
Improved Versions of Tardos’ Fingerprinting Scheme

Oded Blayer and Tamir Tassa∗

March 9, 2008

Abstract
We study the Tardos’ probabilistic fingerprinting scheme and show that its codeword length

may be shortened by a factor of approximately 4. We achieve this by retracing Tardos’ analysis
of the scheme and extracting from it all constants that were arbitrarily selected. We replace
those constants with parameters and derive a set of inequalities that those parameters must
satisfy so that the desired security properties of the scheme still hold. Then we look for
a solution of those inequalities in which the parameter that governs the codeword length
is minimal. A further reduction in the codeword length is achieved by decoupling the error
probability of falsely accusing innocent users from the error probability of missing all colluding
pirates. Finally, we simulate Tardos scheme and show that, in practice, one may use codewords
that are shorter than those in the original Tardos scheme by a factor of at least 16.

1 Introduction

A data distribution system is any setting in which a data provider is providing data to a large
group of paying users. Piracy occurs when one or few legal users redistribute the data for which
they paid to illegal users, thus rendering financial losses to the legitimate data provider. The
problem of protecting copyrighted data became acute in the digital era, as digital data can be
duplicated perfectly, without quality degradation, easily stored on optic and magnetic media, and
seamlessly distributed using the Web. Hence, tracing techniques are required in order to find the
source of such information leakage, disconnect it and press charges against those traitorous users.

Digital fingerprinting (or watermarking) is a method that aims at protecting copyrighted data
against piracy. The idea is to personalize each copy of the data prior to distribution, by embedding
in it some unique mark (called the fingerprint), so that two properties hold:

• The fingerprint does not affect the intended use of the data in which it was embedded. For
instance, if the data is a software, the fingerprinted software must run correctly. As another
example, if the data is a digital movie, the fingerprinted movie must be indistinguishable
from the original movie by a human viewer.

• The users must be incapable of removing the fingerprint without the risk of changing or
removing other parts of the data that are relevant for its functionality.

Such fingerprinting is a good solution against piracy, as long as pirates do not collude. However,
if several pirates collude, they may combine their personalized copies in order to create a new copy
that is still fully functional, but is different from each of the personalized copies that they possess.
This way, it may be hard or even impossible to link the distributed copy to any of the pirates
that collaborated in generating it. Moreover, such a copy may even be identical or similar to a
personalized copy that was given to an innocent user that has nothing to do with the coalition
of pirates. Fingerprinting schemes are mechanisms that were devised in order to thwart such
piracy. Such schemes consist of a fingerprinting algorithm, coupled with a tracing algorithm, as
we proceed to define.

∗Department of Mathematics and Computer Science, The Open University, Ra’anana, Israel.

1

1.1 The model

Let U = {u1, . . . , un} denote the set of users of some data distribution system. As described
above, each user gets a personalized fingerprinted copy of the data. The fingerprinting algorithm
consists of the following ingredients:

• A marking alphabet, Σ, where |Σ| = r.

• A codeword length m.

• A one-to-one personalization function P : U → Σm that determines how to mark the data
that is provided to a particular user with a codeword in Σm.

The technique in which the selected codeword is inserted into the data so that the two properties
that we described earlier hold, depends on the type of data. E.g., Cox et. al. [4] described such
techniques for fingerprinting images.

The fingerprinting algorithm is coupled with a tracing algorithm. Assuming that the coalition
of pirates is T = {t1, . . . , tc} ⊂ U , the tracing algorithm consists of the following ingredients:

• A generation assumption: Letting P (T) = {P (t1), . . . , P (tc)} be the set of codewords in the
copies that are owned by the pirates, 〈P (T)〉 denotes the set of codewords that could be
generated by the pirates and be placed in the pirate copy. 〈P (T)〉 ⊂ (Σ∪ {?})m, where “?”
denotes an unreadable mark. Different assumptions were made in different studies about
the strength of the generation operation 〈·〉, depending on the underlying application. The
minimal generation assumption is

〈P (T)〉 = {y ∈ Σm s.t. yj ∈ {P (t1)j , · · · , P (tc)j} for all 1 ≤ j ≤ m} . (1)

Namely, pirates with minimal capabilities can detect positions where their codewords dif-
fer and place there any one of the marks that they hold in that position. The maximal
generation assumption, on the other hand, is

〈P (T)〉 = {y ∈ (Σ ∪ {?})m s.t. y = P (t1)|R} , (2)

where R = {j : P (t1)j = · · · = P (tc)j}. Namely, in marking positions that are detectable by
the pirates, they may place any marking symbol from Σ or completely remove that mark.

• A tracing algorithm that, given a pirate copy, aims at tracing back (at least) one pirate that
collaborated in producing that copy. This algorithm may be therefore viewed as a function
σ : 〈P (T)〉 → 2U .

The following definition extends the notion of ε-security, as appears in [1, 7].
Definition 1.1 A fingerprinting scheme is called (ε, ε̂)-secure against coalitions of size c if for
any T ⊂ U of size |T | ≤ c, and for every y ∈ 〈P (T)〉, the following two properties hold:

Pr (σ(y) ∩ (U \ T) 6= ∅) ≤ ε , (3)

and
Pr (σ(y) ∩ T = ∅) ≤ ε̂ . (4)

In case ε̂ = ε, the scheme is called ε-secure.

As an example, consider a data provider that sells viewing rights of the latest digital features.
Since digital material may be cloned many times without experiencing quality degradation, im-
moral users that paid for their copies might redistribute such copies for a bargain price in the
black market. In order to deter such users and to be able to trace them in case that they do

2

exercise such piracy, Boneh and Shaw [1] suggested a fingerprinting technique. As in our frame-
work, the original data is personalized prior to distribution. The movie V is broken up to m
short segments, V = V1|| . . . ||Vm, where || denotes concatenation, and to each segment, Vj , r
almost-identical variants are generated, Vj 7→ {V 1

j , . . . , V r
j }. Letting Σ = {1, . . . , r}, if user u ∈ U

was assigned the codeword P (u) ∈ Σm, he will get the following version of the movie:

V (u) = V
P (u)1
1 || · · · ||V P (u)m

m .

Boneh and Shaw [1] concentrated on the case r = 2 and designed fingerprinting schemes that
are capable of tracing at least one of the colluding pirates that participated in producing the
pirate version, with an error probability as small as desired. In the binary case, the minimal
and maximal generation assumptions, (1) and (2), are equivalent: While the minimal assumption
forces the pirates to choose in every position a mark that they have, the maximal assumption
allows them to put in detectable positions any mark from Σ or nothing at all (“?”). But in the
binary case, a detectable mark occurs in segments where the pirates have all r = 2 variants. In
that case there is not much point in the pirates removing the mark (an operation that usually
damages the quality of the produced copy); instead, they could pick any of the r = 2 variants
that they have.

Schemes that are ε-secure with ε = 0 are called deterministic. A necessary condition for a
scheme to be deterministic is that r > c, [5, Theorem 1]. Hence, binary schemes (r = 2) are never
deterministic and their output is always accompanied by a small error probability.

1.2 Related work

Fingerprinting schemes with the identifiable parent property (IPP) were introduced by Chor et
al. under the name traitor tracing schemes [2]. They considered the setting of a Pay-TV system,
where Conditional Access techniques are implemented in order to deny access to content from
non-paying users. In such systems, the stream of content that is broadcast from the center is
encrypted, and each paying user is given a decoder with embedded keys that are capable of
decrypting the transmission. In order to thwart potential users from cloning their decoders and
selling them to illegal users, each decoder is personalized by a unique selection of decryption keys
that enables the decryption of the entitlement messages (the encrypted messages that hold the
periodical keys that are used for the encryption of the broadcast). Their fingerprinting scheme
falls under the model of Section 1.1 and the relevant generation assumption is the minimal one,
(1). In their simplest scheme, [2, Section 3.3], r = 4c, m = 4c log2(n/ε)/3, and the algorithm is
simply the majority algorithm: Given a pirate decoder that is marked by a codeword y ∈ Σm,
the tracing algorithm σ outputs a user ui ∈ U whose codeword P (ui) has the maximal number of
matches with y. The above selection of parameters, r and m, ensures that the scheme is ε-secure.

Boneh and Shaw [1] described binary fingerprinting codes, r = 2. The price that is incurred
by using the smallest possible marking alphabet is in the length of the codewords. Their basic
code has length m = O(n3 log(n/ε))1 and it is ε-secure for any size of coalition. By combining
this basic code with the above described scheme of Chor et al., they devised another ε-secure
fingerprinting code of length m = O(c4 log(1/ε) log(n/ε)) for coalitions of size at most c for some
c < n.

Boneh and Shaw used restricted randomization in constructing their codewords. In their basic
scheme, they first fix some large parameter d and set m = (n − 1)d. Then they construct the
codewords wi = 0(i−1)d1(n−i)d, 1 ≤ i ≤ n. Finally, they select a random permutation π ∈ Sm and
the codeword of user ui is then P (ui) = π(wi). Namely, randomization kicks in only in permuting
the bits of the codewords, but not in selecting the values of those bits. In other words, the
bits in any given position 1 ≤ j ≤ m – (P (u1)j , . . . , P (un)j) – obey some deterministic pattern;

1Hereinafter, log denotes the natural logarithm.

3

specifically, they take the form (1, . . . , 1, 0, . . . , 0), where the number of leading 1s is anywhere
between 0 and n.

Tardos [7] took Boneh and Shaw’s ideas one step further and introduced a full randomization
in determining the codewords. In his fingerprinting code, there are m binary distributions and
then P (ui)j is selected to be 0 or 1 according to the jth distribution. By carefully selecting those
distributions and designing the tracing algorithm, the resulting codeword length is almost the
square root of that in the Boneh-Shaw scheme – m = O(c2 log(n/ε)). This code length is optimal,
within a constant factor, for sufficiently small (yet reasonable) values of ε.

1.3 The Tardos fingerprinting code

1.3.1 Phase 1: Creating the codebook

The codewords are generated as follows:

1. Set the length of the codewords to m = dmc2k, for some integral constant dm, where
hereinafter k = dlog 1

εe.
2. Select probabilities pj for all 1 ≤ j ≤ m, in a manner that is explained below.

3. For all 1 ≤ i ≤ n (a loop over all users) and for all 1 ≤ j ≤ m (a loop over the bits of the
codeword of that user) set P (ui)j = 1 with probability pj and P (ui)j = 0 otherwise.

The resulting codebook, {P (u1), . . . , P (un)} ⊂ {0, 1}m, is denoted Fn,c,ε.
Next, we describe the critical part of selecting the probabilities. Let dt ≥ 1 be some constant

and set
t =

1
dtc

, sin2 t′ = t.

Since we assume hereinafter that c > 2, then t ∈ (0, 1
2) and, consequently, t′ ∈ (0, π

4). With this
choice of parameters, we select rj uniformly at random from the interval [t′, π

2 − t′], and then set
pj = sin2 rj , 1 ≤ j ≤ m.

1.3.2 Phase 2: Accusation

Define the array

Vi,j =





√
1−pj

pj
if P (ui)j = 1

−
√

pj

1−pj
if P (ui)j = 0

, 1 ≤ i ≤ n, 1 ≤ j ≤ m . (5)

Assume that the codeword that was extracted from the pirate copy is y ∈ {0, 1}m. Then user ui,
1 ≤ i ≤ n, will be accused if

m∑

j=1

yjVi,j > z, (6)

where z = dzck and dz is some constant. The set of all users that are accused by this algorithm
when the pirate codeword is y is denoted σ(y).

1.3.3 Properties of the code

The code that we described above uses several undetermined constants. Those constants are dm

and dt from Phase 1, and dz from Phase 2. The values that were set by Tardos for those constants
were:

dm = 100, dt = 300, dz = 20 . (7)

4

With this choice of constants, and under generation assumption (1), Tardos proved the following
claims.
Theorem 1.1 Let ui ∈ U be an arbitrary user, and T ⊆ U\ {ui} be a coalition of arbitrary size.
Then for any codeword y ∈ 〈P (T)〉,

Pr [ui ∈ σ (y)] < ε.

Theorem 1.2 Let T ⊂ U be a coalition of size |T | ≤ c. Then for any codeword y ∈ 〈P (T)〉

Pr [T ∩ σ (y) = ∅] < εc/4.

Theorem 1.1 bounds the probability of falsely accusing just one innocent user when using the
codebook Fn,c,ε. Hence, in order to achieve ε-security, one needs to use the codebook Fn,c,ε/n.
In view of Theorem 1.2, that code is in fact (ε, ε̂)-secure (in the sense of Definition 1.1) with
ε̂ = (ε/n)c/4. Note that ε̂ ¿ ε because n is typically a very large number and c, being an assumed
upper bound on the size of the coalition of pirates (and not the actual size of the active coalition),
is usually set to values for which c/4 À 1.

1.4 Our contribution

The choice of constants made by Tardos, (7), seems, at first, arbitrary. As this code has a minimal
length to within a constant factor, a natural question arises: does there exist a different choice of
constants with a smaller value of dm - the constant that determines the codeword length?

In this study we retrace Tardos’ analysis and extract from it all constants that were arbitrarily
selected. We identify a set of seven constants that appear in Tardos’ analysis that could be tuned
differently in order to decrease the codeword length. Those constants include the above mentioned
dm, dt and dz, and four other constants that pop up in the proofs of Theorems 1.1 and 1.2. We
replace those constants with parameters and derive a set of inequalities that those parameters
must satisfy in order for Theorems 1.1 and 1.2 to hold. Then, we look for a solution of those
inequalities in which dm is minimal.

Another way to reduce the codeword length is through the error probabilities in Theorems 1.1
and 1.2. As noted at the end of Section 1.3, the Tardos fingerprinting scheme is (ε, ε̂)-secure with
ε̂ ¿ ε. However, a better setting of error probabilities is one in which ε̂ À ε, because accusing
an innocent user of forgery is much worse than allowing a pirate to act undetected. Since pirates
tend to repeat their actions, the probability they have for acting undetected for a long period of
time is slim. For example, while ε would be typically set to a small value such as ε = 10−3 or
ε = 10−4, ε̂ could be set to ε̂ = 1

2 or even larger, because the expected number of piracy actions
until one pirate is finally traced would not exceed 1

1−ε̂ . For this reason, we decouple the two error
probabilities in Theorems 1.1 and 1.2. This decoupling allows us to further decrease the value of
dm.

We keep denoting the bound on the error probability in Theorem 1.1 by ε, while the bound
on the error probability in Theorem 1.2 will be denoted by ε̂. Finally, we set η = logε(ε̂) so that
ε̂ = εη.

Example. Assume that n = 106 and it is desired to achieve (10−3, 3/4)-security (namely, the
probability of accusing any innocent user is bounded by 10−3 while the expected number of piracy
acts until the scheme traces a true pirate is 4). Then we set in Theorem 1.1 ε = 10−3/n = 10−9,
while in Theorem 1.2 we take the bound on the error probability to be ε̂ = 3/4. In this case,
η = 1

9 log10
4
3 ≈ 0.014.

The paper is organized as follows. In Section 2 we carry out the above described analysis of the
proofs of Theorems 1.1 and 1.2. Given n, c, ε and η, we determine the domain Ω = {(dm, dt, dz) ∈

5

R3} of all triplets (dm, dt, dz) for which both Theorems 1.1 and 1.2 still hold (where the error
probability in Theorem 1.2 is replaced with ε̂ = εη). Then, we find the minimal dm in Ω. It turns
out that the domain Ω depends only on c and η. This analysis enables us to decrease dm by a
factor of approximately 4. In Section 3 we simulate the Tardos’ fingerprinting scheme and show
that in practice one can use much smaller values of dm than what is allowed by the theory, even
when the pirate exercises his best strategy. Specifically, we show that in practice one may usually
take dm < 8 (as opposed to dm = 100 in the original Tardos scheme). This offers a significant
improvement in the codeword length.

2 Analysis of Tardos’ Scheme

In the following subsections we will establish the main properties of the code. In Section 2.2
we derive the requirements that the parameters dm, dt and dz need to satisfy so that, with
almost certainty, no innocent user is accused (Theorem 1.1). Here, two new parameters join the
optimization game – dα and r. The bottom line of Section 2.2 is two requirements that the five
parameters (dm, dt, dz, dα, r) need to satisfy so that Theorem 1.1 holds. (The values that were set
by Tardos for those parameters satisfy those two requirements.)

Then, in Section 2.3, we derive the requirements that those five parameters need to satisfy
so that at least one of the pirates is accused by the algorithm with a given threshold probability
(Theorem 1.2). Here, two new parameters enter the game – s and g. The final conclusion of
Section 2.3 is two additional requirements that the seven parameters (dm, dt, dz, dα, r, s, g) need
to satisfy so that Theorem 1.2 holds.

Those four requirements define a domain of parameters (dm, dt, dz, dα, r, s, g) in R7. The
projection of that domain into Rdm × Rdt × Rdz gives the domain Ω of all triplets (dm, dt, dz) for
which the resulting scheme is (ε, ε̂)-secure. (The four other parameters are used only in the proofs
and have no manifestation in the actual scheme.) We analyze those requirements in Section 2.4
in order to find a minimal dm – the constant that determines the length of the codewords – in
that domain.

But first, we derive in Section 2.1 some simple inequalities that we shall need later on.

2.1 Quadratic upper bounds on the exponential function

Lemma 2.1 For every r > 1
2 , there exists h(r) > 0 such that

ex ≤ 1 + x + rx2, ∀x ≤ h(r) . (8)

Furthermore, the function h(r) is monotonically increasing from 0 to ∞ for 1
2 < r < ∞.

Proof. Let y(x) = 1 + x + rx2 − ex. Differentiating with respect to x we get that y′ =
1 + 2rx − exand y′′ = 2r − ex. The latter function is monotonically decreasing. Additionally, it
is positive when x < ln(2r) and negative when x > ln(2r). Hence, x = ln(2r) > 0 is a global
maximum of y′. Since y′(0) = 0, we infer that y′(ln(2r)) > 0. Moreover, as limx→∞ y′ = −∞,
there exists a point f(r) > ln(2r) for which y′(f(r)) = 0. This point marks the global maximum
of y for x > 0. As y(0) = 0, we conclude that y(f(r)) > 0. Additionally, since limx→∞ y = −∞,
there exists a point h(r) > f(r) for which y(h(r)) = 0.

To conclude, for every r > 1
2 there exists a point h(r) > 0 such that y(0) = y(h(r)) = 0,

y > 0 for all 0 < x < h(r) and y < 0 for x > h(r). Moreover, the function h(r) is monotonically
increasing. Indeed, denote y(x; r) = 1 + x + rx2 − ex. Then if r2 > r1 > 1

2 , we have y(x; r2) >
y(x; r1) for every x > 0. Therefore y(h(r1), r2) > y(h(r1), r1) = 0. Since y(x, r2) > 0 only when
x < h(r2) we conclude that h(r2) > h(r1). Hence, h(r) is monotonically increasing. Furthermore,
it is easy to see that lim

r→ 1
2

+ h(r) = 0 and limr→∞ h(r) = ∞, since for every fixed x > 0 there

exists r sufficiently large such that y(x; r) > 0. 2

6

As a consequence of Lemma 2.1, the function h : (1
2 ,∞) → (0,∞) has an inverse h−1. Denoting

s = h(r) and r = h−1(s), we get another version of inequality (8):

ex ≤ 1 + x + h−1(s)x2, ∀x ≤ s . (9)

This version is explicit since by substituting in the inequality the value x = s, where it holds with
equality, we get that

h−1(s) =
es − 1− s

s2
. (10)

2.2 Why the innocent is not accused

Proof of Theorem 1.1. Let y be the pirate codeword and let ui ∈ U \ T be an innocent
user. Letting Vi,j be as in (5), we denote, for simplicity, Vj = Vi,j . User ui will be accused if
S =

∑m
j=1 yjVj =

∑
j:yj=1 Vj > z. We proceed to derive conditions on the scheme’s parameters

so that Pr [S > z] < ε.
Let α = 1

dαc for some constant dα. Tardos set the value of this constant to dα = 10. However,
as we aim to optimize the selection of constants, we consider dα as a parameter of an undeter-
mined value, and keep track of the requirements that it needs to satisfy (together with the other
parameters – dm, dt and dz). Consider the expected value E

[
eαS

]
. Using the independence of

the random variables Vj we have

E
[
eαS

]
= E


 ∏

j:yj=1

eαVj


 =

∏

j:yj=1

E
[
eαVj

]
.

Next, Tardos used the fact that

1 + x ≤ ex ≤ 1 + x + x2,

where the second inequality holds for x < 1.7. Here, we take that approach one step further and
use the bound

1 + x ≤ ex ≤ 1 + x + rx2,

for some r > 1
2 , where, in view of Lemma 2.1, the second inequality holds for all x < h(r).

Applying that bound for eαVj we get:

1 + αVj ≤ eαVj ≤ 1 + αVj + r(αVj)2, (11)

provided that αVj < h(r). Since pj = sin2 rj ≥ sin2 t′ = t, we infer that

Vj ≤
√

1− pj

pj
≤

√
1− t

t
<

√
1
t

=
√

dtc .

Consequently, αVj ≤ 1
dαc

√
dtc =

√
dt

dα
√

c
. Hence, (11) holds if

√
dt

dα
√

c
< h(r), or, after rearrangement,

if the following requirement is satisfied:

Requirement 1: dα >
√

dt

h(r)
√

c
.

We note that the values that were set by Tardos, dt = 300, dα = 10, and h(r = 1) = 1.7, indeed
satisfy this requirement for all c ≥ 2.

Next, we observe that
E[Vj] = 0 and E[V 2

j] = 1. (12)

7

Indeed,

E [Vj] = pj ·
√

1− pj

pj
+ (1− pj) ·

(
−

√
pj

1− pj

)
= 0,

and
E

[
V 2

j

]
= pj · 1− pj

pj
+ (1− pj) · pj

1− pj
= 1.

Therefore, by (11) and (12),

E
[
eαVj

] ≤ E
[
1 + αVj + rα2V 2

j

]
= 1 + αE [Vj] + rα2E

[
V 2

j

]
= 1 + rα2 ≤ erα2

,

and
E

[
eαS

]
=

∏

j:yj=1

E
[
eαVj

] ≤
(
erα2

)|{j:yj=1}|
≤ erα2m.

By Markov’s inequality, if Y is a nonnegative random variable, then for all t > 0, Pr [Y ≥ t] ≤ E[Y]
t .

Applying this inequality to eαS we infer that

Pr [S > z] = Pr
[
eαS > eαz

] ≤ E
[
eαS

]

eαz
≤ erα2m−αz.

We would like to show that erα2m−αz ≤ e−k ≤ ε. This will be true if

rα2m− αz ≤ −k,

or
rdmc2k

d2
αc2

− dzck

dαc
= k

(
rdm

d2
α

− dz

dα

)
≤ −k.

This inequality holds when the following requirement is satisfied:

Requirement 2: dz
dα
− rdm

d2
α
≥ 1.

Note that if we pick dz = 20, dm = 100, dα = 10 and r = 1, as Tardos did, we get 20
10 − 100

100 = 1.
To summarize, in the case where both Requirements 1 and 2 are fulfilled, we get Pr [S > z] ≤ ε

as needed. 2

2.3 Why some guilty is accused

Proof of Theorem 1.2. We assume without loss of generality that T = U and that n = c since
the codewords of the users outside T are irrelevant. Let X be the n × m matrix representing
the codebook (namely, the ith row of X is P (ui)). For simplicity, we introduce qj =

√
1−pj

pj
, and

recall that by (5),

Vi,j =

{
qj if P (ui)j = 1
− 1

qj
if P (ui)j = 0

.

Let y be the pirate codeword and let Si =
∑m

j=1 yjVi,j for ui ∈ T . Define

S =
c∑

i=1

Si =
m∑

j=1

yj

(
xjqj − n− xj

qj

)
, (13)

8

where xj =
∑n

i=1 P (ui)j denotes the number of ones in column j of X. Recall that ui ∈ T is
accused if Si ≥ z. Thus, if S ≥ nz, at least one of the pirates in T must be accused. Hence, it is
sufficient to bound the probability that S < nz because

Pr [T ∩ σ (y) = ∅] ≤ Pr [S < nz] .

Let β = s
√

t
c , where s is a parameter that will be determined later. Tardos used s = 1. Using

the rules of the second phase of the code generation, and letting p = (p1, . . . , pm), we have

Ep,X

[
e−βS

]
= Ep


∑

X


e−βS

m∏

j=1

(
p

xj

j (1− pj)
n−xj

)




 =

=
∑

X

Ep


e−βS

m∏

j=1

(
p

xj

j (1− pj)
n−xj

)

 ;

here, Ep,X stands for the expectation with respect to all random choices of the m probabilities in
p and all nm random choices of the entries of X, while Ep stands for the expectation with respect
only to selections of p. The summation is for all n×m binary matrices X. Using equation (13)
we have

Ep,X

[
e−βS

]
=

∑

X




m∏

j=1

Epj

(
p

xj

j (1− pj)
n−xj e

−βyj

(
xjqj−

n−xj
qj

))
 .

Here xj and y ∈ 〈P (T)〉 are determined by X, while qj =
√

1−pj

pj
is determined by p. Notice

that for a fixed matrix X, term j of the product depends solely on pj , whence these terms are
independent. As each pj is identically distributed we write hereinafter p instead, and q instead of
qj .

Recall that each yj is either 0 or 1. Furthermore, by the generation assumption, if xj = 0 then
yj = 0 and if xj = n then yj = 1. Thus we have

Ep,X

[
e−βS

]
≤

∑

X

m∏

j=1

max∗ (N0,j , N1,j) ,

where
N0,j = Ep

[
pxj (1− p)n−xj

]
,

N1,j = Ep

[
pxj (1− p)n−xj e

−β
(
xjq−n−xj

q

)]
,

and

max∗ =





N0,j if xj = 0
N1,j if xj = n

max(N0,j , N1,j) otherwise

.

As the jth term in the product depends only on xj and the summation is for all 0-1 matrices X,
we may switch the summation and the product to get

Ep,X

[
e−βS

]
≤

m∏

j=1

n∑

xj=0

(
n

xj

)
max∗ (N0,j , N1,j) .

Hence,

Ep,X

[
e−βS

]
≤

(
n∑

x=0

(
n

x

)
Mx

)m

, (14)

9

where
M0 = E0,0, Mn = E1,n, and Mx = max (E0,x, E1,x) for 1 ≤ x ≤ n− 1, (15)

and
E0,x := Ep

[
px (1− p)n−x]

, (16)

E1,x := Ep

[
px (1− p)n−x e

−β
(
xq−n−x

q

)]
, (17)

for all 0 ≤ x ≤ n. Since p ≤ 1− t and β = s
√

t
c , the value in the exponent in (17) may be bounded

as follows:

−β

(
xq − n− x

q

)
≤ βn

q
= βn

√
p

1− p
≤ βn√

1− p
≤ s

√
t · n

c · √t
=

sn

c
= s. (18)

With this, we proceed to bound the exponent in (17). Tardos used the value s = 1 and then used
the bound eu ≤ 1+u+u2, that holds for u < 1.7. However, since inequality (18) guarantees that
the value in the exponent in (17) does not exceed s, we may use equation (9) as a tighter bound
to get

E1,x ≤ Ep

[
px (1− p)n−x

(
1− β

(
xq − n− x

q

)
+ h−1(s)β2

(
xq − n− x

q

)2
)]

.

Using the notation E0,x, that was defined in (16),

E2,x := Ep

[
px (1− p)n−x

(
xq − n− x

q

)]
,

and

E3,x := Ep

[
px (1− p)n−x

(
xq − n− x

q

)2
]
≥ 0 ,

we have
E1,x ≤ E0,x − βE2,x + h−1(s)β2E3,x . (19)

The term E2,x is the most important one. Recall that p = sin2 r with a uniform random r ∈[
t′, π

2 − t′
]
, where sin2 t′ = t. Hence,

1− p = 1− sin2 r = cos2 r,

and

q =
√

1− p

p
=

√
cos2 r

sin2 r
=

cos r

sin r
= cot r.

Next, we can calculate E2,x using the following integral

E2,x =
∫ π

2
−t′

t′ sin2x r cos2n−2x r (x cot r − (n− x) tan r) dr
π
2 − 2t′

.

The primitive function of the integrand is

f (r) =
1
2

sin2x r cos2n−2x r.

10

Therefore,

E2,x =
f

(
π
2 − t′

)− f (t′)
π
2 − 2t′

= (20)

=
sin2x

(
π
2 − t′

)
cos2n−2x

(
π
2 − t′

)− sin2x (t′) cos2n−2x (t′)
π − 4t′

=

=
cos2x (t′) sin2n−2x (t′)− sin2x (t′) cos2n−2x (t′)

π − 4t′
=

=
(1− t)x tn−x − tx (1− t)n−x

π − 4t′
.

Hence,

E2,x ≥ − tx (1− t)n−x

π − 4t′
< 0. (21)

Going back to (15), we use equations (19) and (21) to infer that

Mx = max (E0,x, E1,x) ≤ max
(
E0,x, E0,x − βE2,x + h−1(s)β2E3,x

) ≤

≤ max
(

E0,x, E0,x + β · tx (1− t)n−x

π − 4t′
+ h−1(s)β2E3,x

)
≤

≤ E0,x + β · tx (1− t)n−x

π − 4t′
+ h−1(s)β2E3,x ,

for all 1 ≤ x ≤ n− 1. We also have M0 = E0,0. Finally, as by (20) we have E2,n = (1−t)n−tn

π−4t′ , we
conclude, in view of (19), that

Mn = E1,n ≤ E0,n − β
(1− t)n − tn

π − 4t′
+ h−1(s)β2E3,n.

Next, we use the above estimates on Mx, 0 ≤ x ≤ n, in order to bound the sum in equation (14):

n∑

x=0

(
n

x

)
Mx ≤ M0 + Mn +

n−1∑

x=1

(
n

x

)
Mx ≤

≤ E0,0 + E0,n − β
(1− t)n − tn

π − 4t′
+ h−1(s)β2E3,n +

+
n−1∑

x=1

(
n

x

)
E0,x +

β

π − 4t′

n−1∑

x=1

(
n

x

)
tx (1− t)n−x + h−1(s)β2

n−1∑

x=1

(
n

x

)
E3,x ≤

≤
n∑

x=0

(
n

x

)
E0,x + h−1(s)β2

n∑

x=1

(
n

x

)
E3,x +

+
β

((∑n−1
x=1

(
n
x

)
tx (1− t)n−x

)
− (1− t)n + tn

)

π − 4t′

Rearranging the terms on the right hand side we get that
n∑

x=0

(
n

x

)
Mx ≤

n∑

x=0

(
n

x

)
E0,x−

β
(
(1− t)n −∑n

x=1

(
n
x

)
tx (1− t)n−x)

π − 4t′
+h−1(s)β2

n∑

x=1

(
n

x

)
E3,x. (22)

We proceed to bound separately each of the addends on the right hand side of (22). First, using
the binomial theorem, we have

n∑

x=0

(
n

x

)
E0,x =

n∑

x=0

(
n

x

)
Ep

[
px (1− p)n−x]

= Ep

[
n∑

x=0

(
n

x

)
px (1− p)n−x

]
= Ep [(p + 1− p)n] = 1.

11

Next, using the same tool we get that

−
n∑

x=1

(
n

x

)
tx (1− t)n−x = (1− t)n−

n∑

x=0

(
n

x

)
tx (1− t)n−x = (1− t)n− (t + 1− t)n = (1− t)n−1.

Consequently,

(1− t)n −
n∑

x=1

(
n

x

)
tx (1− t)n−x = 2 (1− t)n − 1 .

As 0 ≤ t ≤ 1, we get that
(1− t)n = 1− nt + O

(
t2

) ≥ 1− nt,

and
2 (1− t)n − 1 ≥ 2− 2nt− 1 = 1− 2nt.

Finally, we estimate the third and last sum on the right hand side of (22):

n∑

x=1

(
n

x

)
E3,x =

n∑

x=0

(
n

x

)
E3,x − E3,0 =

n∑

x=0

(
n

x

)
Ep

[
px (1− p)n−x

(
xq − n− x

q

)2
]
−E3,0 =

= Ep

[
n∑

x=0

(
n

x

)
px (1− p)n−x

(
xq − n− x

q

)2
]
−E3,0.

In order to proceed and estimate this last sum, consider a fixed 0 < p < 1 and then define the
sequence of independent and identically distributed random variables Hi, 1 ≤ i ≤ n, with the
following distribution:

Hi =

{
q with probability p ,

−1
q with probability 1− p .

The expectation and variance of Hi are:

E [Hi] = pq + (1− p)
(
−1

q

)
= p ·

√
1− p

p
− (1− p)

√
p

1− p
= 0 ;

E
[
H2

i

]
= p · q2 + (1− p)

(
−1

q

)2

= (1− p) + p = 1 .

As Hi are independent, we conclude, in view of the above equalities, that

E




(
n∑

i=1

Hi

)2

 =

n∑

i=1

E
[
H2

i

]
+

∑

1≤i6=j≤n

E [HiHj] =
n∑

i=1

1 +
∑

1≤i6=j≤n

E[Hi]E[Hj] = n.

However, examining this expectancy we discover that

E




(
n∑

i=1

Hi

)2

 =

n∑

x=0

(
n

x

)
px (1− p)n−x

(
x · q − (n− x)

1
q

)2

.

As this is the same expression that appears in the bound on
∑n

x=1

(
n
x

)
E3,x, we conclude that:

n∑

x=1

(
n

x

)
E3,n = Ep [n]−E3,0 = n− Ep

[
(1− p)n

(
−n

q

)2
]
≤ n.

12

We may now return to equation (22). As we derived bounds on all the addends on its right
hand side, we find out that:

n∑

x=0

(
n

x

)
Mx < 1− β

1− 2nt

π − 4t′
+ h−1(s)β2n.

We would like to arrive at the estimate
n∑

x=0

(
n

x

)
Mx < 1− gβ , (23)

for some parameter g that is yet to be determined. (Tardos picked g = 1
4 .) The inequality holds

when
1− β

1− 2nt

π − 4t′
+ h−1(s)β2n < 1− gβ ,

or, after substituting β = s
√

t
c , when

s
√

t

c
· 1− 2nt

π − 4t′
− h−1(s)

s2tn

c2
>

gs
√

t

c
.

Dividing by s
√

t
c we arrive at the following inequality

1− 2nt

π − 4t′
− h−1(s)s

√
tn

c
> g .

Since n = c and t = 1
dtc

we can lower bound the left hand side of the inequality above as follows:

1− 2nt

π − 4t′
− h−1(s)s

√
tn

c
=

1− 2c 1
dtc

π − 4t′
− h−1(s)s√

dtc
=

1− 2
dt

π − 4t′
− h−1(s)s√

dtc
>

1− 2
dt

π
− h−1(s)s√

dtc
.

This leads us to the third requirement:

Requirement 3:
1− 2

dt
π − h−1(s)s√

dtc
> g.

Note that if we pick s = 1, g = 1
4 and dt = 300, as Tardos did, we get

1− 2
300

π
− h−1(1)√

300c
> 0.316− 0.719√

300 · 1 = 0.275 >
1
4

.

We further notice that Requirement 3 can hold only when g < 1
π .

Finally, using equations (14) and (23), we may bound the expectancy of e−βS as follows

Ep,X

[
e−βS

]
≤

(
n∑

x=0

(
n

x

)
Mx

)m

< (1− gβ)m < e−gβm.

Using Markov’s inequality, we get that

Pr [S ≤ nz] = Pr [S ≤ cz] = Pr
[
e−βS ≥ e−βcz

]
≤ e−gβm

e−βcz
= e−β(gm−cz).

Rearranging the exponent in the last expression yields that:

−β (gm− cz) = −s
√

t

c

(
gdmc2k − cdzck

)
= −

√
1

dtc
· sc2k

c
(gdm − dz) =

dz − gdm√
dt

· s√ck.

13

Since we aim at having Pr [S ≤ nz] ≤ ε̂ = εη, we require that Pr [S ≤ nz] ≤ e−kη. This yields the
following requirement.

Requirement 4: gdm − dz ≥ η
√

dt
s2c

.

By setting dm = 100, dz = 20, dt = 300, s = 1, and g = 1
4 , like Tardos did in [7], the claim

of Theorem 1.2 holds with η =
√

c/4. That result was improved by Tardos in [8] to hold with
η = c/4 (as stated here in Theorem 1.2). 2

2.4 Optimizing the constants

Our goal, in this section, is to examine the domain of parameters (dm, dt, dz, dα, r, s, g) in R7 where
the four requirements that we introduced in the previous subsections are satisfied, in order to find
within that domain the minimal value of dm. Let us begin by a brief review of those parameters:
Given a bound c on the size of the coalition of pirates, a maximum tolerated error probability, ε,
for falsely accusing any innocent user, and a maximum tolerated error probability, ε̂, for falsely
acquitting all pirates, we have the following positive parameters:

• dm is used in defining the codeword length, m = dmc2k, where k =
⌈
log 1

ε

⌉
.

• dz is used in defining the threshold for accusation, z = dzck.

• dt is used in defining t = 1
dtc

, a parameter that lower bounds the value of the probabilities
pj that govern the selection of bits in the random codewords. Recall that dt ≥ 1.

• dα is used in defining α = 1
dαc , a parameter that plays role in bounding the probability that

an innocent user is accused by the algorithm.

• r is used for the bound ex < 1 + x + rx2. This bound holds for all x < h(r), as described
in Lemma 2.1. Recall that r > 1

2 .

• s > 0 is used for the definition of β = s
√

t
c , a parameter that plays a key role in the proof of

Theorem 1.2.

• g is used in inequality (23), that is used later on in bounding the error probability in Theorem
1.2. Requirement 3 dictates that g < 1

π .

The set of requirements that all of those parameters have to satisfy is as follows:

Requirement 1: dα ≥
√

dt

h(r)
√

c
.

Requirement 2: dz
dα
− rdm

d2
α
≥ 1.

Requirement 3:
1− 2

dt
π − h−1(s)s√

dtc
≥ g.

Requirement 4: gdm − dz ≥ η
√

dt
s2c

.

Example. The following parameters values meet Requirements 1 through 4 for any c ≥ 2 and
η = 1:

dα = 8, dt = 40, dz = 15, dm = 85, r = 0.611, s = 0.757, g = 0.2461 .

(For the above values of r and s, h(r) = 0.571 and h−1(s) = 0.6543.) The scheme with those
parameter values improves the scheme proposed by Tardos in two ways:

14

1. The constant dm is smaller than the one used by Tardos (100), whence it offers shorter
codewords.

2. It applies to all c ≥ 2, as opposed to Tardos’ scheme that applies to all c ≥ 4. (The analysis
that was carried out by Tardos in [7] showed that the scheme works for all c ≥ 16; the
journal version [8], on the other hand, contained a proof that the scheme works for all c ≥ 7,
and Tardos remarks there that the proof may be extended to include all c ≥ 4.)

We proceed to carry out an analysis that finds the optimal settings of the first four parameters,
under the assumption that r, s and g are constants satisfying r > 1

2 , s > 0, and 0 < g < 1
π . Then

we shall use numerical optimization procedures to find r, s and g that yield a minimal value for
dm.

2.4.1 Minimizing dm

Our goal is to minimize the codeword length m = dmc2k. As Tardos proved that the optimal
codeword length is Ω

(
c2k

)
, the best that we can hope for is the reduction of dm. We aim at

finding herein the minimal dm for which there exist constants dt, dz, dα, r > 1
2 , s > 0, and

0 < g < 1
π such that all seven constants satisfy Requirements 1 through 4.

Since we aim at achieving minimal dm, we conclude, by Requirement 4, that

dm ≥
η
√

dt
s2c

+ dz

g
. (24)

In other words, the minimal value of dm is:

d̂m =
η
√

dt
s2c

+ dz

g
. (25)

We proceed to show that the minimum of the sum η
√

dt
s2c

+ dz is obtained when both dt and dz

are minimized, and then find the minimal values of those two parameters.

2.4.2 Minimizing dt

Requirement 3 translates into the following quadratic inequality in x =
√

1
dt

,

2
π
· x2 +

h−1(s)s√
c

· x−
(

1
π
− g

)
≤ 0. (26)

Since we are looking to minimize dt, we would like to maximize x. The quadratic expression on
the left hand side of (26) has two roots,

x± =
−h−1(s)s√

c
±

√
(h−1(s)s)2

c + 8
π

(
1
π − g

)

4
π

.

Therefore, the maximal value of x that satisfies (26) is x+. Hence, as dt =
(

1
x

)2, we infer that the
minimal value of dt that satisfies Requirement 3 is

d̂t =




4
π√

(h−1(s)s)2

c + 8
π

(
1
π − g

)− h−1(s)s√
c




2

,

15

or after rearrangement,

d̂t =

(
1

2
π − 2g

·
(√

(h−1(s)s)2

c
+

8
π

(
1
π
− g

)
+

h−1(s)s√
c

))2

. (27)

2.4.3 Minimizing dz

According to Requirement 2,
dz

dα
− rdm

d2
α

≥ 1 .

Substituting into that inequality the optimal value of dm, i.e. d̂m =
η
√

dt
s2c

+dz

g , we get

dz

dα
−

rdz + rη
√

dt
s2c

gd2
α

=
gdαdz − rdz − rη

√
dt
s2c

gd2
α

=
(gdα − r) dz − rη

√
dt
s2c

gd2
α

≥ 1,

or, after rearrangement,

(gdα − r)dz ≥ gd2
α + rη

√
dt

s2c
.

First, we conclude that (gdα − r) must be positive. Hence, assuming hereinafter that

dα >
r

g
, (28)

we find out that

dz ≥
gd2

α + rη
√

dt
s2c

gdα − r
. (29)

We observe that the lower bound on dz decreases when dt decreases. Hence, in order to minimize

the sum in (25), namely d̂m =
η
√

dt
s2c

+dz

g , we can first minimize dt and then minimize dz. Therefore,

we replace dt with d̂t in (29) to obtain the minimal value of dz,

d̂z =
gd2

α + rη

√
d̂t
s2c

gdα − r
. (30)

2.4.4 Optimizing dα

So far we saw that in order to minimize dm (for given c and η and a fixed selection of r, s and g),

we have to set dt = d̂t as in (27), set dz = d̂z as in (30), and then set dm = d̂m =
η

√
d̂t
s2c

+d̂z

g . The

remaining undetermined parameter is dα. That parameter effects the value of d̂z. We proceed to
find the value of dα for which d̂z, and consequently d̂m, are minimized.

d̂z = f (dα) =
gd2

α + rη

√
d̂t
s2c

gdα − r
=

d2
α + r

gη

√
d̂t
s2c

dα − r
g

=

=
d2

α −
(

r
g

)2

dα − r
g

+

(
r
g

)2
+ r

gη

√
d̂t
s2c

dα − r
g

=

= dα +
r

g
+

(
r
g

)2
+ r

gη

√
d̂t
s2c

dα − r
g

.

16

Differentiating with respect to dα, we find that

f ′ (dα) = 1−

(
r
g

)2
+ r

gη

√
d̂t
s2c(

dα − r
g

)2 .

We see that f ′(dα) is negative, namely, f(dα) is decreasing, in the interval


r

g
−

√√√√(
r

g

)2

+
r

g
η

√
d̂t

s2c
,

r

g
+

√√√√(
r

g

)2

+
r

g
η

√
d̂t

s2c


 ,

and increasing elsewhere. Therefore, the global minimum of f(dα) in the domain dα > 0 is
obtained at

dα =
r

g
+

√√√√(
r

g

)2

+
r

g
η

√
d̂t

s2c
.

However, the parameter dα is restricted by two constraints. First, it is restricted by (28),
namely, dα > r

g . Moreover, it is also restricted by Requirement 1,

dα >

√
d̂t

h(r)
√

c
.

We conclude that within the constraints that dα has to satisfy, the minimum of f(dα) is obtained
at

d̂α = max





√
d̂t

h(r)
√

c
,

r

g
+

√√√√(
r

g

)2

+
r

g
η

√
d̂t

s2c





. (31)

2.4.5 Conclusion

We summarize herein the results of our analysis. Given c, η = logε ε̂, and constant values r > 1
2 ,

s > 0 and 0 < g < 1
π , the best parameter values for dm, dt, dz, and dα are computed as follows:

1. Set d̂t according to equation (27), namely,

d̂t =

(
1

2
π − 2g

·
(√

(h−1(s)s)2

c
+

8
π

(
1
π
− g

)
+

h−1(s)s√
c

))2

.

2. Set d̂α according to equation (31), namely,

d̂α = max





√
d̂t

h(r)
√

c
,

r

g
+

√√√√(
r

g

)2

+
r

g
η

√
d̂t

s2c





.

3. Set d̂z according to equation (30), namely,

d̂z =
gd̂2

α + rη

√
d̂t
s2c

gd̂α − r
.

17

Figure 1: d̂m versus c for various values of η.

4. Set d̂m according to (25),

d̂m =
η

√
d̂t
s2c

+ d̂z

g
.

In view of the above, given c and η, the value of d̂m – the minimal dm – depends on our
selection of r, s and g. That dependency may be examined by numerical means in order to find
the values of r > 1

2 , s > 0 and 0 < g < 1
π that minimize d̂m. Figure 1 presents the correlation

between c and d̂m for various values of η. We note that when η decreases, so does d̂m. Hence, the
decoupling of ε and ε̂ = εη by allowing ε̂ to be much larger than ε does help to further reduce
the codeword length. We see that our analysis enables a reduction of the codeword length by a
factor of approximately 4.

18

3 Simulation

In this section we describe simulations that we ran in order to find out the essential efficiency of
Tardos scheme. The simulator was written in Java and ran on a desktop machine.

3.1 The setup

The input to each experiment is composed of the following parameters:

1. n – the number of users.

2. ε – the maximal probability of accusing an innocent user.

3. ε̂ – the maximal probability of not accusing any of the traitors (ε̂ ≥ ε).

4. c – the assumed bound on the number of traitors.

5. dm – the parameter that determines the codeword length, m = dmc2k, where hereinafter
k = dlog(n/ε)e.

6. dt – the parameter that determines the probabilities according to which the codeword bits
are generated.

Given such an input, we perform r experiments where r = d100/εe at the least. In each
experiment we generate n codewords according to the given parameters dm and dt. The first c
codewords are then used in order to generate a pirate codeword y ∈ {0, 1}m. We examine several
possible strategies that the pirate may adopt in generating the pirate codeword y out of the c
codewords that he possesses; we describe those strategies in Section 3.2.

We recall (see Section 1.3.2) that a user with codeword x ∈ {0, 1}m is accused if its accusation
score X =

∑m
j=1 yjVj is greater than z = dzck, where

Vj =





√
1−pj

pj
if xj = 1

−
√

pj

1−pj
if xj = 0

, 1 ≤ j ≤ m.

Namely, the higher dz is, the less users are accused.
Given the pirate codeword y, we compute two threshold values of dz. The first one is the

minimal value, d0
z, for which no innocent user is accused. Namely, if we use lower values of dz at

least one innocent user will pass the accusation test. Letting X0 be the maximal accusation score
of an innocent user, then

d0
z =

X0

ck
.

The second one is d1
z – this is the minimal value of dz that will result in missing all traitors.

Letting X1 be the maximal accusation score of a traitor, then

d1
z =

X1

ck
.

Let d0
z(i) and d1

z(i) denote the two threshold values in experiment number i, 1 ≤ i ≤ r. Then, for
every value of dz in the interval Conv{d0

z(i), d
1
z(i) : 1 ≤ i ≤ r}, we define

E(dz, 0) = |{i : d0
z(i) > dz}| and E(dz, 1) = |{i : d1

z(i) ≤ dz}| .

Namely, E(dz, 0) is the number of experiments in which we shall have failures of the first kind
(accusing an innocent user) assuming that we used the value dz in the accusation stage. E(dz, 1),

19

on the other hand, is the number of experiments in which we shall have failures of the second
kind (missing all traitors), assuming that we used dz in the accusation stage. Clearly, E(dz, 0) is
monotonically non-increasing in dz while E(dz, 1) is monotonically non-decreasing in dz.

We refer to a value of dz as good, if it satisfies the following two inequalities:

E(dz, 0)
r

≤ ε , (32)

and
E(dz, 1)

r
≤ ε̂ . (33)

For such good values of dz, the scheme satisfies both security goals as dictated by the threshold
parameters ε and ε̂. Next, we aim at finding out whether the given dm allows us to tune dz to
a good value. To that end, we look for the minimal dz for which (32) holds. Let dz,min denote
that value. Next, we check whether dz,min satisfies (33). If not, then there exists no good dz, as
implied by the monotonicity properties of E(dz, 0) and E(dz, 1), and by the natural assumption
that ε̂ ≥ ε. In that case, the value of dm is too small and we have no choice but to increase dm

in order to allow the required separation between the two curves E(dz, 0) and E(dz, 1). If, on the
other hand, dz,min satisfies (33), then there exists a whole interval of good dzs, which is

[dz,min, dz,max] (34)

where dz,max is the maximal value of dz for which (33) is satisfied. In that case, dm is sufficiently
large.

Having defined which values of dm are too small and which ones are sufficiently large, we
find an approximation of the optimal dm by means of binary search. The stopping criterion is
as follows: if we find a sufficiently large dm where the interval of good dzs, (34), is such that
dz,min > 0.85dz,max, we stop the binary search and consider the current value of dm to be “near-
optimal”.

3.2 Pirate codeword generation strategies

We examined four different pirate strategies in generating the pirate codeword. We used the
generation assumption which allows the pirate to manipulate only detectable bit positions, i.e.,
positions in which the pirate has both 0 and 1. The strategies that we examined were:

• All 0s - The pirate sets 0s in all detectable positions. This decreases the accusation score
for all users – innocent as well as traitors.

• All 1s - The pirate sets 1s in all detectable positions. This increases the accusation score
for all users.

• Coin Flip - The pirate randomly sets 0 or 1 in each detectable position by flipping a fair
coin.

• Random - The pirate randomly sets 0 or 1 in each detectable position j, where the prob-
ability in which he selects 1 is p̂j – the percentage of 1s that the pirate sees in position
j. (Note that p̂j are the maximum likelihood estimation of the actual probabilities pj that
were used in generating the codebook, given the codewords that the pirate sees.)

20

Figure 2: dm versus ε̂ for different pirate strategies

Figure 3: dm versus ε̂ for different values of c

21

3.3 Results

We ran the test for each of the four generation strategies on the following inputs:

n = 100, dt = 50
ε = 1

200 , 1
100 , 1

50
ε̂ = 1

200 , 1
100 , 1

50 , 1
20 , 1

10 , 1
2

c = 5, 10, 15, 20 .

(35)

The results show that in “real world” applications of Tardos scheme, we can use dm < 8 for most
cases. Namely, in practice one may use codewords that are shorter by a factor of about 16 than
the codewords in the original Tardos scheme (where dm = 100). The near-optimal dm decreases
as the maximum coalition size c increases (as we also saw in our analysis in Section 2, see Figure
1 there). Our simulation shows that the best strategy for the pirate is the All 1s strategy. That
strategy forces us to use the largest value of dm in order to meet given security requirements.

The following figures visualize some of the results. Figure 2 shows the near-optimal value of
dm as a function of ε̂, when ε = 0.01, c = 20, and n and dt are as in (35). It contains four graphs,
one for each of the four pirate strategies, as described in Section 3.2. We can see that the All 1s
is the best pirate strategy, while the All 0s is the worst one. The Coin Flip and the Random
strategies, on the other hand, behave similarly.

Figure 3 shows the near-optimal value of dm as a function of ε̂, when ε = 0.01 and n and dt

are as in (35). It contains four graphs, one for each value of c in (35). The data is taken from the
experiments with the Random strategy. A similar dependence of dm on ε̂ and c occurs also if we
apply each of the other pirate strategies.

Figure 4 shows the near-optimal value of dm as a function of ε̂, where n and dt are as in (35),
and c = 20, for three values of ε as given in (35). The pirate strategy that we used here is the
All 1s strategy.

Judging by the simulation results we see that the theoretic bounds are quite distant from the
empiric values. For instance, for n = 100, c = 20, and ε = ε̂ = 0.01, the best dm that provided
a provably (ε, ε̂)-secure scheme was dm ≈ 38; empirically, on the other hand, we see that using
dm = 6.426 yields a scheme that is also (ε, ε̂)-secure, even in the face of the best pirate strategy.

References

[1] D. Boneh and J. Shaw, Collusion-Secure Fingerprinting for Digital Data, IEEE Transactions
on Information Theory, vol. 44, no. 5 (1998), pp. 1897–1905. See also Proc. Crypto 95, Springer
LNCS 963 (1995), pp. 452-465.

[2] B. Chor, A. Fiat, and M. Naor, Tracing Traitors, Proc. Crypto 94, Springer LNCS 839 (1994),
pp. 257–270. For a full version see [3].

[3] B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing Traitors, IEEE Transactions on Information
Theory, vol. 46, no. 3 (2000), pp. 893-910.

[4] I.J. Cox, J. Kilian, T. Leighton and T. Shamoon, A Secure, Robust Watermark for Multimedia,
Information Hiding, Springer LNCS 174 (1996), pp. 185–226.

[5] A. Fiat and T. Tassa, Dynamic Traitor Tracing, Journal of Cryptology, vol. 14, no. 3 (2001),
pp. 211-223. See also Proc. Crypto 99, Springer LNCS 1666 (1999), pp. 537-554.

[6] C. Peikert, A. Shelat and A. Smith, Lower Bounds for Collusion-Secure Fingerprinting, in
Proceedings of the 40th Symposium on Discrete Algorithms, SODA’03, pp. 472-479.

22

Figure 4: dm versus ε̂ for different values of ε

[7] G. Tardos, Optimal Probabilistic Fingerprint Codes, In Proceedings of the 35th ACM Sympo-
sium on Theory of Computing, STOC’03, pp. 116-125.

[8] G. Tardos, Optimal probabilistic fingerprint codes., Journal of the ACM, to appear. Available
also in http://www.renyi.hu/ tardos/fingerprint.ps.

23

