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Abstract. We study the homogenization of oscillatory solutions of partial dif-
ferential equations with a multiple number of small scales. We consider a variety
of problems — nonlinear convection-diffusion equations with oscillatory initial and
forcing data, the Carleman model for the discrete Boltzman equations, and two-
dimensional linear transport equations with oscillatory coefficients. In these prob-
lems, the initial values, force terms or coefficients are oscillatory functions with a
multiple number of small scales — f(x, ey %) The essential question in this
context is what is the weak limit of such functions when ¢; | 0 and what is the
corresponding convergence rate. It is shown that the weak limit equals the aver-
age of f(x,-) over an affine submanifold of the torus 7™; the submanifold and its
dimension are determined by the limit ratios between the scales, a; = lim 2%, their
linear dependence over the integers and also, unexpectedly, by the rate in Wthh the
ratios 2 tend to their limit ;. These results and the accompanying convergence
rate estimates are then used in deriving the homogenized equations in each of the

abovementioned problems.
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1 Introduction

The theory of homogenization aims at understanding how the behavior in the micro-
scopic level, in a given physical model, affects the behavior in the macroscopic level.
In many models, this problem translates into studying the effects of high-frequency
oscillations upon solutions of partial differential equations. In the simplest setting,
we are given a problem with two natural length scales — a macroscopic scale of order
1 and a microscopic scale of order ¢ which measures the period of the oscillations.
These oscillations may be introduced into the problem through the coefficients of
the equation or through the data. The solution of such problems is usually compli-
cated and hard to compute numerically. In homogenization, we look for the limiting
behavior when ¢ | 0. The idea is that this limit process will ’average out’ the
small scale effects and the resulting homogenized limit solution will be of a simpler
structure.

In several applications, the behavior in the microscopic level is more complex
and involves a multiple number of small scales — €1, ...,e,. The typical form of the
oscillatory functions is then

fs(x) :f(xﬂ_v“w_) ) (1'1)

where f(x,y) is a function of a real variable z and a periodic variable on the n-
dimensional unit torus, y = (y1, ..., yn) € 7™ = [0,1)". Hence, it is only natural that
two of the more essential questions in this context are:

e Question 1: What is the weak limit of f.(xz) when ¢; | 07
e Question 2: What is the corresponding rate of convergence?

In [14] we studied oscillatory solutions to convection-diffusion equations which
are subject to initial and forcing data with modulated one-scale oscillations, i.e.,
functions of the form (1.1) with n = 1. As a first step, we addressed the above two
questions; the answer to them in the simple one-scale case is as follows [14, Lemma
2.1]:

Lemma 1.1 Assume that f = f(x,y) € BV(QxT"') and let f.(x) := f(x, Z). Then
fe(x) = f(x) = [ f(z,y)dy and

1f-(z) — f(2)lw-100(0) < Ce  where C ~ | fllprr.5ve) - (1.2)

Here, and henceforth, © = [a, b] — a bounded interval in Ry, || - [[yy-1,00(q) stands for
the W~1°-norm in Q, ||g(z)llw-1.00q) = || [ 9(€)d€|| Lo () , and BV (Q x T™) is
the space of functions f = f(z,y), z € Q, y € T", which are of bounded variation.

In this paper we are concerned with the multiple scale case, i.e., we study the
homogenization of problems which depend on more than one small scale, n > 2. In
all of these problems — linear or nonlinear, one- or two-dimensional, scalar equations
or systems — Questions 1 and 2 play a significant role. Hence, the first part of this
paper revolves around these questions.

In our discussion, we assume that f = f(z,y) € BV (2 x T™) and view all scales
as continuous functions of a common parameter, &; = ¢;(¢) > 0, such that ¢; | 0



when ¢ | 0. By taking the wave lengthes of the oscillations go to zero, f-(x) tends
in a weak sense to a limit f(z) which takes the form of an average of f(z,-) with
respect to some measure on the torus T"; however, unlike in the one-scale case, it
is not clear beforehand what is that measure and what is the corresponding rate of
convergence.

In the two-scale case, n = 2, if the ratio between the scales remains fixed, i—; = q,
Question 1 is analogous to classical questions in ergodic theory or the theory of
numerical integration: if « is irrational, the weak limit is the average of f(z,-) over
the entire torus 72,

fa)= [ @y (13)

if a is a nonzero rational number, 2, the weak limit is the average of f(z,-) over
the projection of the straight line Spang{(n,m)} on T2

F@) = [ famymdy (14

Here, however, we consider the more general situation where the ratio between the
scales only tends to a limit, z—; — «a. The answer, or better yet, the array of answers
which we reveal here is surprising and is of interest both in the theoretical level and
in the practical level, as we demonstrate later. T. Hou dealt with that situation in
[7]; in his analysis he assumed that r := £ — « tends to zero faster than €; and
€9. This assumption, however, turns out to be equivalent to assuming that the ratio
between the scales is fixed (Lemma 2.1). Although he observed that the average in
(1.4) is no longer the weak limit when |r| > O(ey,e2), he did not pursue the study

in that direction.

In §2, §2.1-§2.3, we complete the task and unveil the entire picture in the two-
scale case. If «v is zero or irrational, we prove that the weak limit is as in (1.3),
regardless of the rate in which r vanishes (Theorems 2.1 and 2.4). If, however, « is a
nonzero rational number, the weak limit depends on the value of « and, in addition,
on the rate in which « is approached by z—;, namely — the order of magnitude of r. In
Theorem 2.2 we show that (1.4) holds only when |r| << O(e1,e2). If |r| = O(eq, €2),
f(x) takes a similar form of an f-average over an affine curve in 72; that curve,
which may depend on x, is parallel to the linear curve along which the integral in
(1.4) is taken. Finally, if |r| >> O(e1,e2), the weak limit switches unexpectedly from
a one-dimensional average to the two-dimensional average in (1.3), Theorem 2.3.

Regarding Question 2 about the convergence rate: in the cases where « is ratio-
nal, our convergence proofs are accompanied by sharp convergence rate estimates;
this question is far more complicated when « is irrational and we address it in §2.4 by
adopting ideas from number theory and the theory of quasi-Monte Carlo methods;

the necessary terms and results from these theories are reviewed briefly in Appendix
A.

To conclude §2, we provide in §2.5 convincing visual illustrations of our weak
convergence results.

In §3 we extend our discussion to the case of a multiple number of scales. We
show that, like in the two-scale case, the weak limit of f.(x) is an average of f(z,-)
over an affine submanifold of 7". The manifold and its dimension are determined



by the limit ratios between the scales (in particular, on their linear dependence over
the integers) and on the rates in which these limit ratios are approached. One of
the key points in this context is the introduction of an equivalence relation ~ on
the set of scales S = {€;}1<i<pn. This relation enables us to reduce the problem of
homogenization of f with respect to S to a problem of homogenization of another
function with respect to the smaller set of scales S/ ~. In other words, with this
relation we are able to detect 'redundancies’ in § and to eliminate redundant scales.

In §4 we apply our weak convergence analysis to a variety of homogenization
problems. In §4.1 we apply our results to homogenization of nonlinear convection-
diffusion equations. We consider initial value problems for nonlinear equations of
mixed hyperbolic-parabolic type, where the initial and forcing data are oscillatory.
The homogenized limit solution satisfies the same equation with the corresponding
averaged initial and forcing data. Moreover, if the solution operator of the equation
is compact, the oscillatory solution tends to its homogenized limit in a strong sense,
for all positive time after an initial layer. In this context, we provide a most illumi-
nating example which demonstrates why our refined weak convergence analysis is
important not only theoretically, but also for practical applications where the value
of the small scales is fixed and there is no limiting process involved.

In §4.2 we briefly discuss an application to homogenization of discrete Boltzman
equations. Ome of the simplest models for these equations is the Carleman model
where the density functions satisfy a 2 x 2 semilinear hyperbolic system. We con-
sider these equations subject to initial data with modulated two-scale oscillations.
Combining the techniques presented in [7] and our weak convergence results of §2,
we obtain pointwise error estimates for the oscillatory solutions of these equations.

84.3 is devoted to homogenization of two-dimensional linear flows with oscillatory
velocity fields. Here, the oscillations are introduced through the coefficients of the
equation. The weak limit of the solution depends on the rotation number which
is associated with the flow and on the correlation between the two small scales:
this limit solution is either a solution of a linear transport equation with constant
coefficients (in which case the convergence of the oscillatory solutions is pointwise)
or an average of solutions of parameter-dependent linear transport equations with
possibly variable coefficients (in which case the convergence is in the weak W —1°°-
sense).

Finally, in §4.4 we demonstrate the connection between our weak convergence
analysis and the classical problem of studying the motion of an harmonic oscillator
in several dimensions; in addition, we use our analysis to study the motion of quasi-
harmonic oscillators, where the frequency of the oscillations is not constant.

2 W l>*.Convergence Analysis with Two Small Scales

Throughout this section, y = (y1,y2) € T?, f = f(z,y) € BV(Q x T?) and f.(z) =
f(z, £, £). We define
17 €9
a=lm2 and r=2L—a. (2.1)
e—0 €9 £9

With this, it is convenient to identify the common parameter € with €5 and then

e1=0ae+0 where 0=re=o0(). (2.2)



Our convergence rate estimates will be given in terms of € and 7.

We separate the discussion into the following three cases:

2.1 Case 1: Zero limit

Here we deal with the case « = 0. This is the simplest case since the two small
scales are of different orders of magnitude and, therefore, they do not interact.
Hence, the limit process can be separated into two successive limits. Here and
henceforth Lip(y;) (or Lip(x)) denotes the class of functions f € BV (2 x T™) which
are uniformly Lipschitz continuous with respect to y; (respectively, z) in  x T™.

Theorem 2.1 Assume that £t — 0 and that f € Lip(x) N Lip(yz). Then

Sow) = @)= | ey (23)
T2

and

| fe(x) — f(l')”wfl,oo(ﬂ) < Const - (52 + i—;) =Const-(e+7) . (2.4)
Proof. Defining
g(x7y1) = f(xayla :_2) ) g(l‘) = /Tl g(‘r7y1)dy1 )
and
h(xva) = /[‘1 f(xvylayQ)dyl ) ;b(:L') = /7“1 h(xayQ)dy2 y

the difference in (2.4) may be decomposed as follows:

_ T B T _

/(@) = f@)lw=reo@) < Mlg(z; Z) = (@)llw-roo@) + [Pl2: ) = W@ llw-1e0(0) -
(2.5)

Using Lemma 1.1 for the two terms on the right hand side of (2.5), we get that

1 fe(x) = f(2)[lw-1.000) < Comst - <”9||L1(T1;BV(Q)) -e1+ [|hll 1By () '52) .

(2.6)

Finally, since the assumed regularity of f implies that
9l 1 71,8V () < Const - et (2.7)
(2.4) follows from (2.6) and (2.7). a

The next two subsections will be devoted to the case where the limit ratio « is
nonzero, i.e., the two small scales are of the same order of magnitude. Here, the
following observation is most important:



Lemma 2.1 Assume that

JeeR such that — —c. (2.8)
€
Then
T T r? T

17:(2) = 90 2, 2 lw-ry < Const- (; +[E-e (29)

where
cr
Q(I,ylayz) = f(I,yl - $7y2> . (2-10)

Remark. In case f is not of bounded variation, but it is in the Sobolev space
W/li’cl, 6 < 1, we have, instead of (2.9),

2
T x r
| fo(x) — g(z, P g)”wfl,oo(g) < Const - (; +

This lemma (which is a special case of Proposition 3.2 and, therefore, is not
proved here) implies that when « is approached by the ratio £l sufficiently fast
(namely, |r| < O(e)) the weak limit of f.(z) equals that of g(z, =, %) — a similar
function whose two small scales, ac and ¢, are of a fixed ratio. Hence, we shall
refer to the case where (2.8) holds as the almost fized ratio case; the case where
Ir] > O(e), i.e.,

L (2.11)
€

is the genuinely variable ratio case. We note that the assumption made in [7] was
of an almost fixed ratio with ¢ = 0; under this assumption, g = f and, therefore, we
can simply replace £1(¢) with ae and pass to the weak limit.

2.2 Case 2: A nonzero rational limit

Here we deal with the case where the limit ratio « is a nonzero rational,

E—lﬁa:%e(@*:@\{o}- (212)

€2

In the almost fixed ratio case, Lemma 2.1 implies the following;:

Theorem 2.2 Assume (2.12) holds and that the ratio is almost fized, (2.8). Then
if f is locally of bounded variation,

CT

folw) = @) = [ Flainys = Sy (213)

and
r
-—c

1f=(@) = F@)llw-1.00(0) < Const - ( +[2

) . (2.14)



Proof. In view of Lemma 2.1, the weak limit of f.(x) equals that of g(z, 2=, %)
where ¢ is defined in (2.10). Defining € = me and §(z,y1) = g(z, ny1, my1), we get

that R .
g(l', &7 g) = g(x7 g) )

By Lemma 1.1,

llg(z, g)—/T1 g(z, y1)dy1|lw-1.00(q) < Const-& where Const ~ ||gl| L1 (11,v () -
(2.15)

But the definitions of g and § imply that [1 §(z,v1)dy1 equals the weak limit f(x)
in (2.13); this proves (2.13). The error estimate in (2.14) follows from the error
estimates in (2.9) and (2.15). O

Remark. The order of magnitude of the constant in error estimate (2.14) depends
linearly on the order of magnitude of m and n; this can be seen by noting that the
constants in (2.9) and (2.15) are independent of m and n while in (2.15) &€ = me.

The situation is completely different when the ratio is genuinely variable:

Theorem 2.3 Assume (2.12) holds and that the ratio is genuinely variable, (2.11).
Then if f € Lip(xz) N Lip(y2),

Sow) = @)= | ey (2.16)
and
1o(@) = F(@)ll—roe(a) < Const (ﬂ +irl) (2.17)

Proof. For the sake of simplicity, let us assume first that & = 1. Then, by
2

(2.2) fe(z) = f(x, 5, £) where, by (2.11), 5§ — 0. We now consider the function
9(x,y1,y2) = f(z,y1,91 + y2) and observe that

x T x g2 + &b
Iy = i h = o = 2.1

f(x’5—|—575) g(x77717772> where  m E+0, M 5 ( 8)

Since & >> |§] >> €2, we have that
&2
m~e—0 and n2~7—>0. (2.19)
Moreover,
0
m.% . (2.20)

N2 €

Hence, in light of (2.19)—(2.20), we may apply Theorem 2.1 to g and conclude that

T T N g2 1)
o, 2=, ) = 5@l -s0e(@) < Comst- (W v U) S e

8



where .
g(x) = /0 /0 9(x,y1, y2)dy1dys (2.22)

(note that g is as regular as f with respect to z and ys and, therefore, satisfies the
assumption of Theorem 2.1). Since the definition of g and the 1-periodicity of f
imply that g(z) = f(z) = [7e f(z,y)dy, (2.16)—(2.17) follow from (2.18) and (2.21).

The general case may be reduced to the case @ = 1 by introducing the notations
€ = me, 6 = nre and rewriting our function as

X X
E4+ 06 €

fs(x) = f(l', ) ) (223)
where f (z,91,y2) = f(z,ny1,myz2). Applying the above analysis to f and observing
that [ f(x,y)dy = [ f(x,y)dy, we arrive at (2.16) and (2.17). O

Later, we provide several examples to illustrate the results of this section. How-
ever, we would like to give here one example, taken from [7, Remark 3.1]. As
mentioned earlier, T. Hou concentrated on studying the almost fixed ratio case
(2.8) with ¢ = 0; namely — he assumed that |r| << e. Under this assumption, the
weak limit when a = ™ is as in (1.4). He observed, however, that the weak limit
is different when this assumption does not hold. As an example, he considered the
function f(y1,ye) = cos(2my1) sin(2mys), with &1 = ¢ + 2. Here, a = 1, r = ¢ and,
consequently, ¢ = 1. A direct computation showed that

/05 =2 Dyie = 2 4 o) (2.24)

e+e2’ ¢ o

in disagreement with the weak limit predicted by (1.4) — fol fol f(y1,y2)dy1dys = 0.
Theorem 2.2 provides the answers for that: the weak limit in this case is, ac-
cording to (2.13),

B 1
flx) = /0 flyr —x,y1)dyr = %Sin(?ﬂ'x) ,

and the W1 convergence rate estimate is, in view of (2.14), O(¢). Indeed,

2 1
Fody — o
| Fayde = -
and therefore, by (2.24),

Lﬁ(ﬂ;i—ﬂ—ﬂmym=wa

et+e?2’¢

in agreement with Theorem 2.2.

The integral in (2.13) is taken along a closed spiral curve in 72. The larger
are m and n — the longer is the curve. Let a be an irrational number and let
{%’f}k@, be a sequence of rational numbers which converges to o as k — oco. Let
L = {(ngy1,mpy1) : y1 € T'} be a typical curve in T2 associated with %}f by
(2.13). Then, since my,nr — o0, the length of £ tends to infinity as %}f - «



and the ”limit-curve”, so to speak, covers the entire torus 7. Hence, it is natural
to expect that when i—; — «, « irrational, the corresponding weak limit of f.(z)
will take the form of a two-dimensional integral over T, like in (2.16), rather than
a line integral as in (2.13). This is the subject of our discussion in the following

subsection.

2.3 Case 3: An irrational limit

€1

Here, =

— a € R\ Q. We start with the following straightforward lemmas:

Lemma 2.2 Assume that « € R\ Q, |0] << € | 0 and consider the functions
Ern(y1,y2) = ™mtme) mone 7y ype T . (2.25)
Then there exists a constant C' > 0, such that for every fixed (m,n) # (0,0),

T T ag? + 6

—_— “Leo() JC- h = . (2.2
Oéé‘—l—(s’é‘)HW 1o () <C |77| wnere 1 (m+na)€+n5 —0 ( 6)

[ Em,n(

Proof. Denoting E(z) = €*™, Ep (5, ) = E(7) with 7 as in (2.26). Since
the irrationality of a implies that m 4+ na # 0, we conclude that n ~ ¢ — 0. Hence,
applying Lemma 1.1 to E(%), which has a zero average, we obtain (2.26). O

Lemma 2.3 Let g € BV(Q2) and f € W=1°(Q). Then g-f € W=5%°(Q) and

||9f||W—1,o<>(Q) < (||g||Loo(Q) + ||g||BV(Q)) ) ||f||W—1,o<>(Q) . (2.27)

Proof. Let F(z) denote the primitive of f(z), F'(x) = [/ f(£)d¢. Then

| 9t =g@F@ - ["gF. (2.28)

Taking the supremum in absolute value over €2 on both sides of (2.28) we arrive at
(2.27). O

We may now proceed to prove the main theorem of this subsection:

Theorem 2.4 Assume that &£ — o € R\ Q and that f € L>®(Q, H(T?)), s > 1.
Then

e—0

I£:(2) = Fla)w-se(@) < 7(6) 0, where fla) = [ fle)dy . (2:29)

10



Proof. Using the notations (2.1)-(2.2), we shall show that for any p > 0

I1f (x, —) — (@) lw-ree(e) < 1 (2.30)

e + 5 ’
for sufficiently small €.
Let fy denote the Nth order Fourier approximation of f,

vy =fn@yny) = Y. fon(@) Ena(ys, ) (2.31)

—N<mn<N

where fy.n(x) are the corresponding Fourier coefficients and E,, , are as in (2.25).
Then, for any value of r, 1 < r < s, it holds that

1f (@, ) 15 (72)

1f (2, ) = fn(@, )l grr2y < Const - No—r Vo € Q) (2.32)

(consult [13]). Hence, since the L®-norm in R? is dominated by the H"-norm for
r > 1, we conclude that

£l oo (0,5 (72)) _.o.

Ns=r N—oo
(2.33)

We may now proceed to prove (2.30). By (2.33), there exists N such that

”f_fN||L°°(Q><T2) = Slelg f(z,)—fn(z, ')||L<>°(T2) < Const-

1f (2, y) — Fr (@, y)l| oo @2y < ﬁ : (2.34)

Therefore, for this value of NV,

T T T

i _
a€+5 5) F@)lw-1e(0) < 5N (z, a€+5,g)—f($)|fw—1,oo(9)- (2.35)

I1f (2,

Since f(x) = fo,o(x), we may upper bound the second term on the right of (2.35),
using Lemma 2.3, as follows:

r x
I =) = F@)lwrmi@) < S @ B, Dl
(2.36)
where the sum is taken over —N < m,n < N, (m,n) # (0,0) and || := || - | poc () +

| - lBv(q)- Since, by Lemma 2.2, each of the terms on the right of (2.36) tends to
zero when ¢ | 0,

r xr, p
i 2 2) = @) h-rogey < & (237
for sufficiently small e. Therefore, (2.30) follows from (2.35) and (2.37). a

Remarks.

1. The assumption f € L>®(Q, H*(1T?)), s > 1, could have been replaced by the
weaker assumption that || f(z,y) — fn(z,9)| 1 x12) = 0 as N — oo.

2. Theorem 2.4 lacks convergence rate estimates. The derivation of such esti-
mates is the subject of the next subsection.

11



2.4 The case of an irrational limit — convergence rate estimates

It turns out that the distinction between the almost fixed ratio case, (2.8), and the
genuinely variable ratio case, (2.11), is of great significance here as well. In the first
case, where we may take the two scales as proportional to each other, Lemma 2.1,
we can borrow results from the theory of quasi-Monte Carlo methods. In the second
case, however, that is impossible, whence different methods should be applied.

The analysis presented here involves some terminology and results from number

theory and the theory of quasi-Monte Carlo integration methods. The reader is
referred to §5 where a brief review of these terms and results is provided.

We first handle the almost fixed ratio case and we start with the simpler situation
where the ratio between the two scales remains fixed. The following lemma is a
modification of [7, Lemma 2.2]:

R\ Q. Then (2.29) holds with
(1) v(e) = O(e|loge|) if a is proper;
(2) v(e) = O(e) if a is of type n and f(x,y1,-) is in class EF for k > 1.

Remark. It is not surprising that an error estimate in this case involves both
the smoothness of the function f and the type of a. Indeed, if we review the

12
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