓZ,W , and conclude that ΓV,U1,d+1 is a d-out-of-(d + 1) access
structure.

We start with two technical claims. The following claim shows that the weight of
z1 is much larger than the weights of the users preceding it.

Claim 8.11. w(ud+1) + w(x1) < w(z1).
Proof. Suppose the claim is false and w(ud+1) + w(x1) ≥ w(z1). Then we can

replace z1 by ud+1 and x1 in the minterm M1, and get an authorized set M ′
1. By

Lemma 5.1, this set contains a suffix minterm. This minterm must intersect W , since
Z by itself is unauthorized. But then M ′

1 would be a minterm that contains only
m− 1 elements of S, in a contradiction to Claim 8.6.

Claim 8.12. The sets U1,d∪Y ∪{x1} and U1,d+1 are circuits of M – the matroid
that corresponds to Γ.

Proof. We start with the set V := U1,d ∪ Y ∪ {x1}. Denote by Γ′ the restriction
ΓZ,W\{ud+1}. By Lemma 4.11 and Claim 4.13, Γ′ is an ideal WTAS. Moreover, the
set U1,d ∪ Y is a prefix minterm of this access structure. Therefore, by Theorem 6.7,
Γ′ is a HTAS. Thus, by Claim 6.2, V is a circuit of the matroid that corresponds to
Γ′ and its size is |V | = d + t + 1. As M1 is the canonic complement of the empty
set, z1 is its (d + t + 1)th element, and x1 ≺ z1, we conclude by Lemma 5.6 that V is
dependent in M. It must be a circuit in M for, otherwise, by Lemma 4.12, we would
get a contradiction to the fact that it is a circuit in the matroid that corresponds to
the restriction Γ′.

The proof for U1,d+1 is similar. Let Γ′′ = ΓY ∪Z,U1,d+1 be the restriction that Y ∪Z
induces on U1,d+1. It is an ideal WTAS and U1,d is a prefix minterm in it. Thus, by
Claim 6.2, U1,d+1 is a circuit of the matroid that corresponds to Γ′′. As ud+1, which is
the (d + 1)th user in U1,d+1, precedes the (d + 1)th user in the canonical complement
of the empty set (which is y1, or z1 if Y = ∅), we infer by Lemma 5.6 that U1,d+1 is
dependent in M. Finally, by Lemma 4.12, the set U1,d+1 must be a circuit of M.

We now turn to show that large S-cooperative sets are not contained in minterms
that intersect U1,d+1. This is done in two steps. First we show that if V is an S-
cooperative set of size larger than m, there exists a suffix B of Y such that B ∪V is a
minterm. Then, relying upon this result, we show that no minterm of ΓV,W intersects
U1,d+1. This completes the first stage of the proof outlined above

Claim 8.13. If there exists an S-cooperative set V of size larger than m, there
exists a suffix B of Y such that B ∪ V is a minterm.

Proof. Consider the set A := U1,d ∪ Y ∪ V . Since |V | > |Z|, the set A cannot be
a minterm, as implied by Lemma 5.3. By Claim 8.7, w(V ) ≥ w(Z). Thus, the set A
is authorized and, consequently, it contains a suffix minterm of the form B ∪V where
B is a proper suffix of U1,d ∪ Y .
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In order to prove the claim, we need to show that B ⊆ Y . Assume, towards a
contradiction, that it is not, namely, that Bmin ∈ U1,d. Let Q = B\{Bmin} ∪ {x1}.
Since Bmin ≺ x1, the weight of Q is at least the weight of B, and therefore, Q∪V is an
authorized set. Hence, it has a suffix minterm that must contain {x1}∪V . The union
of this minterm and the minterm B∪V is B∪{x1}∪V . We claim that all the users in V
are critical for B∪{x1}∪V , in the sense of Definition 4.3. Let vi ∈ V and assume that
it is not critical, i.e., B∪{x1}∪V \ {vi} ∈ Γ. Since B∪V \{Bmin} /∈ Γ (because B∪V
is a minterm), we conclude that w(B ∪ V \{Bmin}) < w(B ∪ {x1} ∪ V \ {vi}), whence
w(vi) < w(Bmin) + w(x1). Therefore, as w(z1) ≤ w(vi) and w(Bmin) ≤ w(ud+1),
we arrive at the conclusion that w(z1) < w(ud+1) + w(x1), in a contradiction with
Claim 8.11. This implies that all of the users of V are critical for B∪{x1}∪V . Thus, by
Corollary 4.5, the set B∪{x1} is dependent. However, B∪{x1} is properly contained
in U1,d∪Y ∪{x1}, which , by Claim 8.12, is a circuit of M. This contradiction implies
that B does not intersect U1,d and it is therefore a suffix of Y .

Remark 8.14. If there is an S-cooperative set V of size larger than m, the set
Y is not empty. Otherwise, the set B in Claim 8.13 would be empty, whence V is a
minterm in a contradiction to our assumption that V is S-cooperative. Therefore, in
the rest of this section we assume that Y is not empty.

Claim 8.15. If V is an S-cooperative set of size larger than m and A is a
minterm of ΓV,W , then A ∩ U1,d+1 = ∅.

Proof. Suppose there is a minterm A ∈ ΓV,W such that A ∩ U1,d+1 6= ∅. We pick
a minterm A of that sort having the property that A∩ (Y ∪X) ¹ M ∩ (Y ∪X) for all
minterms M ∈ ΓV,W such thatM ∩ U1,d+1 6= ∅. By Claim 8.13, there is a suffix B of
Y such that B ∈ ΓV,W . Therefore, as A is a minterm of ΓV,W , it must be that Y 6⊆ A
(otherwise, if Y ⊆ A, the minterm A ∪ V would have been a proper superset of the
minterm B ∪V since A includes in addition users from U1,d+1). Let j be the smallest
index such that yj /∈ A (recall that Y 6= ∅) and consider the set Q = A\{Amin}∪{yj}.
Since Amin ∈ U1,d+1, we conclude that w(Amin) ≤ w(yj). Thus Q ∪ V is authorized
in Γ and must contain a suffix minterm M ′ that contains yj . The union of A∪V and
M ′ is A ∪ {yj} ∪ V . The discussion now separated two cases: either A is a run of U
or it is not.

If A is a run of U , then we first claim that every user of V is critical for A∪{yj}∪V .
Let vi ∈ V and assume that it is not critical for A∪{yj}∪V , i.e., A∪{yj}∪V \{vi} ∈ Γ.
Since A ∪ V \ {Amin} /∈ Γ (as A ∪ V is a minterm), we conclude, by comparing the
weights of the two latter sets, that w(vi) < w(Amin) + w(yj). However, since w(z1) ≤
w(vi), w(yj) ≤ w(x1), and w(Amin) ≤ w(ud+1), we get that w(z1) < w(ud+1)+w(x1),
in a contradiction with Claim 8.11. Therefore, all users in V are critical for A∪{yj}∪V .
Thus, by Corollary 4.5, the set A∪ {yj} is dependent. Since we are now dealing with
the case where A is a run of U , the set A∪{yj} must be contained in U1,d+1∪Y . Since
A∪{yj} is dependent, it includes a circuit C. That circuit must include the user ud+1,
for, otherwise, C would have been a subset of the independent set U1,d∪Y . Moreover,
the circuit C must also contain yj , for otherwise C ⊆ A while A is contained in a
minterm and thus is independent. On the other hand, by Claim 8.12, the set U1,d+1 is
a circuit of M that does not contain yj . Therefore, ud+1 is in the intersection of the
two distinct circuits U1,d+1 and C. Hence, by Lemma 4.6, the set U1,d+1 ∪C \ {ud+1}
is dependent. But that latter set is contained in the independent set U1,d ∪ Y . This
contradiction settles the statement whenever A is a run of U .

If A is a not run of U , we claim that every user ai ∈ A such that yj ≺ ai is critical
for A ∪ {yj} ∪ V . Otherwise we could replace the user ai in the minterm A ∪ V with
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the user yj and still get a minterm that intersects U1,d+1. But this would contradict
our choice of A as a minterm that is lexicographically minimal in Y ∪X. This implies
that all users of A∪{yj}∪V that have weight greater than or equal to yj are critical
for that set. In particular, the subset (A ∩X) ∪ V consists of only critical users and,
consequently, by Claim 4.5, the set A\X ∪ {yj} is dependent. Since A is contained
in a minterm, this dependent set must contain a circuit C that contains yj . Since
U1,d∪Y is an independent set ofM, it must be that ud+1 ∈ C, otherwise C is properly
contained in an independent set. However, since U1,d+1 is a circuit of M, we get that
ud+1 is in the intersection of two distinct circuits, C and U1,d+1 (note that yj ∈ C
but yj /∈ U1,d+1). Therefore, by Lemma 4.6, the set C ∪U1,d+1\ {ud+1} is dependent.
However, this set is properly contained in U1,d ∪Y which is an independent set of M,
and thus we arrive at a similar contradiction as in the previous case.

Corollary 8.16. Every Ud+2,n-cooperative set intersects S in exactly m users.
Proof. Let B be a Ud+2,n-cooperative set. Then there exists a non-empty set

A ⊆ U1,d+1 such that M := A ∪ B is a minterm of Γ. Denote MW = M ∩ W and
MS = M ∩ S, so that M = A ∪B = MW ∪MS . As U1,d+1 ⊂ W and Ud+2,n ⊃ S, we
infer that MW ∩ U1,d+1 = A 6= ∅ and MS = B ∩ S.

On one hand, Claim 8.6 implies that |MS | ≥ m, since MW 6= ∅. On the other
hand, by Claim 8.15, if |MS | > m then MW ∩ U1,d+1 = ∅. But as MW ∩ U1,d+1 6= ∅
we conclude that |MS | = |B ∩ S| = m.

We now turn to the second stage of showing that Ud+2,n is a strong set. We
will show that the existence of large S-cooperative sets and the existence of minterms
that start with u2 imply that Ud+2,n is a strong set. By Claim 8.15, every Ud+2,n-
cooperative set intersects S in exactly m users. By Claim 8.8, if V is an S-cooperative
set of size m then ΓV,W = ΓZ,W . Therefore, it is enough to study the minterms
in ΓZ,W that intersect U1,d+1. Somehow, surprisingly, the existence of a large S-
cooperative set affects the structure of ΓZ,W . The next two claims will serve us in
characterizing the structure of ΓZ,W in Claim 8.19.

Claim 8.17. If there is an S-cooperative set V of size larger than m, there exists
a non-empty suffix B of Y such that B ∪ {x1} ∈ ΓZ,W .

Proof. By Claim 8.13, there exists a suffix B of Y such that B ∪ V is a minterm
of Γ. We next prove that B ∪ {x1} ∪ V \ {v1} ∈ Γ. Replacing Bmin with x1 in B ∪ V ,
we get an authorized set. Denote by M ′ the suffix minterm contained in that set and
note that the union of M ′ and B∪V is exactly B∪{x1}∪V . We claim that v1 cannot
be critical for B ∪ {x1} ∪ V . If it was critical, then every user in V would also be
critical for that set and thus, by Corollary 4.5, the set B ∪ {x1} would be dependent
in M. However, the set B ∪ {x1} is properly contained in U1,d ∪ Y ∪ {x1}, which is
a circuit by Claim 8.12. Therefore, B ∪ {x1} is independent, and thus v1 cannot be
critical for B ∪ {x1} ∪ V . Hence, the set B ∪ {x1} ∪ V \ {v1} is authorized. But since
it is obtained from the minterm B ∪ V by replacing v1 with x1 ≺ v1, it must be also
a minterm.

We now prove the claim by induction on the size of V . If |V | = m + 1, then
since B ∪ {x1} ∪ V \ {v1} is a minterm, we conclude that B ∪ {x1} is in ΓV ′,W , where
V ′ = V \ {v1} is an S-cooperative set of size m. But since, in view of Claim 8.8,
ΓV ′,W = ΓZ,W , we arrive at the sought-after conclusion that B ∪ {x1} ∈ ΓZ,W . If
|V | > m + 1, then V ′ is an S-cooperative set of size |V | − 1. Hence, we may apply
the induction hypothesis to conclude that there exists a suffix B of Y such that
B ∪ {x1} ∈ ΓZ,W .

The other assumption that affects the structure of ΓZ,W is that there are minterms
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of Γ that start with u2.
Claim 8.18. If u2 is the minimal user in some minterm of Γ, then U2,d+1 ∪ Y

is a minterm of ΓZ,W .
Proof. The access structure ΓZ,W is an ideal WTAS and its lexicographically

minimal minterm is U1,d ∪ Y . Let M be a minterm of Γ that starts with u2. In
particular, M intersects W . By Claims 8.6 and 8.15, the minterm M contains exactly
m members of S. Thus, By Claim 8.8, ΓM∩S,W = ΓZ,W . This implies that M ∩W is
a minterm of ΓZ,W that starts with u2. Recall that, by Remark 8.14, Y 6= ∅. Hence,
Claim 7.1 applies to the access structure ΓZ,W , and the set U2,d+1 ∪ Y is a minterm
of ΓZ,W .

We may now describe the structure of ΓZ,W . Since we assume that there exists a
minterm of Γ that starts with u2, the set U2,d+1 ∪Y is a minterm of ΓZ,W , as implied
by Claim 8.18. As U2,d+1 ∪ Y is a run, and it is a prefix in W\ {u1}, we get that
the restriction ΓZ,W\{u1} has a prefix minterm. Therefore, by Theorem 6.7, it is an
HTAS. The threshold of the first level is |U2,d+1 ∪ Y | = d + t. By Claim 8.17, the
run minterm of this HTAS that ends with x1 starts with an element of Y . Therefore,
the transition between the first and the second level in that HTAS (if exists) occurs
within Y . This enables us to prove that Ud+2,n is a strong set of users.

Claim 8.19. Suppose there is an S-cooperative set of size larger than m, and that
there is a minterm of Γ that starts with u2. Then Ud+2,n is a strong set of users.

Proof. In order to show that Ud+2,n is a strong set of users, we show that for
any Ud+2,n-cooperative set V , the corresponding restriction induced by V on U1,d+1,
namely ΓV,U1,d+1 , is a d-out-of-(d + 1) threshold access structure. Let V be a Ud+2,n-
cooperative set. Hence, there exists a non-empty set A ⊆ U1,d+1 such that A ∪ V
is a minterm of Γ. Denote VW = V ∩W and VS = V ∩ S. Note that the set VS is
S-cooperative. Moreover, since A∪V is a minterm of Γ, then A∪VW is a minterm of
ΓVS ,W that intersects U1,d+1. Therefore, by Claim 8.15, we conclude that |VS | = m.
Thus, by Claim 8.8, ΓVS ,W = ΓZ,W . Consequently, since A ∪ VW is a minterm of
ΓVS ,W , it is also a minterm of ΓZ,W .

We claim that the size of that minterm is |A ∪ VW | = d+t. Indeed, if the minimal
user in A ∪ VW is u1 then, by Lemma 5.3, |A ∪ VW ∪ VS | = |M1| = d + t + m, so,
as |VS | = m, we get that |A ∪ VW | = d + t. Otherwise, A ∪ VW ⊆ W\{u1} and,
consequently, A ∪ VW ∈ ΓZ,W\{u1}. But the latter access structure was shown above
to be an HTAS; furthermore, we showed that the first level in that HTAS includes all
of U2,d+1 and the corresponding threshold is d+ t. Since A∪VW starts within U2,d+1,
it is of size d + t.

First, we show that for any D ⊆ U1,d+1 of size d, D ∪ V ∈ Γ. Since w(D) ≥
w(U1,d), we need only to show that U1,d∪V ∈ Γ. We know that M1 = U1,d∪Y ∪Z ∈ Γ.
Since A ⊆ U1,d+1 it must be that |A| ≤ d (otherwise A = U1,d+1 and then A ∪ V
would be a minterm that precedes M1 with respect to the lexicographical order).
Hence, |VW | ≥ t. Since Y consists of the first t users in Ud+2,n, we conclude that
w(VW ) ≥ w(Y ). Therefore VW can replace Y in M1 and so U1,d∪VW ∈ ΓZ,W = ΓVS ,W .
This implies that U1,d ∪ VW ∪ VS = U1,d ∪ V ∈ Γ, as required. Hence, every subset of
d users from U1,d+1 completes V to an authorized set.

Finally, we need to show that no smaller subset of U1,d+1 completes V to an
authorized set. To that end, let B be a minterm of ΓV,U1,d+1 . We proceed to show that
|B| ≥ d. Using the above notations, B ∪ VW ∪ VS is a minterm of Γ, or, equivalently,
B ∪ VW is a minterm of ΓVS ,W = ΓZ,W . Arguing along the same lines as we did
for A ∪ VW , we conclude that |B ∪ VW | = d + t. Assume towards a contradiction
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that |B| < d. Then |VW | > t and, consequently, as VW ⊂ Ud+2,n, we get that
w(VW ) ≥ w(Y ∪ {x1}). But according to Claim 8.17, Y ∪ {x1} ∈ ΓZ,W . Hence, since
ΓZ,W = ΓVS ,W , we infer that Y ∪ {x1} ∪ VS ∈ Γ. This implies that also VW ∪ VS = V
is authorized, in a contradiction to our assumption that V is a Ud+2,n-cooperative
set. That completes the proof.

8.4. Proof of Theorem 3.5 – The Characterization Theorem. Let Γ be
an ideal WTAS defined on a set of users U and let M1 be its lexicographically minimal
minterm. If either Γ has self-sufficient users or u2 starts no minterm of Γ, then, by
Lemma 8.5, the access structure Γ is a composition of two ideal WTASs on smaller
sets of users.

If M1 is a prefix then, by Theorem 6.7, the access structure Γ is an HTAS. If M1 is
a lacunary prefix, namely, M1 = U1,d∪Ud+2,k for some 1 ≤ d ≤ k−2 and k ≤ n, then,
by Theorem 7.6, the access structure Γ is a TPAS. Otherwise, by Corollary 8.9 and
Claim 8.19, there exists within U a subset of strong users. In this case, we conclude
by Theorem 8.4 that the access structure Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

As for the other direction, HTASs are ideal and may be realized by linear secret
sharing schemes, as shown in [6, 35]. TPASs are also ideal and may be realized by
linear secret sharing schemes, as shown herein in Section 7.1. Finally, given two ideal
access structures, we showed in Lemma 8.1 how to construct an ideal secret sharing
scheme for their composition. Hence, the composition is also ideal. Furthermore,
by Lemma 8.1, if the secret sharing schemes for the two basic access structures are
linear, so is the resulting scheme for the composition of the two access structures.
This completes the proof of the characterization theorem. 2
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