
om-
erate
s of
sta-
PC.
anner

f the
essor
ent
d on

r-sub-
n can
ched-

Appears inProceedings of the Fourth International Workshop on Network and Operating System Support for Digital Audio and Video
SVR4UNIX‡SchedulerUnacceptablefor
MultimediaApplications

Jason Nieh†, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall
†Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue, MTV29-110

Mountain View, CA 94043

Applications that manipulate digital audio and video are rapidly being added to
workstations. Such computations can often consume the resources of an entire
machine. By incorporating a “realtime” process scheduler, UNIX System V
Release 4 (SVR4), the most common basis of workstation operating systems,
claims to provide system support for multimedia applications. Our quantitative
measurements of real application performance demonstrate that this process
scheduler is largely ineffective and can even produce system lockup. While
SVR4 UNIX provides many controls for changing scheduler performance, they
are virtually impossible to use successfully. Furthermore, the existence of a
realtime static priority process scheduler in no way allows a user to deal with
these problems. This paper provides a quantitative analysis of real system
behavior, demonstrates why it is not possible to obtain the kind of behavior
desired with the mechanisms currently provided by the system, and presents
modifications to improve the situation.

1 Introduction
Applications that manipulate digital audio and video represent a new class of c
putations executed by workstation users. Audio and video applications must op
in the workstation environment without compromising the essential characteristic
the workstation. That is, audio and video applications should not reduce the work
tion to a single function system, like an embedded system or single-tasking
Instead, the workstation operating system must manage resources in such a m
that other applications and users can continue to function correctly.

A fundamental task of any operating system is the effective management o
system’s resources. Resources that must be properly managed include proc
cycles, virtual and physical memory, and I/O bandwidth. Although mismanagem
of any of these resources can lead to poor system function [12], we have focuse
processor scheduling in this paper. Processor cycles are often the most ove
scribed resource, with many applications able to use more processing power tha
be provided. In such an environment, the degree of effectiveness of processor s
uling is the dominant factor in overall system performance.



uld
ase
ard
rity
ssor
lution
ing
real-

tion
have

ime-

vely
ly for
stem
ies
sys-
mea-
we

eri-
used

cusses

up-
nal

ions:
ic of
hich
not
Con-
pled
ust

racter-
he
to

ons
harac-
nts
ss is
Anticipating that processor scheduling based on traditional timesharing wo
not be suitable for the support of multimedia applications, UNIX System V Rele
4 (SVR4) provides a realtime static priority scheduler, in addition to a stand
UNIX timesharing scheduler [1]. By scheduling realtime tasks at a higher prio
than any other class of tasks, SVR4 UNIX allows realtime tasks to obtain proce
resources when needed in order to meet their timeliness requirements. This so
claims to provide robust system support for multimedia applications by allow
applications such as those that manipulate audio and video to be placed in the
time class. Since SVR4 UNIX is the most common basis of current worksta
operating systems, it is important to investigate these assertions. Therefore, we
used an SVR4 UNIX based system to examine actual performance of real mult
dia applications running in a workstation environment.

Through careful measurements of application performance, we quantitati
demonstrate that the SVR4 UNIX scheduler manages system resources poor
both so-called realtime and timesharing activities, resulting in unacceptable sy
performance for multimedia applications. Not only are the application latenc
much worse than desired, but pathologies occur with the scheduler such that the
tem no longer accepts user input. This paper describes these experiments and
surements. In addition, this paper introduce a new scheduling class which
developed that alleviates many of these problems.

The paper is organized as follows. Section 2 provides an overview of the exp
ments and Section 3 describes the experimental setup and applications that we
for our measurements. Section 4 presents our measurements and Section 5 dis
the results. Finally, we present conclusions and directions for future work.

2 Overview of Experiments
To examine the ability of the processor scheduling policies of SVR4 UNIX to s
port multimedia applications, we have identified three classes of computatio
activities that characterize the main types of programs executed on workstat
interactive, continuous media, and batch. Interactive activities are characterist
applications (e.g., text editors or programs with graphical user interfaces) in w
computations must be completed within a short, uniform amount of time in order
to disrupt the exchange of input and output between the user and application.
tinuous media activities are characteristic of applications that manipulate sam
digital media (e.g., television or teleconferencing), via cyclic computations that m
process and transport media samples at a defined rate. Batch activities are cha
istic of applications (e.g., long compilations or scientific programs) in which t
required processing time is sufficiently long to allow users to divert their attention
other tasks while waiting for the computation to complete. By selecting applicati
from each of these classes, a representative workload can be constructed that c
terizes typical multimedia workstation usage. In order to simplify the experime
and the task of interpreting the resulting data, only one program from each cla
used in the following experiments.



ard,
l sys-
tion.
ents
the
ssor
urce
f trial
of the
ndi-

epre-
was

ions

itor
ow

.g.
o at
o-

ffer.

uch
ng
link-
m-
hat
, the

of
tion
po-

s, but
[3].

s a
m in
er to
r, the
In order to obtain valid results, the experimentation was done with a stand
production workstation and operating system. However, measurements of actua
tem behavior are quite complex as compared to simulation-based experimenta
As a result, a number of measures were taken to permit repeatability of experim
and allow the identification and isolation of processor scheduling effects. Since
purpose of the experiments is to explore the effectiveness of various proce
scheduling policies, an attempt was made to minimize the effects of other reso
management decisions. Results were collected from the execution of a series o
runs of the representative programs on the testbed hardware. The parameters
trials were chosen so as to permit the exploration of a wide range of different co
tions with the minimum number of experiments.

3 Experimental Design
To characterize typical workstation usage, three applications were chosen to r
sent interactive, continuous media, and batch activities. Each of these programs
implemented in the most obvious, and straight-forward fashion. The applicat
were:

• typing (interactive class) — This application emulates a user typing to a text ed
by receiving a series of characters from a serial input line and using the X wind
server [10] to display them to the frame buffer.

• video (continuous media class) — This is a realtime video player application (e
as used for television, teleconferencing) that attempts to show frames of vide
a constant rate.Video captures data from a digitizer board, dithers to 8-bit pseud
color, and relies on the X window server to render the pixels to the frame bu
Video frames are 640x480 pixels.

• compute (batch class) — This application is intended to represent programs s
as the UNIXmake utility. make execution is characterized by repeated spawni
and waiting for various programs such as compiler passes, assemblers, and
ers. However, in order to reduce variability induced by the system’s virtual me
ory, file system, and disk I/O handling, a simple shell script was used t
repeatedly forks and waits for a small processes to complete (in this case
UNIX expr command).

A number of software tools were added to the testbed to permit the logging
significant events into files, and the post-processing of these files for the genera
of tracing reports. Modifications were made to the application programs and com
nents of the system software in order to generate the necessary tracing event
these modifications did not measurably change the performance of the software

While not strictly an application program, the X window server represent
fourth major component that contributes to the overall performance of the syste
these experiments. It was necessary to instrument the window server in ord
obtain the desired measurements of user-level system performance. Howeve
window system’s behaviorper seis not of interest here, only its contribution to the
user-visible performance of the application programs in the example mix.



ical
and
udo-
di-
sys-

are
uler
ro-
prior-
class
riment
cribed
lass

or
ation
unit
Figure 1 Sample Application Screen

The experiments were performed in an environment representative of a typ
workstation; it consisted of a SparcStation10 with a single 50MHz processor
64MB of primary memory. The testbed system included a standard 8bit (pse
color) frame buffer controller (i.e., GX), and a 1GB local (SCSI) disk drive. In ad
tion, the testbed workstation began with the current release of Sun’s operating
tem — Solaris 2.2 [5], which is based on SVR4 UNIX.

SVR4 UNIX supports multiple concurrent scheduling policies, calledscheduling
classes. In particular, a realtime class (RT) class and a timesharing (TS) class
included in SVR4. The scheduling classes are unified into a single priority sched
by mapping each of them onto a range of global priorities, with timesharing p
cesses mapped to the low priority range and realtime processes to the highest
ity range. SVR4 also provides a set of commands for assigning processes to a
and controlling each class. These were used to assign processes for each expe
to the RT class, the TS class, or to a new scheduling class we developed as des
later. In addition, for some experiments, controls specific to the scheduling c
were used to modify their default behaviors.

In order to support thevideo continuous media application, an SBus I/O adapt
was constructed and added to the system that permits the decoding and digitiz
of analog video streams into a sequence of video frames. This video digitizing



lows a
con-

sys-

the
twork
and
key-

. This
then

tion is
, the

of
tem
stem
This
sys-
per-

ould
play

inty
stant
with
tem
and
hole

ther

lica-
cter
pare
an

nt for
ince

rma-

ing
.

appears as a memory-mapped device in an application’s address space and al
user-level application to acquire video frames, whose pixels can be color-space
verted into RGB values, dithered to 8-bit depth, and displayed via the window
tem.

An effort was made to eliminate variations in the test environment to make
experiments repeatable. To this end, the testbed was disconnected from the ne
and restarted prior to each experimental run. In addition, to enable a realistic
repeatable sequence of typed keystrokes for programs of the interactive class, a
board/mouse simulator was constructed and attached to the testbed workstation
device is capable of recording a sequence of keyboard and mouse inputs, and
replaying the sequence with the same timing characteristics.

4 Measurements
To evaluate a system’s performance, a means of measuring the system’s opera
needed that encompasses all of the activities in all of the applications. However
measure of quality of an application’s performance is different for each class
application. To deliver the desired performance on interactive activities, the sys
should minimize the average and variance of time between user input and sy
response to a level that is faster than that which a human can readily detect.
means that for simple tasks such as typing, cursor motion, or mouse selection,
tem response time should be less than 50-150 milliseconds [11]. To deliver peak
formance on display-oriented continuous media activities, the system sh
minimize the difference between the average display rate and the desired dis
rate, while also minimizing the variance of the display rate. In particular, uncerta
is worse than latency; users would rather have a 10 frames per second (fps) con
frame rate as opposed to a frame rate that varied noticeably from 2 fps to 30 fps
a mean of 15 fps [13]. To deliver good performance on batch activities, the sys
should strive to minimize the difference between the actual time of completion
the minimum time required for completion as defined by the case when the w
machine is dedicated to the given activity. In other words, if amake takes 10 minutes
to complete on an unloaded system, the user would like themake to take 10×(1+δ)
minutes, whereδ is as small as possible, to complete even when there are o
activities running on the system.

Because the relative value of each application to a user is subjective and app
tion performance is measured in many different ways (i.e. interactive chara
latency verses video frame rate), no single figure-of-merit can be derived to com
test results. That is, any calculation resulting in a single value would require
assignment of weights and conversion factors to each measurement to accou
the relative values of the applications and the different units of measurement. S
any such arbitrary assignment is suspect and is likely to obscure significant info
tion, the outcome of each test is presented as avalue contour. In a value contour, the
achieved performance on each measurement is charted relative to a normativebase-
line value. If a single figure-of-merit is desired, it can be derived by assign
weights appropriate to the relative value of each application to the contour data



ristic
lass.
of the
ation
lica-
ach
aper,

c.

3

Using value contours based on the mean and standard deviation of characte
execution times, we capture the essential quality metric for each application c
The measured characteristic and baseline values are shown in Table 1 for each
applications. To obtain these baseline values, each application was run in isol
on an otherwise quiescent workstation. Note, therefore, that when multiple app
tions are run simultaneously, it is not generally possible for all of them to re
100% of the baseline value. The data from the experiments described in this p
obtained from running these applications simultaneously, is shown in Table 2.
.

Table 2 Individual Experiment Results

Application Measurement Mean Std. Dev.

Typing Latency between character arrival
and rendering to frame buffer

38.5 msec. 15.7 msec.

Video Time between display of successive
frames

112 msec. 9.75 msec.

Compute Time to execute one loop iteration 149 msec. 6.79 mse

Table 1 Application Baseline Values

Application / Scheduling Class Typing Video Compute

X T V C χ (msec) σ (msec) χ (msec) σ (msec) χ (msec) σ (msec)

TS TS TS TS 42.9e+3 23.8e+3 2.78e+3 9.30e+3 150 16.0

TS+20 TS TS TS-20 49.6 26.4 117 17.9 3.91e+3 699

TS+20 TS TS-5 TS-20 41.8 17.9 529 1.43e+3 189 279

TS+20 TS TS-10 TS-20 44.0 18.5 174 619 412 896

TS TS RT TS — — 1.10e+3 4.81e+3 243 415

RT TS TS TS 26.4e+3 14.4e+3 4.23e+3 9.35e+3 150 22.9

RT- TS RT+ TS — — 142 260 — —

RT+ TS RT- TS 42.0e+3 32.9e+3 112 8.09 8.04e+3 2.87e+

New New New New 46.0 19.1 177 48.3 496 114

Legend

X The X Window System server TS SVR4 TS (timesharing class)

T Thetyping application TS±n SVR4 TS with nice of±n

V Thevideo application RT SVR4 RT (realtime class)

C Thecompute application RT+ SVR4 RT with higher priority

χ Mean RT− SVR4 RT with lower priority

σ Standard Deviation New New scheduling class

— : Application did not complete measured operation



tour,
n,
line
cy as
nce).

n-

ia-

ts.
Figure 2 presents a set of value contours derived from this data. In each con
the first two bars, labeled ‘Tχ’ and ‘Tσ’, represent the mean and standard deviatio
respectively, fortyping character latency. These values are normalized to the base
values such that a full size bar represents a mean or standard deviation of laten
small as on an otherwise idle system (i.e. a taller bar represents better performa
Similarly, the bars labeled ‘Vχ’ and ‘Vσ’, represent the normalized mean and sta
dard deviation of the time between display of successive frames forvideo. Finally,
the bars labeled ‘Cχ’ and ‘Cσ’, represent the normalized mean and standard dev
tion of the time taken by one iteration ofcompute. The following section provides a
description of the scenarios represented by each and an analysis of these resul

Figure 2 Application Value Contours

a.) All in SVR4 TS

e.) Video in RT

h.) Video and X-serverg.) Video and X-server

b.) SVR4 TS, Nice

d.) SVR4 TS, Nice

Tχ Tσ VσVχ Cχ Cσ

in RT, P(X)>P(V)in RT, P(V)>P(X)

(X+20,C-20)

i.) All in New Time-
sharing Class

f.) X-server in RT

c.) SVR4 TS, Nice
(X+20,V-5,C-20)

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

 (X+20,V-10,C-20)



all
by a
d be
ting
stem
ally,
ehav-

sys-
ime-
e of
orst

class
enta-

ca-
hed-
tem
ctive
mes
s by
use

t all
all
tion

sh.
, the

s it
ckly
nder

and-
e TS
rior-
mes,
nal
is

s fast
om
5 Interpretation of Results
It is expected that, in a well-behaved system, concurrent applications should
make some progress in their computation. That is, the running of an application
user indicates some residual value for it. Therefore, no one application shoul
able to prevent others from running in absence of overt action by a user indica
this is the desired behavior. In addition, there should be no cases in which the sy
fails to respond to operator input; otherwise, control over the system is lost. Fin
users should be able to exercise a wide range of influence over the system’s b
iors using a stable and predictable control mechanism.

The results of these experiments indicate that the standard SVR4 scheduling
tem often violates these objectives. The straightforward approach to adding mult
dia applications to an SVR4-based workstation results, at best, in a low degre
value being provided to the users, and serious pathological behavior in the w
case. The following sections describe the test results for the SVR4 timesharing
alone, the SVR4 timesharing and realtime classes together, and a new implem
tion of the timesharing class.

5.1 SVR4 Timesharing Class

The first thing a typical user would do is to simply run the chosen set of appli
tions, which, by default, associates all applications with the timesharing (TS) sc
uling class. Doing this results in a pathological condition where the window sys
no longer accepts input events from the mouse or keyboard, causing the intera
application to freeze and the continuous media application to stop displaying fra
of video. In fact, this pathology is so complete that attempts to stop the processe
typing commands in a shell (i.e. command interpreter) window prove futile, beca
the shell itself is not permitted to run.

The value contour for this scenario is shown in Figure 2a, and illustrates tha
of the applications, with the exception of the batch job, contribute a relatively sm
amount to the total delivered value. This is due to the fact that the batch applica
forks many small programs to perform work, and then waits for them to fini
Because the batch application sleeps to wait for each child process to complete
TS scheduling class identifies it as an I/O-intensive “interactive” job and provide
with repeated priority boosts for sleeping. As a result, the batch application qui
moves to the highest timesharing priority value and remains there for the remai
of the experimental run.

An added effect occurs when the window server develops a backlog of outst
ing service requests. As it works down this queue of outstanding commands, th
scheduling class identifies the window server as CPU-intensive and lowers its p
ity. At the same time, because it sleeps in the process of obtaining new video fra
video is assigned a higher priority, allowing it to run and thereby generate additio
traffic for the window server. As a result, the quality of the video being displayed
poor because the window system is not able to execute to process the frame
enough. Worse yet,typing exhibits an average delay of more than 42 seconds fr



of 39
s of
r the
h to
ign
of a
ents
poor

ere
hese
iori-

pos-
-

ese
the

ed a

ical
e in
reat
nd
is

nt
tory
us

nd the
e RT

not
ppli-
win-
receiving a character to having it displayed, as opposed to the baseline value
milliseconds. The interactive application suffers a degradation of three order
magnitude because the window server, which must execute in order to rende
character’s pixels to the frame buffer, is not scheduled to run frequently enoug
work its way through its growing backlog of commands. Moreover, due to the des
of the standard SVR4 TS class, it can often take tens of seconds for the priority
penalized process to recover to the point at which it can actually run. This augm
the effect of the improper processor scheduling decisions and contributes to the
overall performance of the system.

In an attempt to deal with this problem, the system’s administrative controls w
used to change the TS priorities of the window system and the applications. T
user priorities are used by the TS scheduler to modify the actual scheduling pr
ties. These controls correspond roughly with the traditional UNIXnice values. In
one case, the user priority of the window system was elevated to the maximum
sible level (+20), while the user priority ofvideo was depressed to the minimum pos
sible level (−20), as shown in Figure 2b. This had the effect of improvingvideo’s
performance, but the latency oftyping became more variable andcompute barely ran.
In an attempt to fix this, the user priority ofvideo was degraded modestly (−5),
resulting in the contour in Figure 2c. This shows how very small changes in th
controls can lead to large and unpredictable effects. Finally, Figure 2d illustrates
result ofvideo receiving a medium amount of degradation (−10). The achieved mean
values of all applications are relatively high, but the variance in frame rate forvideo
is unacceptably high. Note also the counterintuitive result thatvideo performs better
in this scenario then in Figure 2e, even though the scheduler controls indicat
lower importance forvideo.

Although the use of user priority adjustments could alleviate the patholog
condition inherent in the SVR4 TS scheduling class, this approach is not effectiv
general (e.g., with multiple, independent applications). That is, it can take a g
deal of experimentation in order to find a set of control values that work well, a
the settings might only work for that exact application mix. In addition, th
approach severely degrades the performance ofvideo, resulting in highly variable
display rates.

5.2 SVR4 Timesharing and Realtime Classes

Although SVR4 UNIX also provides so-called “realtime” facilities, the assignme
of different tasks to the realtime (RT) scheduling class yielded equally unsatisfac
results. Sincevideo best fits the notion of what a realtime application is, the obvio
first step for using the RT class is to assignvideo to it. However, when this is done,
the system again ceases to accept input events from the mouse or keyboard a
video again degrades severely. This is due to the fact that any ready task in th
class takes precedence over any TS task. Sincevideo is almost always active, tasks in
the TS class are hardly ever allowed to execute — in fact, shell programs are
even permitted to run, so a user cannot even attempt to stop such a “realtime” a
cation. Once again, the quality of the video being displayed is poor because the



uous
of

all
dow
uling
none
e, as

ing
ns

. In
disk,
that

ssor
aring
pro-

y pro-

in-

ver’s

iority
pro-

r to
ere

ic sys-
the

es on
cess-
T,
dow system is not able to execute to process the frames sent to it by the contin
media application. Again, the system delivers low overall value for any choice
value assignments, as shown in Figure 2e.

Alternatively, the window system could be associated with the RT class, with
of the applications remaining in the TS class. Although in such a case, the win
system related activities (e.g., mouse tracking) perform well, the basic TS sched
system pathology allows the batch job to monopolize the processor. As a result,
of the other applications can achieve even a small fraction of their possible valu
illustrated in Figure 2f.

Another attempt to provide a high degree of value to the user involves plac
both video and the window system in the RT class, and having all applicatio
remain in the TS class. In this case, the system executesvideo to the complete exclu-
sion of all other processing. That is, neithertyping nor compute are permitted to run
at all, and it is not possible to type commands into the system’s shell windows
fact, basic kernel services such as the process swapping, flushing dirty pages to
and releasing freed kernel memory are inhibited. The reason for this behavior is
video and the window server consume essentially all of the system’s proce
cycles, and realtime processes take precedence over all “system” and timesh
processes. This is because the RT scheduler uses a strict priority policy, and no
cesses from other scheduling classes are permitted to run while there are read
cesses in the RT class.

Figure 2f and Figure 2g show the results that are derived from placing the w
dow system at a lower and at a higher RT priority thanvideo, respectively. While
neither case delivers acceptable results, the first case (i.e., with the window ser
priority below video) was particularly bad becausevideo did not leave sufficient time
for the window server to process its requests. Note also, that in Figure 2h,video had
less variance than in the baseline measurements. This is due to the strict pr
scheduling discipline; processes in the RT class run in preference to all other
cesses, including system daemons.

Finally, we note that placing interactive applications in the RT class in orde
improve their performance would also be ineffective unless the window server w
placed in the RT class. Even then, proper operation is not assured because bas
tem services can be prevented from functioning due to resource demands in
higher priority realtime class. For example, when the X window server,typing, and
video are run in the RT class, with priorities P(X)>P(typing)>P(video), typing unex-
pectedly performs more than three times worse than its baseline because it reli
streams I/O services [1] for character input processing. Because the streams pro
ing is not done in the RT class, it is deferred in favor of the applications in R
which consume virtually all of the CPU cycles.



lems
oves
n, it
make
ro-
oni-
ed in

ow
bet-
ina-
this

ing
PU

ing
TS
d in
, this
ween

or-
es go
dis-
rob-
tions
itself
aring
nage-
rs.

m
ms.
tem
trol

hat
tes

zed,
ck”
. In
5.3 New Timesharing Class

A new timesharing scheduling class was developed in order to correct the prob
demonstrated in these experimental runs. In particular, the modified version rem
the anomalies of identifying batch jobs as interactive, and vice versa. In additio
attempts to ensure that each process that can run is given the opportunity to
steady progress in its computation, while retaining a bias in favor of interactive p
cesses. Finally, it reduces the feedback interval over which CPU behavior is m
tored and penalties and rewards given. The timesharing scheduling class contain
Sun’s Solaris 2.3 operating system is based on this work.

The results of the default use of this class for all applications and the wind
server process are given by Figure 2i. As can be seen, this delivers significantly
ter results for the continuous media and interactive applications than any comb
tion of the standard SVR4 scheduling classes. It should also be noted that
scheduling policy achieves this level of performance without significantly starv
the batch application, which still receives approximately 30% of the available C
time.

Additional tests were performed by adjusting user priorities and by combin
this new scheduling class with the SVR4 RT class (as was done with SVR4
class). However, with the exception of the cases where there was sufficient loa
the RT class to consume all CPU cycles and starve the new scheduling class
resulted in no pathologies and showed a direct and predictable relationship bet
user priorities and application performance.

6 Conclusions and Future Work
Through trial and error, it may be possible to find a particular combination of pri
ities and scheduling class assignments to make the SVR4 scheduling pathologi
away. However, such a solution would be extremely fragile and would require
covering new settings for any change in the mix of applications. In fact, these p
lems have been induced in many instances with different applications and condi
than those described here. For example, the continuous media application by
can freeze the system when a user simply uses a popup menu. Our new timesh
scheduling class eliminates these pathologies and provides default resource ma
ment behavior that favors interactive applications while not overly penalizing othe

Current workstation operating systems, typified by SVR4 UNIX, evolved fro
the much different environment of large-scale, multi-user, timesharing syste
These systems attempt to be fair to all applications while maximizing total sys
throughput. As a result, a user (or system administrator) has only limited con
over UNIX operating system resource management decisions.

Without such control it is not possible to provide the full range of behaviors t
might be desired of multimedia applications. For example, providing uniform ra
of audio and video presentation, where variance in the delivery rate is minimi
may be more important to some applications than others. Knowledge of the “sla
available in such computations can lead to more effective resource utilization



way
the

ade
on,
value
ame-
flex-

in
rob-
on-
from

tive
tiga-

ce
.

2,

,”
addition, when the system is overloaded with continuous media applications, a
of identifying applications of lesser or greater importance to the users can allow
system to automatically perform service trade-offs rather than forcing it to degr
all applications equally at best, or randomly at worst. Armed with such informati
the system can manage its resources in such a way as to maximize the total
delivered to the end user. Towards this end, we are creating a new scheduling fr
work, based on Time-Driven Resource Management [6, 8, 9], that provides the
ible control and delivered performance required for multimedia applications.

Finally, note that the existence of the strict-priority realtime scheduling class
standard SVR4 in no way allows a user to effectively deal with these types of p
lems. In addition, it opens the very real possibility of runaway applications that c
sume all CPU resources and effectively prevent a user or system administrator
regaining control without rebooting the system.

7 Acknowledgments
Monica Lam provided many insightful suggestions, especially during the forma
stages of this work. This research was supported in part by an NSF Young Inves
tor Award and Sun Microsystems Laboratories, Inc.

‡UNIX is a trademark of UNIX System Laboratories.

8 References

1. AT&T: UNIX System V Release 4 Internals Student Guide, Vol. I, Unit 2.4.2.,
AT&T, 1990.

2. M. J. Bach: The Design of the UNIX Operating System, Prentice Hall Inc.,
1986

3. J. Bonwick: “Kernel Tracing in SunOS 5.0,” in progress.

4. S. Evans, K. Clarke, D. Singleton, B. Smaalders: “Optimizing Unix Resour
Scheduling for User Interaction,” USENIX Summer 1993, Cincinnati, Ohio

5. J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, et. al.: “Beyond
Multiprocessing...Multithreading the SunOS Kernel,” USENIX Summer 199
San Antonio, Texas.

6. J. G. Hanko, E. M. Kuerner, J. D. Northcutt, and G. A. Wall: “Workstation
Support for Time-Critical Applications”, Proceedings of the Second
International Workshop on Network and Operating System Support for
Digital Audio and Video, November, 1991.

7. S. Khanna, M. Sebree, J. Zolnowsky: “Realtime Scheduling in SunOS 5.0
USENIX Winter 1992, San Francisco, California.

8. J. D. Northcutt, J. G. Hanko, and G. A. Wall: “A New Framework for
Processor Scheduling,” in progress.



ce,

nt
9. J. D. Northcutt:The Alpha Operating System: Requirements and Rationale,
Archons Project Technical Report #88011, Department of Computer Scien
Carnegie-Mellon University, January 1988

10. R. W. Scheifler and J. Gettys: “The X Window System,” ACM Transactions
on Graphics, 5(2), April, 1986.

11. B. Shneiderman:Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 2nd ed., Addison-Wesley, 1992.

12. G. A. Wall, J. G. Hanko, and J. D. Northcutt: “Bus Bandwidth Manageme
in a High Resolution Video Workstation,” Proceedings of the Third
International Workshop on Network and Operating System Support for
Digital Audio and Video, November, 1992.

13. T. Winograd: personal communication, March 1993.


	SVR4 UNIX‡ Scheduler Unacceptable for Multimedia Applications
	Jason Nieh†, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall
	†Computer Systems Laboratory
	Stanford University
	Stanford, CA 94305
	Sun Microsystems Laboratories, Inc.
	2550 Garcia Avenue, MTV29-110
	Mountain View, CA 94043
	1 Introduction
	2 Overview of Experiments
	3 Experimental Design
	Figure 1 Sample Application Screen

	4 Measurements
	Table 1 Application Baseline Values
	Table 2 Individual Experiment Results
	Figure 2 Application Value Contours

	5 Interpretation of Results
	5.1 SVR4 Timesharing Class
	5.2 SVR4 Timesharing and Realtime Classes
	5.3 New Timesharing Class

	6 Conclusions and Future Work
	7 Acknowledgments
	8 References
	1 . AT&T: UNIX System V Release 4 Internals Student Guide, Vol. I, Unit 2.4.2., AT&T, 1990.
	2 . M. J. Bach: The Design of the UNIX Operating System, Prentice Hall Inc., 1986
	3 . J. Bonwick: “Kernel Tracing in SunOS 5.0,” in progress.
	4 . S. Evans, K. Clarke, D. Singleton, B. Smaalders: “Optimizing Unix Resource Scheduling for Use...
	5 . J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, et. al.: “Beyond Multiprocessing...Mult...
	6 . J. G. Hanko, E. M. Kuerner, J. D. Northcutt, and G. A. Wall: “Workstation Support for Time-Cr...
	7 . S. Khanna, M. Sebree, J. Zolnowsky: “Realtime Scheduling in SunOS 5.0,” USENIX Winter 1992, S...
	8 . J. D. Northcutt, J. G. Hanko, and G. A. Wall: “A New Framework for Processor Scheduling,” in ...
	9 . J. D. Northcutt: The Alpha Operating System: Requirements and Rationale, Archons Project Tech...
	10 . R. W. Scheifler and J. Gettys: “The X Window System,” ACM Transactions on Graphics, 5(2), Ap...
	11 . B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Intera...
	12 . G. A. Wall, J. G. Hanko, and J. D. Northcutt: “Bus Bandwidth Management in a High Resolution...
	13 . T. Winograd: personal communication, March 1993.




