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Abstract
Region-optimal algorithms are local search algo-
rithms for the solution of Distributed Constraint
Optimization Problems (DCOPs). In each itera-
tion of the search in such algorithms, every agent
selects a group of agents that comply with some
selection criteria (each algorithm specifies differ-
ent criteria). Then, the agent who selected the
group, called the mediator, collects assignment in-
formation from the group and neighboring agents
outside the group, in order to find an optimal set
of assignments for its group’s agents. A contest
between mediators of adjacent groups determines
which groups will replace their assignments in that
iteration to the found optimal ones. In this work
we present a framework called RODA (Region-
Optimal DCOP Algorithm) that encompasses the
algorithms in the region-optimality family, and in
particular any method for selecting groups. We de-
vise a secure implementation of RODA, called P-
RODA, which preserves constraint privacy and par-
tial decision privacy. The two main cryptographic
means that enable this privacy preservation are se-
cret sharing and homomorphic encryption. We esti-
mate the computational overhead of P-RODA with
respect to RODA and give an upper bound that de-
pends on the group and domain sizes and the graph
topology but not on the number of agents. The es-
timations are backed with experimental results.

1 Introduction
The Distributed Constraint Optimization Problem (DCOP) is
a general model for solving distributed combinatorial prob-
lems that has a wide range of applications in multi-agent
systems. Complete algorithms for DCOP-solving [Gersh-
man et al., 2009; Modi et al., 2005; Petcu and Faltings,
2005] are guaranteed to find the optimal solution, but because
DCOPs are NP-hard, these algorithms’ worst case runtime is
exponential. Thus, there is growing interest in incomplete
algorithms, which may find sub-optimal solutions but run
quickly enough to be applied to large problems or real-time
applications [Maheswaran et al., 2004; Teacy et al., 2008;
Zhang et al., 2005; Zivan et al., 2014].

Local search algorithms, e.g., DSA [Zhang et al., 2005]
and DBA [Hirayama and Yokoo, 2005], are, in general, sim-
ple incomplete algorithms that were found empirically to pro-
duce high-quality solutions. The main disadvantage of these
algorithms is that they do not offer guarantees on the quality
of the solutions that they produce. Thus, in the last decade,
researchers have developed solution concepts that offer a bal-
ance in the trade-off between run-time efficiency (the time
required to find a solution) and the guaranteed solution qual-
ity [Katagishi and Pearce, 2007; Kiekintveld et al., 2010;
Maheswaran et al., 2006; Pearce and Tambe, 2007; Vinyals
et al., 2011]. The guarantees are achieved by selecting a
criterion according to which agents are grouped, and then
producing solutions that are locally optimal in the following
sense: there exists no better-quality solution that differs from
the obtained solution only in the assignments of agents that
are all contained in a single group. The criteria for selecting
groups are defined by two parameters: k, an upper bound on
the group’s size, and t, an upper bound on the distance (i.e.,
the length of the shortest connecting path in the constraint
graph) of agents in the group from the group’s central agent,
called the mediator. These two parameters define for each
agent, serving as a mediator, a region, which is the collection
of all maximal-sized connected groups of at most k agents
that include the mediator and in which all agents are of dis-
tance at most t from the mediator [Vinyals et al., 2011]. Such
solutions, termed region-optimal, provide under certain con-
ditions a guaranteed bound on the ratio between their quality
and the quality of an optimal solution [Pearce and Tambe,
2007; Vinyals et al., 2011].

Privacy is one of the main motivations for solving con-
straint problems in a distributed manner. The term privacy
is quite broad, a fact that gave rise to several categoriza-
tions of the different types of privacy [Faltings et al., 2008;
Greenstadt et al., 2007; Grinshpoun, 2012]. In this paper
we relate to the categorization of Faltings et al. [2008] that
distinguishes between agent privacy, topology privacy, con-
straint privacy, and decision privacy. (For full definitions of
those notions the reader is referred to [Faltings et al., 2008]
or [Léauté and Faltings, 2013]; we briefly recall those defini-
tions in Section 4.)

The first attempt to produce a more secure region-optimal
algorithm (actually k-optimal) was conducted by Green-
stadt [2009]. While the ideas presented in that extended ab-



stract were preliminary, we share the motivation and take
herein a further step in that direction.

We describe here an algorithmic framework called RODA
(Region-Optimal DCOP Algorithm) that generalizes, for di-
dactic purposes, existing local search algorithms that issue
solutions with quality guarantees, e.g. the KOPT algorithm
[Katagishi and Pearce, 2007], or the DALO algorithm [Kiek-
intveld et al., 2010]. RODA is a new formalization rather
than a new algorithm; it is an umbrella setup that generalizes
the main existing region-optimal algorithms, and allows us
to include in our study of privacy the region selection meth-
ods of all existing algorithms of the region-optimality fam-
ily [Katagishi and Pearce, 2007; Kiekintveld et al., 2010;
Vinyals et al., 2011].

We then proceed to present P-RODA, a privacy-preserving
implementation of RODA. Hence, P-RODA includes a
privacy-preserving implementation of a general region-
optimal algorithm, which can implement the region traversing
methods of KOPT, DALO, and any other algorithm from the
region-optimality family, and follow either a synchronous or
an asynchronous operation mode. P-RODA is a perfect sim-
ulation of RODA, in the sense that given the same random
choices (some of the algorithms that fall under the RODA
framework use randomness), both RODA and P-RODA will
go through the same sequence of intermediate assignments
and will issue the same output after a given number of itera-
tions. However, centralized computations in RODA that may
leak private information are replaced in P-RODA with dis-
tributed computations that prevent such information leakage.
Thus, our framework securely achieves k-size-optimality,
t-distance-optimality, or any combination of the two, and
finds solutions with the same guarantees on the distance
from the optimum as proved in [Kiekintveld et al., 2010;
Pearce and Tambe, 2007; Vinyals et al., 2011].

Terminology and notations. A Distributed Constraint Op-
timization Problem (DCOP) [Hirayama and Yokoo, 1997]
is a tuple 〈A,X ,D,R〉 where A is a set of agents
A1, A2, . . . , An, X is a set of variables X1, X2, . . . , Xn

1, D
is a set of finite domains D1, D2, . . . , Dn, and R is a set of
binary relations (constraints). Each variable Xi takes values
in the domainDi, and it is held by a single agent. A constraint
Ci,j ∈ R defines a non-negative cost for every possible value
combination of Xi and Xj , for some 1 ≤ i < j ≤ n. A
value assignment is a pair including a variable and a value
from that variable’s domain. A complete assignment consists
of value assignments to all variables in X . The objective is to
find a complete assignment of minimal cost. The constraint
graph is a graph whose nodes are the n agents (or variables)
where two nodes are connected by an edge if the two cor-
responding variables are constrained. We shall refer to such
pairs of agents or variables as neighbors. For every agent
Ai, 1 ≤ i ≤ n, we let Nt(Ai) denote the set of all agents
whose distance to Ai in the constraint graph is at most t. The
special case of the distance-1 neighborhood will be denoted
N(Ai) := N1(Ai).

1We make a standard assumption that each agent holds exactly
one variable.

2 Region Optimal DCOP Algorithms
Region-optimality is a concept that is based on assigning
agents to groups, such that each group of agents has one agent
that performs as its mediator. For a given agent Ah, its region
Rh is the collection of all groups of whichAh can serve as the
mediator. A region is commonly defined by two parameters,
k and t:

Definition 1 The region Rh = R
(k,t)
h of agent Ah is the col-

lection of all subsets of agentsB ⊂ A such that: (a)Ah ∈ B,
(b) |B| ≤ k, (c) B ⊆ Nt(Ah), (d) the restriction of the con-
straint graph toB is connected, and (e) there exists no proper
superset of B that complies with all previous conditions.

Definition 2 Given a DCOP with n agents and the entire set
of corresponding regions R = {R1, R2, . . . , Rn}, a region-
optimal solution to this DCOP is a complete assignment
whose cost cannot be reduced by changing the value assign-
ments only to agents that are all included in a single group
that belongs to some region inR.

Protocol 1 describes RODA, an algorithmic framework
that generalizes existing region-optimal algorithms [Katag-
ishi and Pearce, 2007; Kiekintveld et al., 2010; Vinyals et al.,
2011]. We proceed to explain it in detail. Hereinafter, when
we speak of a general agent we denote it by Ai; however,
when we speak of that agent as a mediator we denote it by
Ah, 1 ≤ i, h ≤ n.

RODA starts with an initialization phase (Step 1), in which
each agent Ah gathers information from agents in its t-
distance neighborhood Nt(Ah); the collected information is
needed for Ah to determine its region Rh (Definition 1), and
later on to function as the mediator. That information in-
cludes: (a) the domains of variables controlled by agents in
that neighborhood; and (b) the constraints that agents in that
neighborhood have with all their neighbors (these constraints
can involve agents of distance at most t+ 1 from Ah).

After the initialization phase ends, the local search phase
starts. First, each agent selects an initial assignment to its
variable (Step 2). Then, the algorithm performs a fixed num-
ber L of improvement iterations. In the `th iteration (Steps 3-
10), some of the agents will update their current assignment
from a`−1i to a`i towards reducing the overall cost. After all
agents initiate the next assignment to be like the current one
(Step 4), every agent Ah selects a group A`

h from its region
Rh (Step 5); the selection can be random or one that follows
some systematic rule. In the next steps Ah will act as the
mediator of the selected group.

Then (Step 6), each mediator Ah gathers the current as-
signments of all agents in A`

h as well as of their direct neigh-
bors (some of whom could be outside A`

h). With that infor-
mation,Ah finds the locally best assignments β for the agents
in its group A`

h (Step 7). Then, Ah computes the improve-
ment ∆`

h in the overall cost, in case the current assignments in
its group are replaced with the found locally best ones (Step
8). It broadcasts its findings (β and ∆`

h) to its group (Step
9). Later on we explain in detail how Ah computes β for its
group and the corresponding ∆`

h.
Next, a contest takes place between neighboring groups

(groups that include agents that are neighbors). Every group



which is a local winner (namely, the improvement which it
offers is greater than the improvement offered by any of its
neighboring groups, where ties are broken by the groups’ in-
dices) updates its current assignments to the found local opti-
mal ones β (Step 10). After conducting the pre-set number of
iterations L, the agents set their variables to the last assign-
ment found (Step 11).

Note that our description of RODA (and P-RODA) adopts
the synchronous operation of KOPT [Katagishi and Pearce,
2007]. The adaptation to an asynchronous operation as in
DALO [Kiekintveld et al., 2010] is simple and omitted due to
space limitation.

We now revisit Steps 7 and 8 and provide the necessary
technical details. Let
• D`

h :=
∏

Ai∈A`
h
Di be the Cartesian product

of the domains of all variables of A`
h, and N `

h :=∏
Aj∈(

⋃
Ai∈A`

h
N(Ai))\A`

h
Dj be the Cartesian product of the

domains of all variables that correspond to agents outsideA`
h

that have neighbors in A`
h.

• β`−1
h ∈ D`

h be the current partial assignment to the vari-
ables controlled byA`

h, and α`−1
h ∈ N `

h be the partial assign-
ment that was received by the agents in A`

h from their neigh-
bors outside A`

h. (β`−1
h and α`−1

h consist of the assignments
that Ah retrieves in Step 6.)

Then, Ah finds a β ∈ D`
h that minimizes the local cost

Ĉ(β, α`−1
h ) :=

∑
Ai∈A`

h,Aj∈N(Ai)∩A`
h,j>i

Ci,j(β|Di , β|Dj )+

∑
Ai∈A`

h,Aj∈N(Ai)\A`
h

Ci,j(β|Di
, α`−1

h |Dj
) ; (1)

Here, the notation β|Di
denotes the Di-entry of the tuple β.

The first term on the right-hand side of Eq. (1) is the sum of
constraints that involve two agents inside the group A`

h. The
second term is the sum of constraints that involve one agent in
A`

h and one external agent. Finally, given the found optimal
tuple β, Ah computes

∆`
h := Ĉ(β`−1

h , α`−1
h )− Ĉ(β, α`−1

h ) ≥ 0 , (2)

which is the improvement in the local cost for A`
h if they

replace the current local partial assignment β`−1
h with β.

3 Private RODA
In this section we explain how to execute the RODA al-
gorithm in a privacy-preserving manner. To that end, we
follow the algorithmic flow of Protocol 1 and explain, for
each step in that protocol, how to execute it in a privacy-
preserving manner. We make the standard assumption (e.g.
[Grinshpoun and Tassa, 2014; Léauté and Faltings, 2013;
Tassa et al., 2015]) that the agents are semi-honest, which
means that they respect the protocol and do not form coali-
tions.

The main effort in transforming RODA into a private al-
gorithm (to which we refer hereinafter by P-RODA) lies in
converting the centralized computations that are carried out

Protocol 1 RODA
1: The agents exchange local information (see details in the text).
2: Ai randomly selects a0i ∈ Di, 1 ≤ i ≤ n.
3: for ` = 1, . . . , L do
4: Ai sets a`i = a`−1

i , 1 ≤ i ≤ n.
5: Ah selects A`

h ∈ Rh, 1 ≤ h ≤ n.
6: Ah receives a`−1

j from Aj for all Aj ∈
⋃

Ai∈A`
h
N(Ai).

7: Ah finds a locally optimal tuple of assignments, β ∈ D`
h :=∏

Ai∈A`
h
Di, for the variables controlled by its group A`

h.

8: Ah computes ∆`
h, the cost improvement if all agents in A`

h

update their assignment to the one given by β.
9: Ah informs all agents in A`

h about the found β and ∆`
h.

10: For every 1 ≤ h ≤ n: IfA`
h wins the contest againstA`

h′ for
all groups A`

h′ that are neighboring to A`
h, then ∀Ai ∈ A`

h,
Ai sets a`i according to β. (Winning occurs if ∆`

h > ∆`
h′ or

if ∆`
h = ∆`

h′ and h < h′.)
11: Ai sets Xi := aLi , 1 ≤ i ≤ n.

by the mediator (especially in Steps 7 and 8) to distributed
computations that are performed by all agents in the group
using secure multi-party protocols. In RODA, in order to al-
low the mediator to perform the centralized computations for
its group, it had to receive in the initialization phase (Step 1)
and then in each iteration (Step 6) private information from
agents that are at distance at most t + 1 from it. As such ex-
change of data contradicts privacy, we replace it in P-RODA
with a much reduced exchange of data and then we modify
the subsequent steps so that they are performed by all agents
in the group using secure multi-party protocols. In what fol-
lows, we provide explanations only on those steps in Protocol
1 that have to be modified in P-RODA; steps that we do not
mention below remain the same.
• Step 1 (Initialization). This phase is performed in P-

RODA in a reduced manner. Every agent Ah, 1 ≤ h ≤ n,
learns only topological information in the form of the restric-
tion of the constraint graph to Nt(Ah). This is sufficient for
Ah to determine its region Rh. All the other information that
Ah collected at this phase in RODA from its neighbors – the
domains of variables for all agents in Nt(Ah), and the con-
straint information relating to each pair of agents of which
one agent is from Nt(Ah) – is not needed in P-RODA, since
in P-RODA we replace the centralized computations that Ah

did as a mediator in RODA with secure multi-party protocols.
• Step 6 (Assignment propagation). While in RODA ev-

ery mediator learns the current assignment data for all agents
in its group and their neighbors (which means that it may
learn assignment data of agents which are at distance as far as
t+1 from it), P-RODA performs a much reduced propagation
of current assignment data: every agent Ai sends its current
assignment a`−1i only to its direct neighbors (N(Ai) \ {Ai}).
• Step 7 (Locally optimal assignments). This step in-

cludes the computations that are hardest to perform securely,
whence we postpone the discussion of their private execution
to Section 3.1. The sub-protocol described in Section 3.1 ends
with all agents in the group learning the currently optimal β;
hence, that protocol accomplishes Step 7 and part of Step 9
in RODA. In P-RODA, as opposed to RODA, it is essential
to have all agents in the group know β before proceeding to



computing ∆`
h in Step 8, because that computation is done in

P-RODA by a distributed protocol involving all agents.
• Steps 8-9 (Local improvements). While in RODA it

was the mediator who computed ∆`
h, and then informed all

agents in its group about the result, in P-RODA all agents
in the group compute it jointly and privately using a secure
summation protocol. Consider the local cost Ĉ(β, α`−1

h ), as
defined in Eq. (1); it can be broken into the following sum,

Ĉ(β, α`−1
h ) =

∑
Ai∈A`

h

γi(β, α
`−1
h ) , (3)

where

γi(β, α
`−1
h ) :=

∑
Aj∈N(Ai)∩A`

h,j>i

Ci,j(β|Di
, β|Dj

)+

∑
Aj∈N(Ai)\A`

h

Ci,j(β|Di , α
`−1
h |Dj ) . (4)

It is easy to see that ∆`
h =

∑
Ai∈A`

h
∆`

h(i), where ∆`
h(i) :=

γi(β
`−1
h , α`−1

h ) − γi(β, α`−1
h ) is a value known to Ai ∈ A`

h
(because Ai knows β from Step 7 and it also knows the rele-
vant components of β`−1

h and α`−1
h from the reduced Step 6

in P-RODA). Therefore, ∆`
h can be computed by all agents in

A`
h using a secure summation protocol.
However, secure summation protocols usually reveal the

final sum to at least one of the agents, what might hinder con-
straint privacy. Therefore, we perform the secure summation
protocol with a small “twist” so that instead of issuing the fi-
nal sum ∆`

h, it issues two shares, denoted sh and s′h, that dis-
tribute uniformly at random on ZS for some large integer S,
and ∆`

h = sh + s′h mod S. The mediator will get sh while
all other members of its group will get s′h. Using such secret
sharing implies that, under the semi-honestness assumption,
none of the agents learns any information on ∆`

h.
• Step 10 (Contest). While in RODA, the difference ∆`

h
was known to the mediator, whence it was easy for mediators
of neighboring groups to compare those values in order to
determine which of the groups are winners in this iteration
(and, consequently, get to update their local assignments), in
P-RODA the value of ∆`

h is shared by the mediator and any
other single member of its group. Therefore, we proceed to
describe the manner in which the contest of Step 10 can be
carried out in P-RODA.

First, the agents in each groupA`
h engage in a secure union

protocol [Tassa and Gudes, 2012] for finding the set of all
neighboring groups; we omit the details of that procedure.
Then, each pair of neighboring groups, say A`

h and A`
m,

where h < m, performs the following verification:
• Ah and Am select “deputies” in their respective groups,
A′h ∈ A`

h \ {Ah} and A′m ∈ A`
m \ {Am}.

• Ah sends its share in ∆`
h, sh, to Am.

• Am sends (sh − sm) mod S to A′h.
• A′h sends (sh − sm + s′h) mod S to A′m.
• A′m computes (sh−sm +s′h−s′m) mod S. This value

equals
(
∆`

h −∆`
m

)
mod S.

• A′m infers from the last difference whether ∆`
h ≥ ∆`

m

or not. If so, it informs Ah who informs all agents inA`
h

that their group won. Otherwise, it informs all agents in
A`

m that their group won. (Notice that, as in RODA, in
case of a tie, the group with the lower index wins.)

For the sake of achieving constraint privacy (see Theorem
2 later on), it is important that the agent who gets the differ-
ence

(
∆`

h −∆`
m

)
mod S will not be a member of both A`

h

and A`
m. Indeed, as shown by Kiekintveld et al. [2010], it is

possible to select the deputies A′h and A′m so that at least one
of them is not a member of both A`

h and A`
m.

3.1 Private Computation of the Best Partial
Assignment for a Group of Agents

Overview
Here we discuss the privacy-preserving execution of Step 7
in RODA. In that step, the agents within each group need
to solve a local DCOP. Hence, one possibility would be to
invoke an existing privacy-preserving complete algorithm for
that purpose. Two recent studies proposed such algorithms:
Grinshpoun and Tassa [2014] proposed P-SyncBB, a privacy-
preserving version of the SyncBB algorithm; and Léauté and
Faltings [2013] proposed three privacy-preserving versions of
DPOP: P-DPOP(+), P3/2-DPOP(+), and P2-DPOP(+).

One may implement any of those four algorithms in the
framework of P-RODA for a privacy-preserving execution
of Step 7 (after a simple modification in order to take into
account also constraints vis-a-vis agents outside the group).
However, all these algorithms have their shortcomings: P-
SyncBB incurs a large number of communication rounds and
messages, and disrespects decision privacy; P-DPOP(+) and
P3/2-DPOP(+) ensure only partial constraint privacy; and P2-
DPOP(+) is very inefficient (in terms of run-time). Hence, we
proceed to describe here a novel protocol for the secure solu-
tion of the local DCOP within a group. The protocol can be
executed efficiently only when the Cartesian products of the
domains of the group’s variables,D`

h, are not too large. Thus,
we suggest to use it whenever feasible, and when it is not to
use one of the above mentioned algorithms.

A Statement of the Computational Problem
Given α`−1

h ∈ N `
h, the partial assignment that was received

by the agents in A`
h from their neighbors outside A`

h (Step 6
in P-RODA), the agents in A`

h wish to compute a tuple β ∈
D`

h =
∏

Ai∈A`
h
Di that minimizes the local cost Ĉ(β, α`−1

h ),

Eq. (1), in a privacy-preserving manner. (Note that α`−1
h

is not known in its entirety to any single agent in A`
h; each

agent in the group knows only those components in α`−1
h that

correspond to its direct neighbors outside the group.)

Arranging the Partial Costs in a Tensor
For simplicity, let us assume that A`

h = {A1, A2, . . . , Ak}.
Assume further that all domains Dj , 1 ≤ j ≤ n, are
publicly ordered: Dj = {vj0, v

j
1, . . . , v

j
|Dj |−1}. Then each

Ai ∈ A`
h can construct a private k-dimensional tensor Gi

such that for any multi-index [i1, . . . , ik], where 0 ≤ ij ≤



|Dj | − 1, 1 ≤ j ≤ k, the corresponding entry in the tensor is
Gi[i1, i2, . . . , ik] = γi(β, α

`−1
h ), where β = (v1i1 , . . . , v

k
ik

),
and γi is as defined in Eq. (4). According to Eq. (3), the sum
of these tensors is a tensor G in which G[i1, i2, . . . , ik] =

Ĉ(β, α`−1
h ), for β = (v1i1 , . . . , v

k
ik

). To summarize: each of
the agents Ai ∈ A`

h holds a private tensor Gi. They jointly
wish to compute the multi-index of the entry inG =

∑k
i=1Gi

which is minimal. That multi-index reveals the required β.
The protocol below performs that.

The Protocol
Let E : GP → GC be a public-key encryption function from
some additive group of plaintexts GP to a multiplicative group
of ciphertexts GC . Assume that: (a) its decryption key is
known only to the mediatorAh; (b) it is probabilistic (i.e., en-
cryption depends also on a random string); and (c) it is homo-
morphic (i.e., ∀m,m′ ∈ GP , E(m+m′) = E(m) · E(m′)).
Paillier cryptosystem [Paillier, 1999] is an example of such
an encryption function. Then, the protocol goes as follows:

1. The mediator Ah selects a deputy A′h.

2. AgentAi, for all 1 ≤ i ≤ k, sends toA′h the component-
wise encryption of its private tensor E(Gi).

3. A′h computes the component-wise product
∏k

i=1E(Gi).
Owing to the homomorphic property, A′h gets as a result
the encrypted tensor E(

∑k
i=1Gi) = E(G).

4. A′h selects a random c ∈ GC and computes c · E(G).
Since c = E(r) for some random r ∈ GP , it holds that
c ·E(G) = E(r) ·E(G) = E(G+r) (the multiplication
with the scalar c and the addition with the scalar r are
done component-wise).

5. A′h selects a secret and random permutation π on D`
h =∏k

i=1Di and then sends to the mediator Ah the per-
muted tensor π(E(G+ r)) = E(π(G+ r)).

6. Ah decrypts and recovers the tensor π(G+ r).

7. Ah informs A′h of the position in π(G+ r) of the mini-
mal entry.

8. A′h uses π−1 to recover the original multi-index of
the minimal entry. If it is [i1, i2, . . . , ik] then β =
(v1i1 , . . . , v

k
ik

). A′h informs all group members about β.

A note about finding the minimal entry: We view the en-
tries of G (and π(G)) as integers, as they describe local costs
of tuples in D`

h. We wish to find a minimal entry in π(G).
However, the entries in π(G + r) = π(G) + r are the result
of addition modulo q (and not an addition of integers). So
such an addition may create a wrap around which, usually,
will prevent Ah from finding a minimal entry in π(G). How-
ever, as q is typically a very large integer, and in particular
larger than twice the maximal entry in π(G), Ah can infer
from π(G) + r the location of a minimal entry in π(G).

3.2 P-RODA Simulates RODA
An important observation about the relation between RODA
and P-RODA is the following.

Theorem 1 P-RODA perfectly simulates RODA in the fol-
lowing sense: When the two algorithms are executed on the
same DCOP setting, then assuming that both start with the
same random initial assignment (a01, . . . , a

0
n) and that in each

iteration every mediator selects the same group from its re-
gion in P-RODA as it does in RODA, then the sequence of
intermediate assignments (a`1, . . . , a

`
n), ` ≥ 1, that the two

algorithms produce will be the same.

A consequence of Theorem 1 is that all convergence guar-
antees for RODA, as implied by the proofs in [Kiekintveld
et al., 2010; Pearce and Tambe, 2007; Vinyals et al., 2011],
equally apply to P-RODA.

4 Privacy Discussion
In this section we discuss the privacy of P-RODA with respect
to the common notions of privacy in this field [Faltings et al.,
2008; Léauté and Faltings, 2013]. Due to space limitations,
we omit proofs.

Theorem 2 P-RODA maintains constraint privacy in the
sense that no agent may use its view during P-RODA’s ex-
ecution in order to infer binary constraints of other agents.

Theorem 3 P-RODA respects partial decision privacy: it
leaks to any Ai only the final decisions of agents in N(Ai)
that were in the same group with Ai in the last iteration; the
final decisions of all other agents remain unknown to Ai.

We conclude with a note about agent and topology pri-
vacy. Agent privacy is respected when no agent can discover
the identity or even the existence of non-neighboring agents
[Léauté and Faltings, 2013, Definition 4]. Topology privacy
is respected when no agent is able to discover the existence of
topological constructs in the constraint graph, such as nodes
(i.e. variables) or edges (i.e. constraints), unless it owns a
variable involved in the construct [Léauté and Faltings, 2013,
Definition 5]. It seems that RODA is inconsistent with either
of those two privacy notions in the sense that an algorithm
that achieves one of those privacy goals will essentially differ
in its operation from RODA. Indeed, for any t > 1, each me-
diator has to gather around it a group of agents in a distance
up to t from it. Clearly, such a group reveals to the mediator
the existence of agents that are not direct neighbors. More-
over, the group must be connected, so that even if the group is
selected by a trusted third party, the mediator learns topolog-
ical properties of the graph which topology privacy forbids.

5 Efficiency Analysis
We analyze here the computational overhead of P-RODA
with respect to the baseline RODA. We count only encryption
and decryption operations, since the other performed opera-
tions (e.g. random numbers’ generation, additions, or multi-
plications) have computational costs that are orders of mag-
nitude smaller than those of the cryptographic operations.

Let us fix an agent Ai, 1 ≤ i ≤ n. We denote by p`i the
number of groups to which it belongs in the `th iteration, and
by H`

i := {h`i,j : 1 ≤ j ≤ p`i} the indices of those groups.
Then the excessive computational cost for Ai is to perform∑p`

i
j=1 |D`

h`
i,j
| encryptions. In addition, as Ai is the mediator



of its own group, A`
i , it needs to perform also |D`

i | decryp-
tions. (Those costs are incurred by the protocol in Section
3.1.) Since an agent may be selected for groups only of me-
diators within distance t from it, and since every group has at
most k agents, we infer the following.

Proposition 4 The computational overhead in each itera-
tion of P-RODA is bounded by dkntCE + dkCD where
d := max1≤i≤n |Di| is the maximal domain size, nt :=
max1≤i≤n |Nt(Ai)| is the maximal size of a t-neighborhood,
and CE and CD are the costs of encryption and decryption,
respectively. In particular, the computational overhead does
not depend on the number of agents n.

To realize the actual time it will take P-RODA to run we
followed the simulated time approach [Sultanik et al., 2008]
by measuring the time of atomic operations performed in the
algorithm and then counting the non-concurrent times these
operations are performed. We measured the run-times of en-
cryption and decryption by averaging multiple runs of the
common Java implementation of the Paillier cryptosystem2

on a hardware comprised of an Intel i7-4600U processor and
16GB memory. Our tests show that encryption takes at most
CE = 2 msec, while decryption takes at most CD = 3 msec.

According to Proposition 4 the factors that impact the
computational overhead are k, d, and the topology of the t-
distance neighborhoods. As the dependence on d is polyno-
mial while the dependence on k is exponential we focus here
on the latter dependence. In order to understand the effect of
the neighborhood’s topology, we consider three classic types
of networks – random networks (Erdős-Rényi model [1959]),
scale-free networks (Barabási-Albert model [1999]), and
small-world networks (Watts-Strogatz model [1998]).

Figure 1 depicts the computational overhead as a function
of k in the three network types, when running the algorithm
for L = 50 iterations. In this setup we fix the number of
agents to n = 100, the constraint density to p = 0.1, the
domain sizes to d = 5, and the upper bound of the distance
to t = 1, and vary k = 3, . . . , 8. Figure 1 confirms the ex-
ponential dependency on k, whence for high values of k one
may need to switch in Step 7 to another complete DCOP pri-
vate algorithm such as P-SyncBB. Another interesting phe-
nomenon is the higher computational overhead in scale-free
networks. This is not surprising, since scale-free networks
consist of several highly-connected hubs, and that directly af-
fects nt. Nevertheless, when using higher distance values
(t ≥ 3), scale-free networks exhibit similar performance to
that of the other network types. Varying the distance t has al-
most no effect on the performance of random and small-world
networks, and therefore these results are omitted.

Although not directly affecting the computational over-
head, an increase in the number of agents n might potentially
affect the topology of neighborhoods, and lead to an indi-
rect effect on the computational overhead. We therefore use
the same setting of the previous experiment, but now we fix
k = 3 and vary n = 100, . . . , 1000. Figure 2 confirms that
the problem’s size has almost no effect on the computational
overhead, except for the case of scale-free networks in which

2http://www.csee.umbc.edu/ kunliu1/research/Paillier.html
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Figure 1: Computational overhead (minutes) as a function of k.
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Figure 2: Computational overhead (minutes) as a function of n.

nt does increase when n increases and, consequently, we wit-
ness a moderate increase in the computational overhead.

6 Conclusion
Region optimality is an important concept that offers a bal-
ance between run-time efficiency and guarantees on the so-
lution quality. Privacy loss is a major drawback of region-
optimal algorithms, yet, to the best of our knowledge, no se-
cure protocol for finding region-optimal solutions has been
proposed to date. In this paper we proposed P-RODA, an
algorithmic framework that converges to region-optimal so-
lutions while preserving constraint privacy and partial de-
cision privacy. The underlying algorithm RODA general-
izes the algorithms in the region-optimality family, such as
KOPT [Katagishi and Pearce, 2007] and DALO [Kiekintveld
et al., 2010]. Privacy is achieved chiefly by using secret shar-
ing and homomorphic encryption. P-RODA is scalable with
respect to the number of agents n, but it is more suitable for
regions with a small group size k.

As future work we aim at improving the privacy guaran-
tees of P-RODA. One such improvement could be the obtain-
ing of full decision privacy. Currently, P-RODA reveals to
every agent the final decision of all direct neighboring agents
that happened to be with that agent in the same group in the
last iteration. It is possible to achieve full (rather than par-
tial) decision privacy by enhancing the secure implementa-
tion of Step 7 in P-RODA so that each agent learns only its
component in the optimal local assignment β and not all of
the tuple β, as is the case now. Similarly, it might be pos-
sible to achieve assignment privacy by replacing the transfer
of current assignment data in Step 6 of P-RODA with secure
multi-party protocols. Clearly, such enhancements of privacy
come with a price tag, as they entail greater computational
and communication costs.
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