
1.1 Advanced Operating Systems– Wiseman 2004

µ-kernels

The idea of µ-kernel is to minimize the
kernel. I.e. to implement outside the
kernel whatever possible.
The µ-kernel concept is very old: Brinch
Hansen’s (1970) and Hydra (1974)

1.2 Advanced Operating Systems– Wiseman 2004

Advantages

Fault isolation (independence). Kernel
malfunction can cause a reboot. Less code is
executed in Kernel Mode.
More flexible. Different strategies and APIs
(Application Programming Interface) can
coexist in the system.
Kernel recompilation is less needed when
changes are done in OS. Also, there is no
need to reboot the computer when a change
outside the kernel is done.

1.3 Advanced Operating Systems– Wiseman 2004

Disadvantages

Sometimes, when integrating code into
the most existing µ-kernels, the
performance of the code will be
upgraded.
Restricted flexibility. Non-integrated
code will be rarely used, because of its
bad performance. (weak argument).

1.4 Advanced Operating Systems– Wiseman 2004

Primitives in a µ-kernel

Determining criterion: functionality
– A concept is OK inside the µ-kernel, if left

outside would prevent implementation of
the system’s required functionality.

Assume
– System must support

• interactive processes.
• not completely trustworthy processes.

– Hardware implements page-based Virtual
Memory (MMU).

1.5 Advanced Operating Systems– Wiseman 2004

Paging

No reason to have the pager inside the
kernel.
On page fault:
– The process interrupts the µ-kernel.
– The µ-kernel wakes up the pager process.
– The pager process brings the page from the disk

to the main memory.
– When the page is in the memory, the pager

process interrupts the µ-kernel which changes
the ownership of the page and wakes up the
original process.

1.6 Advanced Operating Systems– Wiseman 2004

The Pager process

The I/O handling is quite slow. What
does the CPU do meanwhile?
– The pager process blocks itself in the

same mechanism a process blocks itself
when making a "wait" operation on a
semaphore.

– Meanwhile other processes can be
executed.

– When the I/O interrupts the µ-kernel, the µ-
kernel will wake up the pager process.

1.7 Advanced Operating Systems– Wiseman 2004

Device Drivers

Device Drivers can also be taken out of
the kernel.
The Device Driver process needs the µ-
kernel for the interrupt handling.
Device Driver Process is more secure
because it cannot access any address
in the memory like the kernel.

1.8 Advanced Operating Systems– Wiseman 2004

Device Driver processes

When a process performs read/write:
– The process interrupts the µ-kernel which wakes

up the device driver process.
– The device driver process calls the I/O and blocks

itself.
– When the I/O is done, the µ-kernel gets the

interrupt and wakes up the device driver process.
– When the device driver process finishes, it

interrupts the µ-kernel which changes the
ownership of the fetched page(s) and wakes up
the calling process.

1.9 Advanced Operating Systems– Wiseman 2004

UNIX Device Drivers

Read/Write operations have too many kernel
interrupts ⇒ Waste of time.
Many versions of Unix implement the device
drivers as kernel threads.
– It reduces the context switches overhead.
– Installing new device drivers does not require a

reboot.
– The threads are executed in kernel mode with the

address space of the µ-kernel; hence they can
corrupt the µ-kernel's memory; however not every
malfunction in the device driver will cause a
shutdown. Sometimes just the thread will die.

1.10 Advanced Operating Systems– Wiseman 2004

What is inside the µ-kernel?

Scheduling cannot be done by a process.
– Who will give the scheduling process a time slice?

Processes cannot write into other processes'
address space; Hence IPC should be done by
the µ-kernel, which allocates them the space for
the IPC.
Similarly, Semaphores should have a common
address space. Moreover, only the kernel is
atomic.
Interrupt handling cannot be done by a process.
– What will happen if the process does not get a time

slice?

1.11 Advanced Operating Systems– Wiseman 2004

What about Memory Management?

The allocation and deallocation of memory
space can be done by a process.
The µ-kernel supports just 3 basic system
calls:
– Grant - Grant one of my pages to another process.
– Map - Share one of my pages with another

process.
– Flush – Unshare one of my shared pages.

1.12 Advanced Operating Systems– Wiseman 2004

Memory Allocation

The Pager process manages the memory.
At system start time, the entire virtual memory
(non-kernel RAM plus swap area) is held by
the pager process.
When a process asks for a new allocation,
the pager process will map some of its pages
to satisfy the request.
when a process frees some of its space, the
pager process will flush this pages.

1.13 Advanced Operating Systems– Wiseman 2004

New/Dead processes

New processes are treated as new
allocations for an existing process.
Dead processes are treated as freed
spaces of an existing process.
Shared memory is obtained by mapping
the same page to two or more
processes.

1.14 Advanced Operating Systems– Wiseman 2004

The grant system call

The grant system call is not used by the
pager process.
– If the pager process uses this system call, it

will not be able to free the allocated memory.
Usually, the grant system call is not used.
The usage is just when page mappings
should be passed through a controlling
subsystem without burdening the
controller's address space by all pages
mapped through it.

1.15 Advanced Operating Systems– Wiseman 2004

Performance

There are too many context switches to the new
kernel aid-processes.
benchmarking the context switch overhead is
usually done by the execution time of getpid().
Cost of kernel-user mode switches is very high on
x86 processors.
– 71 CPU cycles for entering kernel mode
– 36 CPU cycles for returning to user mode.

The cycles stem from the branch, the stack switch
and the kernel-bit setting.
There are many other CPUs that need less cycles.

1.16 Advanced Operating Systems– Wiseman 2004

Address Space Switches

Cost of address-space switches is mostly
because of the TLB switch.
Pentiums processors have two TLBs one for
code (32 entries) and one for data (64 entries).
Each flush of a TLB entry is 9 cycles; hence
replacing the whole TLB is 864 cycles.
Using the complete TLB is usually unrealistic.
The TLB is 4-way set associative. Using the
the four slots of every entry is exceptional.

1.17 Advanced Operating Systems– Wiseman 2004

Address Space Switches (Cont.)

In order to reduce the context switch overhead,
Modern CPUs like the new versions of MIPS
save the PID in the TLB. Then, there is no
flushing of the TLB on context switches.
Such a TLB is called tagged TLB.
The system performance can notably benefit
small processes like device driver processes.
Switching the page table is just changing of
one pointer; hence negligible.
An address space switch with tagged TLB is
less than 50 cycles.

1.18 Advanced Operating Systems– Wiseman 2004

Kernels vs. µ-kernels

kernel-specific performance studies like
UNIX on CMU Mach vs. pure UNIX, can
be misleading.
Most of the µ-kernels can perform as
good as the monolithic kernel and
sometimes even better, because of their
small address space (a small number of
TLB entries to flush on context
switches).

1.19 Advanced Operating Systems– Wiseman 2004

Non-Portability

Processors of competing families differ in:
– Instructions set.
– register architecture.
– exception handling.
– cache architecture.
– TLB architecture.

The IPC and the memory management are
an essential part of any µ-kernel.
Unfortunately, the memory model is very
different even on processors of the same
manufacturer.

1.20 Advanced Operating Systems– Wiseman 2004

The Memory Model

The memory models differ in:
– What is the maximum virtual address

space?
– Is the address space segmented or flat?
– Does it support the segment model?
– Is the TLB tagged?
– What is the cache writing policy?

• Write-through or write-back? Write-through
policy does not require a dirty bit.

1.21 Advanced Operating Systems– Wiseman 2004

Memory Model - Page Management

The memory model also includes the page
management, which can be differ in:
– Does it have multi-level page tables?
– Does it have hash page tables?
– Does it have more than a single page size?
– What is the page protection strategic?

• E.g. modern CPUs demand an explicit bit protection
setting command from the kernel, before the kernel will
be allowed to modify a write protected page. The very old
386 would do anything in kernel mode.

1.22 Advanced Operating Systems– Wiseman 2004

The µ-kernel Design

The µ-kernel design is extensively depending
on the CPU structure.
The only µ-kernel feature that can be portable
is the scheduler.
Large monolithic kernel can have many more
portable features.
In the early 70's, large portions of the kernel
have been started to be written in C, so they
could be portable. Nowadays we return to the
non-portable approach.

1.23 Advanced Operating Systems– Wiseman 2004

Some known µ-kernels

Mach – Was developed at Carnegie Mellon
University in the 80's. One of the first of its
kind. It is the foundation of the Apple's
MacOS.
– Some newer versions: Utah-Mach, DP-Mach,

Spin on Digital Alpha processor.
Exokernel – Was developed at MIT in 1994-
1995. Exokernel is tailored to the MIPS
architecture and has some device drivers
included in.
– Exokernel was submitted on 1998 as the PhD

thesis of Dawson R. Engler. He was the main
designer of this kernel.

1.24 Advanced Operating Systems– Wiseman 2004

Some known µ-kernels (Cont.)

L4 – Was developed in GMD (Germany's
national Research Center for Information
Technology). It was implemented on x86
platforms. It has only 12Kbytes of code and
implements just 7 system calls. Very common
in use as a platform for the Linux operating
system.
– Some newer versions for MIPS and Alpha

processors have been developed during last
years.

1.25 Advanced Operating Systems– Wiseman 2004

SPIN

SPIN is a µ-kernel that was written on
1995.
The users has the ability to integrate
components into the kernel.
– Like traditional µ-kernel, SPIN supports

different strategic and different APIs.
– Any fault of the user extensions will cause

a reboot.

1.26 Advanced Operating Systems– Wiseman 2004

SPIN (Cont.)

The main disadvantage of SPIN is
reduced memory protection. If a user
extension exceeds its memory
allocations, the extension may damage
the kernel memory.
– Extensions has to be written in a special

language (Modula-3) in order to check
memory exceeding, but

• The checking is time consuming. (The CPU
checks memory exceeding, instead of the MMU).

• Modula-3 does not always find the exceeding.

1.27 Advanced Operating Systems– Wiseman 2004

Users Programs in Kernel Mode

On 2002 Maeda suggested to run users
programs in kernel mode.
This is exactly the opposite ideology of µ-kernels.
It saves the time of the system calls' overhead.
– Every system call is merely a function call.

Any user can write to the kernel memory.
– Maeda suggested to use TAL (Typed Assembly

language) which checks the program before loading,
but this check does not always find the memory leak.

1.28 Advanced Operating Systems– Wiseman 2004

I/O in Kernel Mode

According to Maeda, when a process asks for
an I/O, another process will be running
without any context switch, because anything
is kernel.
No need for double buffering.
– In the common Oses there are two buffers - one in

the kernel space and one in the user space.
• The user space can be swapped out, while the kernel

space is non-swappable.

The page table of the kernel is huge.
Maeda reports on improvement of 14% when
running "find".

1.29 Advanced Operating Systems– Wiseman 2004

Preemptable Kernel

On 2000 the MontaVista version of the Linux
Kernel 2.4 was introduced.
When the kernel executes long transactions,
it can be useful to be able to take over the
CPU even when the kernel does not explicitly
yield the CPU.
– Can be more useful in real-time systems.

Semaphores can not be used, because the
kernel is not atomic ⇒ use spinlock.
– problem of busy waiting.

1.30 Advanced Operating Systems– Wiseman 2004

Preemptable Kernel (Cont.)

An interrupt will not take over the CPU if
the kernel:
– holds a spinlock.
– runs the scheduler.

Linux Kernel 2.6.x (2004) is a partial
preemptable kernel.
– It enables preemptions just on some

known points.

