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ABSTRACT 
We explore the use of the LZW and LZSS data compression methods. These methods or some versions 
of them are very common in use of compressing different types of data. Even though on average LZSS 
gives better compression results, we determine the case in which the LZW perform best and when the 
compression efficiency gap between the LZW algorithm and its LZSS counterpart is the largest. 

 
Keywords: Data Compression, Compression efficiency, LZW, LZSS 
 
 
1. INTRODUCTION 
 
Compression techniques are often partitioned into statistical and dictionary techniques (Bell, Cleary, & 
Witten, 1990). Huffman codes (Huffman, 1952) or Arithmetic codes (Howard & Vitter, 1992) are 
usually given as an example for statistical techniques, while Lempel-Ziv methods are usually given as 
an example for dictionary techniques. Usually Lempel-Ziv methods are adaptive (Bell, Witten, & 
Cleary, 1989); however, a static version of Lempel-Ziv can also be found (Schuegraf & Heaps, 1974).  
 
This paper will concentrate on the adaptive Lempel-Ziv methods, which are also partitioned into two 
fundamental groups. The first group is based on reference to recurring data in the compressed file. This 
approach was first introduced as LZ77 (Ziv & Lempel, 1977), and versions of this approach are still 
commonly used by many commercial software products such as gzip (Free Software Foundation, 
1991). The second group creates a dictionary of common phrases in the data. This approach was first 
introduced as LZ78 (Ziv &Lempel, 1978). Versions of this approach are also very common in use as a 
separate method such as “compress” of UNIX and as a part of more complicated techniques such as 
GIF (Willard, Lempel, Ziv, & Cohn, 1984).  
 
One of the most popular versions of LZ77 is LZSS (Storer & Szymanski, 1982), while one of the most 
popular versions of LZ78 is LZW (Welch, 1984). The aim of this paper is to compare the compression 
efficiency of LZSS and LZW. 
 
 
2. THE RELATIVE EFFICIENCY OF LZW AND LZSS 
 
In LZSS, the encoded file consists of a sequence of items, each of which is either a single character or a 
pointer of the form (offset, length), which replaces a string of length characters that appeared as offset 
characters earlier in the file. Decoding of such a file is thus a very simple procedure. For the encoding, 
however, there is a need to locate the longest recurring strings, for which sophisticated data structures 
such as hash tables or binary trees have been suggested. 
  
In LZW, the encoded file consists of a sequence of pointers to a dictionary. Each pointer replaces a 
string of the input file that appeared earlier and has been put into the dictionary. Encoder and decoder 
must therefore construct identical copies of the dictionary. In LZW, the dictionary is dynamically 



 

constructed in a manner that can be precisely redone by the decoder. LZW finds the longest string in 
the dictionary. If the string x1,...,xn is in the dictionary, but the string x1,...,xn+1 is not in the dictionary, 
LZW will add the string x1,...,xn+1 to the dictionary and will use the string x1,...,xn for the current 
pointing. 
 
 
In point of fact, both of the methods are based on pointers. In LZSS the pointers are the offset 
component, while in LZW, the pointers are the dictionary’s pointers. Figure 1 shows how the 
modification of the pointer size will affect the compression efficiency in both of the methods. The test 
has been conducted using the King James Bible. 
 

25

30

35

40

45

50

55

60

65

9 12 15 18 21 24

pointer size (bits)

pe
rc

en
ts

 o
f c

om
pr

es
se

d 
fil

e

LZW
LZSS

 
Figure 1 

 
When the pointer size is too small, the possibilities to point are very limited, while a bigger pointer size 
takes too much space and can harm the compression efficiency. 
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Figure 2 

 
In LZSS there is also another parameter - the size of the length component. Figure 2 shows the effect of 
the length component on the LZSS compression efficiency. When the size of the length component is 
too small, only a few characters can be pointed, while a longer length component can be a waste 
because the recurring strings are usually not so long. 
 



 

In Figure 3 both of the compression methods have been configured to their best parameters according 
to Figures 1 and 2, i.e. LZSS with 20 bits pointer plus 5 bits for the length component and LZW with 
19 bits for the pointer. The tested files are from the Calgary Corpus (Bell, Witten, & Cleary, 1988).  
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It can be clearly seen in both Figure 1 and Figure 3 that LZSS usually gives better results. However, 
when compressing the pic file, LZW gives better results. The reason for this exception is the 
uncommon content of this file, which contains a lot of nulls. When the length component of LZSS is 
just 5 bits, LZSS can put a pointer to no more than 32 bits. LZW, however, can theoretically have a 
pointer to an infinite string. When using LZW, each entry has an old string and a new letter; hence it 
can save much longer strings. 
 
 
3. HOW LZW CAN OUTPERFORM LZSS 
 
We would like to determine how good LZW can be. As shown above, LZW compresses the pic file 
better; however, LZSS can easily do better. If we significantly enlarge the length component, so a 
longer string can be pointed, LZSS can compress much better than LZW, e.g. X(1,1000) can be 
recursively interpreted as a long string of 1001 Xes. Therefore, our aim is to find a case that the 
adjustment of the length component size cannot help out. 
 
Let us look at LZW with a pointer of 9 bits and build a file that contains the 256 possible characters of 
ASCII. This will put the pairs (0,1) (1,2) .. (254,255) into the dictionary of LZW, according to the 
algorithm of LZW (Horspool, 1991) (Tao & Mukherjee, 2004). If we put a 0 after the last 255, the pair 
(255,0) will be added, and these numbers will use up the entire dictionary. The dictionary has 512 
entries. The first 256 entries are of the single characters, while the other 256 entries are of the pairs. 
LZW can handle these pairs better because LZSS saves one bit for character/pointer flag, several bits 
for the pointer, and several bits for length component. Usually LZSS does not bother to replace a pair 
of characters by a pointer because of the high price, but even if LZSS replaces the pair, the gain will be 
small, while LZW can save more bits when pointing just to a pair of characters. 
 
In order to obtain the maximal difference between LZW and LZSS, we put these pairs in the file in 
different orders. However, we are not able to put only two pairs in adjacent locations in two strings. 
The second appearance of the adjacent pairs will make LZSS see the two pairs as a quadruplet, hence 
using just one pointer for the quadruplet. In such a case we say that the second pair is an immediate 
subsequent. Therefore, we must not allow it to appear again after its first occurrence. 



 

Claim 1 

Let m and n be integers. Let {x1,...,xn} be a set of sequences of size m. There are just three different 
ways to arrange {x1,...,xn} if any xi is not allowed to be an immediate subsequent sequence to xj in three 
of the different strings of sequences for every pair of 1≤i≤n and 1≤j≤n. 

Proof 

By induction on the number of sequences in the set.  
 
For n=4, there are 24 possibilities to arrange {x1,x2,x3,x4} However, when checking all of the 
possibilities, it can be easily found that there are only three strings of sequences that can fulfill the 
stipulation that xi is not allowed to be an immediate subsequent sequence to xj for every pair of 1≤i≤n 
and 1≤j≤n. There are some pairs of strings that can be chosen, but the number of the strings will always 
be not more than three, e.g. {x1,x2,x3,x4}, {x3,x1,x4,x2} and {x3,x2,x4,x1}, so the proof is by checking all 
of these cases one by one. 
 
Remark: The claim is also true for n=1,n=2,n=3. However, in order to make the proof simpler in the 
next stage, we used n=4.  
 
Assume the claim is true for n-1, i.e. the set {x1,...,xn-1} has just three ways to be arranged according to 
the above stipulation. Let us add the sequence xn. The sequence xn can be put in each of the three 
possible strings just once:  

- At the end or at the beginning.  
- After one sequence from the end or from the beginning. 
- After two or more sequences from the end or from the beginning. 
 

In all of the above cases, at least two sequences at the end or at the beginning will remain adjacent; 
hence there is just one possibility of adding the new sequence, and the outcome is that {x1,...,xn} can be 
arranged in only three ways. Q.E.D. 
 
Accordingly, a file can be built containing the single characters and three strings of pairs as described 
above. Such a file will be compressed by LZW with a 9 bits pointer, always in a better manner than by 
LZSS. The exact ratio is dependent on the pointer size of LZSS. Indeed, a 9 bits pointer size is 
uncommon. Therefore, a more attractive question is how the file can be enlarged to fit a larger LZW 
dictionary with an n bits pointer. 
 
If LZW reads pairs, it will add triplets to the dictionary. Because there are three sequences of pairs with 
each sequence being 256 pairs, LZW will add 768 entries of triplets to the dictionary. As a result, the 
dictionary will have 1280 entries, which fits an 11 bits dictionary.  
 
Claim 1 asserts there are only three strings of triplets that can be added, i.e. two triplets cannot be 
adjacent in the same order in more than one string. Moreover, because the claim is true for all the 
sequences of any size, the file can be enlarged by triplets, quadruplets etc., such that it will have 
256⋅3m-2 items of each sequence in length of m. let us name such a file SPT (stands for Single, Pair, 
Triplet, etc.). In these cases, even when LZSS uses a pointer, LZW will also be able to use a pointer 
too. Because LZW pointers are cheaper, the compression efficiency of LZW will be better. 



 

Claim 2 

The ratio between the compressed files constructed by LZW and LZSS is the highest in SPT files .i.e., 
there is no case where LZW can gain a better margin over LZSS. 

Proof  

Let us look at the number of pointers in both LZSS and LZW. In a file generated in SPT form, the 
number of the pointers will be equal when the file is compressed by either LZSS or LZW. Let us 
assume there is a better case. In this better case the number of the pointers of LZW can be less than, 
greater than, or equal to the number of the pointers of LZSS. Let us analyze each of these cases: 
 
LZW creates fewer pointers: LZW only has pointers by definition, and any string pointed to by LZW 
can be pointed to by LZSS as well. Therefore, there is no benefit. 
 
LZW creates the same number of pointers as LZSS: This case will yield the same ratio as the file in 
the above form, so no benefit is gained. 
LZW creates more pointers: This case will yield a poorer result for LZW because LZW always puts a 
pointer, while LZSS uses pointers only in the appropriate cases. If LZSS creates fewer pointers, it will 
indicate that LZSS has chosen not to put a pointer because it is less expensive. In contrast, LZW puts a 
pointer because this is its usual behavior, and that pointer is more expensive. 
 
Therefore, LZW outperforms LZSS best in this case. Q.E.D. 
 
 
4. CONCLUSION 
 
Usually LZSS can compress data in a better manner than LZW. If we have a long sequence of the same 
character, LZSS can compress it in a constant few bytes assuming the length component is long enough 
to grip the number of the characters. LZW, however, has to construct the pointers step by step, and it 
will have pointers to two bytes, three bytes etc. Indeed, if the file length is m, we can find the number 
of the pointers – n, by solving the equation m=n(n+1)/2, i.e. O(√n) pointers. On the other hand, the 
pointer of LZSS is more expensive; hence in other cases when the number of the pointers is almost 
equal, LZW will compress better. This paper shows the extreme case where the number of the pointers 
is exactly equal; hence the efficiency of LZW is significantly better. 
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