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Abstract

One of the fundamental problems of multi-party computation is Oblivious Polynomial
Evaluation. In that problem, that was introduced by Naor and Pinkas, Alice has a polynomial
P (x) and Bob has a point α. The goal is to allow Bob to compute P (α) so that Alice remains
oblivious of α and Bob of P (x), apart from what is implied by P (α) and α. We introduce the
multivariate version of this problem, where x and α are vectors, and offer an efficient secure
protocol. In addition, we discuss several applications that may be solved efficiently using
oblivious multivariate polynomial evaluation, such as private linear algebraic computations
and private support vector machines (SVM).
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1 Introduction

Consider a setting in which there are several parties, P1, . . . , Pn, where each party Pi holds a
private value xi. The goal is to compute the value f(x1, . . . , xn), where f is some publicly known
function of n variables, so that each party does not learn anything about the private inputs
of the other parties, except the information that is implied by his own input and the output
result f(x1, . . . , xn). One way of accomplishing this task is by delegating the input values xi to
a trusted third party that can perform the computation on the inputs that he receives from the
n parties and return the computation result. However, when such a trusted third party is not
available, it is necessary to accomplish this task by a suitable protocol that the participating
parties have to execute among themselves. Such protocols are called Multi-Party Computation
(MPC hereinafter) protocols.

One of the basic primitives of MPC is Oblivious Transfer (OT). It was first introduced by
Rabin [17]. Rabin considered a setting that involves two parties — Alice and Bob. Alice has an
input bit and Bob wants to learn it. The goal is that Bob will receive that bit with probability
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1/2, and will receive nothing with probability 1/2, while Alice remains oblivious of which of the
two events happened. A different variant of OT, called “chosen 1-out-of-2 oblivious transfer”,
was later introduced and discussed by Even, Goldreich and Lempel [6]. In that setting, Alice has
two bits, b0 and b1, and Bob has a selection bit s. The goal is for Bob to receive bs and remain
oblivious of b1−s while Alice remains oblivious of s. In other words, the goal is to allow Bob to
compute the following function of the joint inputs: f(b0, b1; s) := (1− s)b0 + sb1.

The generic problem of secure two-party computation was solved by Yao [19]. He gave a
solution that accomplishes secure computation for every function f which can be represented by
a binary or an algebraic circuit. His solution is based on the assumption that factoring integers
is intractable. Later, Goldreich and Vainish [11] showed that the existence of OT is sufficient for
this task. Kilian [14] showed, in a constructive manner, that OT is necessary and sufficient for
general oblivious function evaluation, that is secure against malicious parties. The problem with
these generic solutions is that their computational and communication complexities are very high.
The aim of further studies in this field is to find more efficient solutions for specific problems of
MPC.

One such problem of MPC is Oblivious Polynomial Evaluation, or OPE. It involves two parties:
A sender, who has a univariate polynomial P over a finite field F, and a receiver, who has a point
α ∈ F. The goal is for the receiver to learn the value of P (α), without learning any other
information about P , while the sender has to learn no information about α. This problem was
introduced and solved by Naor and Pinkas in [15].

In this study we present the multivariate version of OPE, where P is an r-variate polynomial
over a finite field F and α ∈ Fr. The goal remains the same: The receiver wishes to learn the
value of P (α), without learning any other information about P , while the sender needs to remain
oblivious of the value of α. The extension to the multivariate case is interesting for its own sake,
but also because it has applications that cannot be achieved by univariate OPE, e.g., private
linear algebraic computations, or private support vector machines.

The paper is organized as follows. Section 2 sets the ground for the discussion that follows. Our
main results — protocols for oblivious evaluation of multivariate polynomials and their analysis
— are presented in Section 3. We conclude in Section 4 with applications of oblivious evaluation
of both univariate and multivariate polynomials.

2 Preliminaries

In Section 2.1 we recall the basic definitions regarding the security of MPC protocols, and in
Section 2.2 we provide a quick overview of oblivious transfer. Our discussion in these two sections
is informal; the interested readers are referred to Goldreich [9] for a more thorough and formal
discussion. In Section 2.3 we define the problem of Oblivious Multivariate Polynomial Evaluation
(OMPE). Then, we discuss in Section 2.4 intractability assumptions that will play a significant
role in the solution of that problem.

2.1 Security of MPC protocols

When analyzing the security of a protocol, it is customary to compare what an adversary can
do in a real execution of the protocol to what he can do in an ideal execution scenario. In an
ideal scenario, the participating parties send their inputs to a trusted third party that implements
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the functionality of the protocol using the inputs that were received from all parties and then he
returns to each of the parties their corresponding outputs.

To prove that the protocol is secure, it is needed to show that what an adversary can do in
a real execution (namely, what he can cause or the information that he may extract from his
view) is indistinguishable from what he can do in an ideal scenario. Towards that end, we build a
simulator that simulates the execution of the protocol, where on one side, the simulator interacts
with the adversary in the real world, and on the other side, it interacts with the trusted third
party in the ideal world. In the simulation, we show that the interaction of the adversary with
the simulator is indistinguishable from his interaction with the other parties in a real execution.

We consider two typical kinds of adversaries: semi-honest and malicious.

• A semi-honest adversary is an adversary that performs the steps of the protocol but, at the
same time, tries to use the information that he gains during the execution of the protocol
in order to deduce additional knowledge about the inputs of the other parties. A secure
multi-party protocol guarantees that what the adversary may learn during a real execution
is no more than what he can learn in an ideal scenario, namely, no more than what is implied
by his own input and output.

• A malicious adversary can be viewed as a program that controls a number of the parties
during the execution of the protocol. Such an adversary does not necessarily follow the steps
of the protocol and he might behave arbitrarily, e.g. by even stopping performing his part
in the protocol. When designing a secure protocol against a malicious adversary, the goal is
to build a protocol that prevents the adversary from gaining forbidden information about
the other parties’ inputs, and from interrupting the execution of the protocol. It should be
noted that there are some malicious conducts that cannot be prevented:

– A malicious adversary may change his input or send incorrect values.

– He may reject participating in some steps of the protocol.

– He may stop participating in the execution of the protocol.

Even though such conducts may affect that fairness of the protocol, it is important to
maintain the ability of the other parties to detect such conducts and, consequently, recover
and continue the execution of the protocol.

The hybrid model. When building a secure protocol that uses other secure subprotocols that
are fully simulatable, it suffices to analyze the security of the entire protocol in the hybrid model
[5]; namely, we may assume that the subprotocols are executed by a trusted third party. Since
our proposed OMPE protocol is based on oblivious transfer (OT) subprotocols, we may analyze
the security of the OMPE protocol in the hybrid model, by assuming that the OT subprotocols
are executed by a trusted third party.

2.2 Oblivious Transfer (OT)

OT is a secure two-party protocol that was introduced by Rabin [17] and was afterwards extended
by Even, Goldreich and Lempel [6] and Brassard, Crépeau and Robert [2]. In an OT protocol
there are two parties, a sender with messages {m1, . . . ,mN}, and a receiver with a selection index
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i ∈ [N ] := {1, . . . , N}. By the end of the protocol, the receiver learns mi but learns nothing
about the other messages, mj , j ∈ [N ]\{i}. The sender, on the other hand, learns no information
about the selection index i. OT protocols that are secure against malicious parties were presented
recently in [4, 12, 16].

It was shown that the OT protocol is complete, i.e., that any secure protocol can be imple-
mented using OT [10, 14].

2.3 Oblivious Multivariate Polynomial Evaluation (OMPE)

The OMPE problem concerns two parties, a receiver and a sender. The specifications of the
problem are as follows.

• Input:

• sender: An r-variate polynomial of degree (at most) d over a finite field F,

P (y) =
∑

0≤|k|≤d

bky
k ,

where1 y = (y1, . . . , yr) is the vector of variables, k = (k1, . . . , kr) are the exponent vectors,
yk =

∏r
i=1 y

ki
i , |k| =

∑r
i=1 ki is the order of the monomial yk, and bk are the scalar

coefficients in F.

• receiver: A point α = (α1, . . . , αr) ∈ Fr.

• Output:

• sender: nothing.

• receiver: P (α).

It is required that during the run of the protocol, the sender will acquire no information regarding
the value of α and that the receiver will acquire no more information about the polynomial P
other than what is inferred by the output P (α).

2.4 The intractability assumption

The solution of Naor and Pinkas of the univariate OPE problem relied on either one of two
intractability assumptions that were based on noisy polynomial reconstruction problems. Our
solution in the multivariate case relies on corresponding multidimensional versions of those as-
sumptions.

First, we define the following vector polynomial reconstruction problems. (Whenever we
speak below on a polynomial function S : F → Fr of degree at most k we mean that S(x) =
(S1(x), . . . , Sr(x)) and Si(x), 1 ≤ i ≤ r, are polynomials of degree at most k.)

The vector polynomial reconstruction problem

Input: Integers r, k, n, and N pairs {(xi,yi)}Ni=1, where xi ∈ F and yi ∈ Fr.

1Hereinafter, bold face letters denote vectors and the corresponding regular letters denote their components.
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Output: A polynomial function S : F → Fr of degree at most k, such that S(xi) = yi for at
least n indices i ∈ [N ].

The vector polynomial list reconstruction problem

Input: Integers r, k, n, and N pairs {(xi,yi)}Ni=1, where xi ∈ F and yi ∈ Fr.

Output: All polynomial functions S : F → Fr of degree at most k, such that S(xi) = yi for at
least n indices i ∈ [N ].

The intractability assumption, which is defined below, is the formalization of the idea that
given an input to the vector polynomial reconstruction problem, the value of the polynomial
vector at x = 0 is pseudo-random.

Definition 2.1 Let r, k, n,m be integers, F be a finite field, and α be a fixed vector in Fr. Then
Ak,α

n,m,r denotes the probability distribution of the sets of pairs {(xi,yi)}Ni=1 that are generated in
the following manner:

1. Pick at random a polynomial function S : F → Fr of degree at most k such that S(0) = α.

2. Generate a random set of nm distinct points x1, . . . , xnm ∈ F \ {0}.

3. Choose a random subset T ⊂ [nm] = {1, . . . , nm} of n distinct indices.

4. Set yi = S(xi) for all i ∈ T and yi to be a random value in Fr otherwise.

5. Output the set {(xi,yi)}nmi=1.

Finally, we let Ak,α
n,m,r denote the random variable that is chosen according to the probability

distribution Ak,α
n,m,r.

Let ℓ ∈ N be a security parameter. Let n(ℓ),m(ℓ), k(ℓ) be any integer-valued polynomially-
bounded functions of ℓ that define the values of the parameters n,m, k that appear in Definition
2.1. In addition, let F (ℓ) be any integer-valued polynomially-bounded function of ℓ, and F(ℓ) be a
field whose elements may be represented by F (ℓ) bits. Finally, let α(ℓ) and α′(ℓ) be any functions
with values in F(ℓ)r. For any fixed r ≥ 1, we define the probability ensembles {Ar(ℓ)}ℓ∈N and
{A′r(ℓ)}ℓ∈N to be such that for every ℓ, Ar(ℓ) is the random variable Ak,α

n,m,r and A′r(ℓ) is the

random variable Ak,α′
n,m,r, where n = n(ℓ),m = m(ℓ), k = k(ℓ),F = F(ℓ),α = α(ℓ), and α′ = α′(ℓ).

The intractability assumption. The probability ensembles {Ar(ℓ)} and {A′r(ℓ)} are com-
putationally indistinguishable; i.e., there does not exist a probabilistic polynomial-time algorithm
that can distinguish between samples from {Ar(ℓ)} and {A′r(ℓ)} with non-negligible success prob-
ability.

The number of variables r is a constant in our discussion. It is easy to see that by setting
r = 1 we recover the first intractability assumption of Naor and Pinkas in [15, Section 2.2]. We
claim that if the intractability assumption holds for r = 1, it also holds for every fixed r ≥ 1.

Theorem 2.1 For any fixed r ∈ N, {Ar(ℓ)} and {A′r(ℓ)} are computationally indistinguishable
if {A1(ℓ)} and {A′1(ℓ)} are computationally indistinguishable.
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Proof. Assume that n = n(ℓ), m = m(ℓ), k = k(ℓ), and F = F(ℓ), as described earlier, and
let α = α(ℓ) and α′ = α′(ℓ) be any two functions with values in F(ℓ)r. For every 1 ≤ i ≤ r,
define αi = αi(ℓ) = (α′

1(ℓ), . . . , α
′
i(ℓ), αi+1(ℓ), . . . , αr(ℓ)). Finally, we let Ar

i (ℓ) denote the random
variable Ak,αi

n,m,r.
We need to prove that there exists no probabilistic polynomial-time algorithm Dα,α′ that can

distinguish between Ar
0(ℓ) and Ar

r(ℓ) with a non-negligible success probability. Assume that such
a distinguishing algorithm Dα,α′ does exist. Say the algorithm’s output is 0 if it decides that the
input given to it was from Ar

0(ℓ) and 1 if it decides that the input was from Ar
r(ℓ).

Let pi be the probability that the output of Dα,α′ is 1 given an input sampled from Ar
i (ℓ),

0 ≤ i ≤ r. Then, by the triangle inequality,

|p0 − pr| ≤
r∑

i=1

|pi−1 − pi| . (1)

Since we assumed that Dα,α′ is a successful distinguisher between Ar
0(ℓ) and Ar

r(ℓ), the difference
|p0−pr| is non-negligible. Hence, at least one of the addends on the right-hand side of (1) must be
non-negligible. Namely, there exists 1 ≤ i ≤ r such that Ar

i−1(ℓ) can be distinguished from Ar
i (ℓ)

by a probabilistic polynomial time algorithm with a non-negligible success probability. That is
impossible since even if we told the distinguisher that the distinction between the two samples lies
in the i-th component, he would not be able to distinguish between the two samples with a non-
negligible success probability, since we assumed that {A1(ℓ)} and {A′1(ℓ)} are computationally
indistinguishable. Therefore, a distinguishing algorithm Dα,α′ does not exist. 2

A different way of showing that our intractability assumption is at least as hard as the one
in [15] is the following. Let S : F → F be a random polynomial of degree at most k and let α
and α′ be two distinct values in F. For any fixed integer r > 1, we define S : F → Fr to be
the function S(x) = (S(x), 0, . . . , 0), and corresponding two points in Fr, α = (α, 0, . . . , 0) and
α′ = (α′, 0, . . . , 0). Denote by {A1(ℓ)} and {A′1(ℓ)} the two ensembles that correspond to S, α
and α′ through Definition 2.1, and by {Ar(ℓ)} and {A′r(ℓ)} the two ensembles that correspond to
S, α and α′. Clearly, if the latter two ensembles were distinguishable, so would be the former two
ensembles. But the former two ensembles are indistinguishable, according to the intractability
assumption in [15], and therefore so are the two latter ensembles.

3 A protocol for the OMPE problem

In this section we describe the protocol for the OMPE problem (Section 3.1) and then discuss its
security in the case of semi-honest parties (Section 3.2) and malicious parties (Section 3.3).

3.1 The protocol

The protocol is a generalization of the protocol in [15] to the multivariate case.

1. The sender hides P (·) in an (r+1)-variate polynomial. To that end, he generates a random
univariate masking polynomial, M(x), of degree sd, where s is a security parameter, such
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that M(0) = 0. Namely,

M(x) =
∑

1≤j≤sd

ajx
j .

The sender then defines the (r + 1)-variate polynomial:

Q(x,y) = M(x) + P (y)

for which it holds that Q(0,y) = P (y) for all y.

2. The receiver hides α = (α1, . . . , αr) as follows: He selects r random (univariate) polynomials
of degree s, {Si(·)}1≤i≤r, such that Si(0) = αi, 1 ≤ i ≤ r. Then, he defines S : F → Fr in
the following manner:

S(x) = (S1(x), . . . , Sr(x)) .

The receiver’s plan is to use the univariate polynomial

R(x) = Q(x,S(x))

in order to learn P (α) without leaking information on the value of α. Specifically, since

R(0) = Q(0,S(0)) = Q(0,α) = P (α) ,

if the receiver is able to recover R, he can deduce the value of P (α). The degree of R is sd
since

R(x) = Q(x,S(x)) = M(x) + P (S(x)) = M(x) + P (S1(x), . . . , Sr(x))

and degM = sd, degP = d, and degSi = s for all i.

3. The receiver learns the value of R at sd+ 1 points,

(xi, R(xi)) , 1 ≤ i ≤ sd+ 1 .

4. The receiver uses the values of R that he learned in order to interpolate R and deduce the
sought-after value R(0) = P (α).

It remains to discuss the implementation of Step 3. It is carried out by the following sub-protocol:

(a) Let n = sd+ 1 and N = nm, where m is a security parameter.

(b) The receiver selects N distinct random points x1, . . . , xN ∈ F \ {0}.

(c) He selects a random subset T of n indices 1 ≤ i1 < · · · < in ≤ N .

(d) For each i ∈ T , he sets yi := S(xi); for all i ∈ [N ] \ T , yi is selected randomly from Fr.

(e) The receiver sends the N pairs {(xi,yi)}1≤i≤N to the sender.

(f) The sender computes Q(xi,yi) for all i ∈ [N ].

(g) The sender and receiver execute an n-out-of-N OT protocol in which the receiver learns the
values {Q(xi,yi) : i ∈ T}.

Note that the set of points that the receiver sends to the sender is drawn from the probability
distribution As,α

n,m,r, see Definition 2.1.
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3.2 Security in the case of semi-honest parties

Here we assume that both parties follow the protocol precisely. The correctness of the protocol
in this case is trivial. Indeed, by the properties of OT, the receiver will learn the values of R at
n = sd+1 points and, thus, he will be able to successfully interpolate R and calculate R(0) = P (0).
We proceed to prove the receiver’s and sender’s privacy in this setting.

Theorem 3.1 Under the intractability assumption and the OT hybrid model assumption (i.e.,
that the OT protocol is secure), the OMPE protocol in Section 3.1 is secure against semi-honest
adversaries.

In proving Theorem 3.1, we analyze the security of the protocol in the hybrid model assuming
that the OT protocol is executed by a trusted third party. In order to prove security, we construct
simulators, SimR and SimS , that generate the view of the receiver and the sender given only their
input and output in the ideal model. The proof that the protocol preserves the receiver’s privacy
is given in Section 3.2.1; in Section 3.2.2 we prove that it preserves the sender’s privacy.

3.2.1 The protocol is secure against semi-honest senders

We need to show that the sender does not learn any information about the receiver’s private
input α. To that end, we build a simulator SimS that simulates the view of the sender given its
input P (·) and output ⊥ (empty output) in the ideal model. When simulating the protocol, we
only need to simulate Step 3 of the protocol, since that is the only step during the protocol in
which the sender receives information. In that step, the simulator SimS chooses N random pairs
{(xRi ,yR

i )}1≤i≤N (corresponding to Steps 3(a)-3(d)) and sends them to the sender (Step 3(e));
then, both parties engage in an OT protocol, Step 3(g). Since the OT is assumed to be executed
by a trusted third party, the view of the sender during the protocol consists only of the set of N
pairs sent to him in Step 3(e). We proceed now to show that the view of the sender during the
hybrid model protocol execution is indistinguishable from his view in a corresponding simulation.

Let α0 and α1 be any two vectors in Fr. We consider four probability distributions of instances
of the sender’s view in the protocol. The differences between the four are in the choice of two
things:

• The interaction of the receiver in the OT protocol can correspond to him choosing to learn
either the n correct pairs, i.e. the pairs (xi,yi) for which i ∈ T , or to him choosing to learn
n pairs sampled at random from the set of N pairs.

• The set of N pairs can be chosen randomly either from As,α0
n,m,r or from As,α1

n,m,r.

We define the following probability distributions:

• SOT,0: The sender’s view if the receiver chooses to learn the n correct pairs, and the N pairs
are picked from As,α0

n,m,r.

• SOT,1: The sender’s view if the receiver chooses to learn the n correct pairs, and the N pairs
are picked from As,α1

n,m,r.

• SR,0: The sender’s view if the receiver chooses to learn n pairs sampled at random, and the
N pairs are picked from As,α0

n,m,r.
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• SR,1: The sender’s view if the receiver chooses to learn n pairs sampled at random, and the
N pairs are picked from As,α1

n,m,r.

We proceed to prove that there is no probabilistic polynomial-time algorithm Dα0,α1 that
enables the sender to distinguish between a view sampled from SOT,0 and one that is sampled
from SOT,1, with a non-negligible success probability. Letting α0 be the value of α in a real
application of the protocol, and α1 be the value in a simulation of the protocol, we arrive at the
conclusion that the simulation view is indistinguishable from the view in the real world. Therefore,
the sender does not learn any information about the receiver’s private input α.

Assume that a distinguishing algorithm Dα0,α1 does exist. Say the algorithm’s output is 1 if
it decides that the input given to it was from SOT,1 and 0 if it decides that the input was from
SOT,0. Let pOT,0 be the probability that the output of Dα0,α1 is 1 given an input sampled from
SOT,0. We similarly define pOT,1, pR,0 and pR,1. By the triangle inequality,

|pOT,0 − pOT,1| ≤ |pOT,0 − pR,0|+ |pR,0 − pR,1|+ |pR,1 − pOT,1| . (2)

Since we assumed that Dα0,α1 is a successful distinguisher between SOT,0 and SOT,1, then |pOT,0−
pOT,1| is non-negligible. In that case, at least one of the three addends on the right-hand side of
inequality (2) must be non-negligible.

If |pOT,0 − pR,0| or |pR,1 − pOT,1| are non-negligible, then it implies that the probabilistic
polynomial-time algorithm Dα0,α1 can distinguish between different inputs of the receiver to the
OT protocol. As we assumed that the OT functionality is secure, we are forced to discard these
possibilities and deduce that |pR,0−pR,1| is non-negligible. Alas, this option yields a contradiction
to our intractability assumption, since such non-negligibility implies the existence of a polynomial-
time algorithm Q that distinguishes between As,α0

n,m,r and As,α1
n,m,r, as we proceed to demonstrate.

The algorithm Q will simulate both the receiver and the sender. Let us denote the part of Q
simulating the sender by QS and the part simulating the receiver by QR. If Q is given an input
from one of those two distributions, it will forward that input to QS and then trigger both QS

and QR to engage in an OT protocol where QR chooses to learn n points sampled at random
from within the set of N points. At the end of that simulation of the OT protocol, QS will
delegate its view to Dα0,α1 and will output the answer that the latter distinguisher outputs. As
the success probability of Q equals that of Dα0,α1 , and the latter is non-negligible, it contradicts
our intractability assumption. That concludes the proof that the protocol preserves the receiver’s
privacy when the sender is semi-honest. 2

3.2.2 The protocol is secure against semi-honest receivers

Here too we build a simulator, SimR, that simulates the view of the receiver given his input α
and output P (α) in the ideal model. As in the previous proof, we rely upon the OT hybrid model
assumption that the OT protocol is implemented by a trusted third party. The simulator SimR

operates as follows:

1. It builds a random polynomial QR(x,y), where x ∈ F and y ∈ Fr, of degree sd, such that
QR(0,α) = P (α).

2. It then generates N pairs, {(xi,yi)}1≤i≤N , and a subset T ⊂ [N ] of n indices, as described
in Steps 3(a)-3(e).
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3. SimR and the sender invoke an OT protocol, which is executed by a trusted third party,
after which SimR learns the pairs {QR(xi,yi) : i ∈ T}.

We will show that the receiver does not learn any information about the polynomial P other than
its value at the point α, whence it cannot distinguish between the real execution using P and the
simulation.

We will show this by first showing that a semi-honest receiver can learn at most a single linear
combination of the coefficients of the polynomial P . Because of correctness, we know that he will
learn the value P (α) for some α. As P (α) is a linear combination of the coefficients of P , such
a receiver cannot learn any additional information about P .

Let Q be the polynomial that is defined in the protocol, i.e.

Q(x,y) = M(x) + P (y) =
∑

1≤j≤sd

ajx
j +

∑
0≤|k|≤d

bky
k . (3)

Proposition 3.2 Let x1, . . . , xn be n = sd+1 distinct nonzero values in F and y1, . . . ,yn be any
n points in Fr. Then the values {Q(xi,yi)}ni=1 are either independent of the coefficients bk or
depend on a single linear combination of these coefficients.

Proof. Let κdr be the set of all r-dimensional multi-indices of order d at most. (The second sum
on the right hand side of Eq. (3) is for all multi-indices k ∈ κdr .) The size of κdr is t :=

(
d+r
r

)
. Let

κdr = {k0, . . . ,kt−1}

be an ordering of all multi-indices in κdr , where k0 = 0 := (0, . . . , 0). With these notations, the
values {Q(xi,yi)}ni=1 yield a set of n linear equations

Q(xi,yi) =
∑

1≤j≤sd

ajx
j
i +

∑
0≤j≤t−1

bkj
y
kj

i

in the n − 1 + t unknown coefficients a1, . . . , asd, bk0 , . . . , bkt−1 (recall that sd = n − 1). These
equations may be summarized in the following matrix form:

A ·



asd
...
a1

bkt−1

...
bk1

bk0


=


Q(x1,y1)
Q(x2,y2)

...
Q(xn,yn)

 , where A =


xsd1 · · · x11 y

kt−1

1 · · · yk1
1 1

xsd2 · · · x12 y
kt−1

2 · · · yk1
2 1

...
. . .

...
...

. . .
...

...

xsdn · · · x1n y
kt−1
n · · · yk1

n 1

 .

We aim at showing that the rows of A do not span more than a single linear combination of the
vectors {ei}n−1+t

i=n where ei = (δi,1, δi,2, . . . , δi,n−1+t), and δi,j is the Kronecker delta. To that end,
we consider the following square matrix:

B =


xn−1
1 · · · x11 1

xn−1
2 · · · x12 1
...

. . .
...

...
xn−1
n · · · x1n 1

 .
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As x1, . . . , xn are distinct, the determinant |B| of B is nonzero. Let Bi be the sub-matrix of B
that is obtained by removing its i-th row and the last column. Expanding the determinant of B
by the last column, we infer that

|B| =
n∑

i=1

(−1)n+i|Bi| .

Since |B| ≠ 0, it follows that there exists an index 1 ≤ i ≤ n for which |Bi| ̸= 0. Without loss
of generality, we assume that |Bn| ̸= 0. Returning now to the matrix A, we consider the square
matrix C of order n − 1 + t that is formed by taking the first n − 1 rows of A (namely, all rows
of A except the last one) and appending to them the t row vectors en, . . . , en−1+t, i.e.,

C =



xn−1
1 · · · x11 y

kt−1

1 y
kt−2

1 · · · yk1
1 1

xn−1
2 · · · x12 y

kt−1

2 y
kt−2

2 · · · yk1
2 1

...
. . .

...
...

...
. . .

...
...

xn−1
n−1 · · · x1n−1 y

kt−1

n−1 y
kt−2

n−1 · · · yk1
n−1 1

0 · · · 0 1 0 · · · 0 0
0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 1 0
0 · · · 0 0 0 · · · 0 1


.

Since the lower-right (t× t)-block of C is the identity matrix, and the lower-left block is zero, the
determinant of C equals the determinant of its upper-left block of size (n−1)×(n−1). Since that
block is exactly Bn, that was assumed to have a nonzero determinant, it follows that |C| ̸= 0.
This implies that the first n − 1 rows of A do not span any linear combination of the vectors
en, . . . , en−1+t. Therefore, the matrix A, that has only one row in addition to those n − 1 rows,
cannot span more than a single linear combination of the vectors en, . . . , en−1+t. That concludes
the proof that the protocol preserves the sender’s privacy. 2

The only information that the receiver gets about the polynomial P in the algorithm is during
the OT stage, in which he learns point values of R which is defined by R(x) = Q(x,S(x)). By
Proposition 3.2, those values can disclose only a single linear combination of the coefficients of P .

Corollary 3.3 A semi-honest receiver that follows the protocol does not learn any information
about the coefficients of P besides P (α) for some point α.

Proof. The receiver cannot learn more than a single linear combination of the coefficients of P .
By correctness, we know that a semi-honest party, following the protocol exactly, and using a
suitable S(x) that satisfies S(0) = α, will indeed learn P (α). As P (α) is a linear combination
of the coefficients of P , we conclude that he can not learn any more information about P other
than P (α). 2
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3.3 Security against malicious behavior

Here we consider the case where one of the parties is malicious. In that case it is important to
protect the privacy of the other party.

The protocol preserves the receiver’s privacy even when the sender is malicious, since the only
message sent from the receiver to the sender is sent before any message is sent from the sender to
the receiver, and the OT functionality is assumed to be secure against malicious parties. On the
other hand, the protocol is vulnerable to an attack by a malicious receiver, since he may choose
to learn a linear combination of the coefficients of P that does not correspond to a value of the
polynomial. To protect from such malicious behavior, we use a technique similar to the one used
in the univariate case, and that is breaking the polynomial into linear polynomials and evaluating
them instead.

Lemma 3.4 When the polynomial P is linear, i.e., P (x1, . . . , xr) = brxr + . . .+ b1x1 + b0, then
with probability 1 − 1/|F|, the only information that the receiver may learn is a single value of
P (·).

Proof. As shown in Proposition 3.2, the receiver can learn at most a single linear combination
of the coefficients, b0, . . . , br, i.e., a value of the form α0 · b0 + . . .+ αr · br, where αi are known to
the receiver. There are two cases to consider:

If α0 ̸= 0 then such a linear combination is just α0 · (b0 + (α1/α0)b1 + . . . + (αr/α0)br) =
α0 · P (α1/α0, . . . , αr/α0). Hence, in this case the receiver learns a point value of the polynomial
P .

The case that worries us is the case where α0 = 0 and at least one of α1, . . . , αr is nonzero.
Here, the receiver learns the value of a linear combination of the coefficients that does not corre-
spond to any point value of P . We proceed to show that the protocol does not allow the learning
of such a linear combination. Going back to the proof of Proposition 3.2, when the polynomial P
is of degree d = 1, the matrix A takes the form

A =


xs1 · · · x11 y1,r · · · y1,1 1
xs2 · · · x12 y2,r · · · y2,1 1
...

. . .
...

...
. . .

...
...

xsn · · · x1n yn,r · · · yn,1 1

 ,

where n = s+ 1 and yi = (yi,1, . . . , yi,r), 1 ≤ i ≤ n. It has n rows and n+ r columns. In order to
prove that the receiver cannot learn the value of any nontrivial linear combination with α0 = 0,
we need to show that no (n+ r)-dimensional vector of the form (0, . . . , 0, βr, . . . , β1, 0), where at
least one of the βi is nonzero, is spanned by the rows of A. Assume, towards contradiction, that
such a vector is indeed spanned by the rows of A. Then, by focusing on the first n−1 components
and the last one, we infer that there exists a non-trivial linear combination of the rows of the
matrix

A′ =


xn−1
1 · · · x11 1

xn−1
2 · · · x12 1
...

. . .
...

...
xn−1
n · · · x1n 1


12



that yields the zero vector. But that is impossible since, owing to our assumption that x1, . . . , xn
are distinct, the matrix A′ is non-singular. Therefore, the only linear combination of the rows of
A′ that gives the zero vector is the trivial linear combination. Such a linear combination, when
applied to the original matrix A, cannot yield a vector (0, . . . , 0, βr, . . . , β1, 0) in which at least
one of the βi is nonzero. 2

We now proceed to generalize a theorem due to Gilboa [8] to r dimensions:

Theorem 3.5 For every r-variate polynomial P (x) of degree d, there exist
(
d−1+r

r

)
linear poly-

nomials {Pj(x) : 0 ≤ |j| ≤ d − 1}, such that an OMPE of P at a point α can be reduced to a
parallel execution of OMPEs of each of Pj, where all the linear polynomials are evaluated at the
same point α.

We split the proof of Theorem 3.5 into Lemmas 3.6 and 3.7.

Lemma 3.6 For every r-variate polynomial P (x) of degree d there exist
(
d−1+r

r

)
linear polyno-

mials {Pk(x) : 0 ≤ |k| ≤ d− 1} such that

P (α) =
∑

0≤|k|≤d−1

Pk(α) ·αk for all α ∈ Fr . (4)

Proof. Let
P (x) =

∑
0≤|k|≤d

akx
k (5)

be an r-variate polynomial of degree d. Let {sk ∈ F : 1 ≤ |k| ≤ d− 1} be a set of random values.
We define

(
d−1+r

r

)
linear polynomials, {Pk : 0 ≤ |k| ≤ d− 1}, in the following manner. The first

polynomial, corresponding to the multi-index 0 = (0, . . . , 0), is

P0(x) = a0 +
∑
|j|=1

sjx
j ,

where a0 is the free coefficient in P (x) (see Eq. (5)). Then, for multi-indices k with 1 ≤ |k| ≤ d−2,
we define

Pk(x) = −sk + ak +
∑
|j|=1

sk+j

w(k+ j)
xj ,

where, for any multi-index ℓ = (ℓ1, . . . , ℓr), w(ℓ) := #{ℓi ̸= 0 : 1 ≤ i ≤ r}. Finally, for multi-
indices k with |k| = d− 1, we define

Pk(x) = −sk + ak +
∑
|j|=1

ak+j

w(k+ j)
xj .

We claim that P (x) =
∑

0≤|k|≤d−1 Pk(x) · xk. Indeed,

∑
0≤|k|≤d−1

Pk(x) · xk = a0 +
∑
|j|=1

sjx
j +

∑
1≤|k|≤d−2

−skx
k + akx

k + xk
∑
|j|=1

sk+j

w(k+ j)
xj

 +
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+
∑

|k|=d−1

−skx
k + akx

k + xk
∑
|j|=1

ak+j

w(k+ j)
xj

 .

After rearrangement, we find that∑
0≤|k|≤d−1

Pk(x) · xk = a0 +
∑
|j|=1

sjx
j +

∑
1≤|k|≤d−1

(
−skx

k + akx
k
)
+

+
∑

1≤|k|≤d−2

∑
|j|=1

sk+j

w(k+ j)
xk+j +

∑
|k|=d−1

∑
|j|=1

ak+j

w(k+ j)
xk+j .

We observe that for every multi-index ℓ, there are exactly w(ℓ) pairs of multi-indices (k, j) such
that k+ j = ℓ and |j| = 1. Hence, the last two sums above become∑

2≤|k|≤d−1

skx
k +

∑
|k|=d

akx
k .

Consequently, three of the sums above cancel out,∑
|j|=1

sjx
j +

∑
1≤|k|≤d−1

−skx
k +

∑
2≤|k|≤d−1

skx
k = 0 ,

and we conclude that∑
0≤|k|≤d−1

Pk(x) · xk = a0 +
∑

1≤|k|≤d−1

akx
k +

∑
|k|=d

akx
k =

∑
0≤|k|≤d

akx
k = P (x) .

2

The polynomials Pk, 0 ≤ |k| ≤ d − 1, are independent of α. Hence, the sender may define
them upfront by selecting the random scalars {sk : 1 ≤ |k| ≤ d− 1}. Then, the two parties may
execute t :=

(
d−1+r

r

)
OMPEs in which the receiver learns the values Pk(α), 0 ≤ |k| ≤ d−1. After

that stage, the receiver may deduce the value P (α) through Eq. (4). It remains only to show
that such a protocol allows the receiver to learn only the value P (α) and no other information
about the coefficients of P . This is proved in the following lemma.

Lemma 3.7 Given α and P (α), it is possible to simulate the receiver’s output in the t invocations
of the OMPE protocols.

Since α and P (α) alone are sufficient in order to simulate the entire output of the receiver, it
follows that no other information on the polynomial may be inferred from the receiver’s view.

Proof. Recall that in the definition of the polynomials Pk, as described in the proof of Lemma
3.6, we used random values {sk : 1 ≤ |k| ≤ d − 1}. In particular, each Pk(x), 1 ≤ |k| ≤ d − 1,
includes a random addend, −sk. Since sk distributes uniformly in F, then for any random variable
X that takes values in F, X − sk also distributes uniformly in F. Since for any α ∈ Fr, Pk(α) is
of the form X − sk, 1 ≤ |k| ≤ d− 1, we infer that Pk(α) distributes uniformly in F.
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As in the proof of Proposition 3.2, let κd−1
r be the set of all r-dimensional multi-indices of

order d− 1 at most. The size of κd−1
r is t. Let

κd−1
r = {k0, . . . ,kt−1}

be an ordering of all multi-indices in κd−1
r , where k0 = 0 = (0, . . . , 0). Then the linear polynomials

used in this protocol are Pk0 , . . . , Pkt−1 . Since we have shown that Pk(α) distributes uniformly
in F for any 1 ≤ |k| ≤ d − 1, we conclude that the vector (Pk1(α), . . . , Pkt−1(α)) distributes
uniformly in Ft−1. Invoking Eq. (4), we see that

P0(α) = P (α)−
∑

1≤|k|≤d−1

Pk(α)αk . (6)

Hence, given α and P (α) we can simulate the receiver’s output in all of the t OMPEs by selecting
uniformly and independently values for {Pk(α) : 1 ≤ |k| ≤ d − 1}, and then computing P0(α)
through Eq. (6). 2

We now describe the new protocol. As in the previous OMPE protocols, the sender’s input
is an r-variate polynomial P of degree d over F, and the receiver’s input is a value α ∈ Fr. The
protocol is composed of the following steps:

1. The sender generates the t =
(
d−1+r

r

)
polynomials {Pk : 0 ≤ |k| ≤ d − 1} as described in

the proof of Lemma 3.6.

2. The parties execute a slight variation on the OMPE protocol, in which the receiver evaluates
the linear polynomials Pk at the point α in the following manner:

• The sender generates t independent masking polynomials, {Mk(x) : 0 ≤ |k| ≤ d−1}, of
degree sd (where s is a security parameter) and then the corresponding (r+1)-variate
polynomials, Qk(x,y) = Mk(x) + Pk(y), 0 ≤ |k| ≤ d− 1.

• The receiver generates r random univariate polynomials of degree s, {Si(·)}1≤i≤r, such
that Si(0) = αi, 1 ≤ i ≤ r, and then defines S : F → Fr, by S(x) = (S1(x), . . . , Sr(x)).
Note that this defines t polynomials Rk(x) = Qk(x,S(x)) such that Rk(0) = Pk(α),
0 ≤ |k| ≤ d− 1. The degree of Rk is sd for all 0 ≤ |k| ≤ d− 1.

• The sender and receiver perform the OT stage of the OMPE protocol, at the end of
which the receiver learns sd+ 1 tuples of the form

(xi, Rk0(xi), . . . , Rkt−1(xi)) .

To that end, each value held by the sender in the OT stage will be of the form

(Qk0(xi,yi), . . . , Qkt−1(xi,yi))

(instead of simply Q(xi,yi) as in the original OMPE protocol).

• The receiver then interpolates each Rk to learn Rk(0) = Pk(α), for 0 ≤ |k| ≤ d− 1.

• The receiver uses the values Pk(α) to compute P (α) by Eq. (4).
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The correctness of this protocol is trivial, hence, we concentrate on proving that it preserves
the privacy of the sender even when the receiver is malicious.

Theorem 3.8 Assuming the use of an ideal OT functionality, specifically one that is secure
against malicious behavior, the OMPE protocol presented above is secure against malicious behav-
ior. Namely:

receiver’s privacy: A malicious sender cannot distinguish between two different inputs of the
receiver.

sender’s privacy: With probability 1 − 1/|F|, a malicious receiver learns only a single value of
the polynomial P (or nothing at all).

Proof.

receiver’s privacy: The only information that the receiver sends is the same as in the original
OMPE protocol, so that privacy is surely maintained in the semi-honest case. As for the
malicious case, the sender still has no way to affect what the receiver sends, except for the
OT stage, for the same reason as in the original protocol: The only message that the receiver
sends to the sender is sent before any message is sent from the sender to the receiver.

sender’s privacy: We know from Lemma 3.4 that an OMPE of a linear polynomial is secure
against malicious receivers, with probability 1 − 1/|F|. We also know, from Theorem 3.5,
and most specifically from Lemma 3.7, that the parallel OMPE of linear polynomials, as
done in this protocol, does not reveal any more information than what it should.

2

4 Applications

In this section we describe some applications of oblivious evaluation of multivariate polynomials.

4.1 Measuring the distance between two parties

Assume that Alice and Bob have positions in a Euclidean space. The following method allows
them to compute their distance without revealing their exact position.

Let us assume that Alice and Bob are located in a two-dimensional plane. We may assume that
all possible positions consist of integer coordinates in the interval [0,M ], for a suitably selected
M . Let p > 2M2 be a prime number, and let F = Fp be the finite field of size p. Say Alice is
located at (xA, yA) ∈ F2 and Bob is located at (xB, yB) ∈ F2. Then Alice defines the bivariate
polynomial P (x, y) = (x−xA)

2+(y− yA)
2, and Bob sets α = (xB, yB). They proceed to execute

OMPE where Bob learns P (α) = P (xB, yB) = (xB − xA)
2 + (yB − yA)

2. Since p > 2M2, the
value P (α) may be interpreted as an integer denoting the square of the distance between Alice
and Bob.

This example may be useful, say, in a dating website where two people want to initiate contact
if and only if their locations are sufficiently close. The above protocol allows the two parties to
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check whether they are close enough without disclosing their exact location. In this context it
may be also useful to consider distance in higher dimensions. Suppose that each user of the
dating website holds a vector describing their interests or attributes, and that Alice and Bob
would like to get to know each other if and only if their characteristic vectors are sufficiently
close. Assume that the characteristic vector is r-dimensional, and that each component is an
integer in the range [0,M ]. In addition, let us assume that the components of the vector are
associated with weights, w1, . . . , wr, which are integers in the range (0,W ]. If Alice’s vector is
(a1, . . . , ar) and Bob’s is (b1, . . . , br), the distance that they aim to compute is

∑r
i=1wi(ai − bi)

2.
This can be easily accomplished using OMPE as follows: Let p > rWM2 be a prime number
and let F = Fp. Alice defines the r-variate polynomial P (x1, ..., xr) =

∑r
i=1wi(xi − ai)

2 and Bob
sets α = (b1, . . . , br). At the end of the OMPE protocol, Bob will have learned the value of the
integer P (α) =

∑r
i=1wi(ai− bi)

2. If that value is smaller than the thresholds that Alice and Bob
determined, then Alice and Bob may pursue their acquaintance.

4.2 Linear algebra computations

4.2.1 Computing the scalar product of two vectors

Say Alice has a vector a = (a1, . . . , ar) ∈ Fr and Bob has a vector b = (b1, . . . , br) ∈ Fr and
they wish to compute the scalar product a · b without revealing additional information about
a and b. Then Alice defines an r-variate polynomial P (x1, . . . , xr) =

∑r
j=1 ajxj and Bob sets

α = (b1, . . . , br). If Alice and Bob perform OMPE using P and α as inputs, Bob will learn the
value of P (α) =

∑r
j=1 ajbj = a · b.

There are other known protocols for oblivious evaluation of a scalar product, e.g., [1] and [18].
One of the protocols, by Atallah and Du [1], includes the following steps: The input vector of
Alice, a, is broken into a sum a =

∑m
i=1 ai where the first m − 1 vectors in that sum are chosen

uniformly and independently at random from the vector space. Bob chooses m random numbers
that sum up to zero, r1, . . . , rm. Alice then hides the vector ai, 1 ≤ i ≤ m, within a set of p
vectors, where the other p − 1 vectors in that set are random vectors, and the position of ai in
them is random and known only to Alice. Alice sends each such set of p vectors to Bob, and Bob
computes for each vector h in the set, the product h ·b+ ri. They then use chosen 1-out-of-p OT
where Alice chooses to learn the computed value for the correct position amongst the p values,
whence Alice learns ai · b+ ri. After all m iterations, Alice can compute

m∑
i=1

ai · b+ ri = b ·
m∑
i=1

ai +
m∑
i=1

ri = b · a .

The parameters p andm are security parameters, chosen so that p−m — the probability of guessing
correctly all positions of the vectors ai — is sufficiently small.

A slightly modified version of our protocol above may be used in order to allow Alice and
Bob to check whether their input vectors are orthogonal or not, without revealing any other
information about their secret vectors. Using the protocol for scalar product, if Alice and Bob
find out that a · b = s ̸= 0, then Alice learns that Bob’s vector is on the flat {x ∈ Fr : a · x = s},
while Bob learns that a ∈ {x ∈ Fr : b · x = s}. However, if Alice multiplies her input vector a
with a secret random nonzero scalar, rA ∈R F∗, and Bob multiplies b with rB ∈R F∗, then the
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only information that is revealed by rArB ·a ·b is the orthogonality or non-orthogonality of a and
b.

4.2.2 The inclusion of a vector is in a subspace

Consider a setting where the receiver has an input vector x ∈ Fr and the sender has a subspace
W ⊆ Fr. The receiver, who knows k = dimW , would like to know whether x ∈ W . The goal
is to allow him to learn this information without learning any further information about W and
without allowing the sender to learn any further information about x.

To that end, the sender randomly chooses r−k base vectors ofW⊥ (the orthogonal complement
of W ), say y1, . . . ,yr−k. Then x ∈ W if and only if x · yi = 0 for all 1 ≤ i ≤ r − k.

We make a small alteration to the scalar product protocol that was described in Section 4.2.1.
We add a random value to the polynomial, so that at the end of the protocol, the receiver learns
a · b + s while s is known only to the sender. We can now use this altered protocol to compute
the r − k values {x · yi + si}1≤i≤r−k, where si are scalars that the sender selects randomly and
independently. At this stage, the receiver has the vector (x · y1 + s1, . . . ,x · yr−k + sr−k) and the
sender has the vector (s1, . . . , sr−k). We have x ∈ W if and only if these vectors are identical,
and that can be checked using protocols for oblivious string comparison, e.g. [7].

4.2.3 Sets of vectors of full rank

A set of vectors x1, . . . ,xn ∈ Fr is said to be of full rank if they span a subspace of Fr of dimension
min{n, r}. Assume that Alice holds a set of k independent vectors in Fr, A = {x1, . . . ,xk}, and
Bob holds a set of ℓ independent vectors in Fr, B = {y1, . . . ,yℓ}. They wish to determine whether
A∪B is of full rank without revealing to each other additional information about the vectors that
they possess.

Let us assume first that k + ℓ = r. Then if M is the matrix whose rows are the vectors in
A∪B, the set A∪B is of full rank if and only if |M | ̸= 0. Hence, Alice may define the rℓ-variate
polynomial of degree ℓ,

PA(y1, . . . ,yℓ) = PA(y1,1, . . . , y1,r; . . . ; yℓ,1, . . . , yℓ,r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 · · · x1,r
...

xk,1 · · · xk,r
y1,1 · · · y1,r
...

yℓ,1 · · · yℓ,r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Alice and Bob may then engage in an OMPE protocol in order to evaluate PA at the point that
corresponds to the vectors that Bob possesses. If the result is zero, they may conclude that A∪B
is not of full rank. If, on the other hand, the result is nonzero, then A ∪B is of full rank.

Note that the actual value of the determinant reveals some information on the input vectors in
case |M | ̸= 0. However, this problem may be easily solved by having Alice and Bob multiply one
of their vectors by a random nonzero scalar. Then any nonzero result for |M | may be attained
by any two sets of vectors A and B whose union is of full rank. Hence, if |M | ̸= 0, the only
information that Alice and Bob may deduce is that A ∪B is of full rank.
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The case where k + ℓ ̸= r is harder, since in that case the matrix M is not square. The
above described solution is restricted to the case where M is square since it uses its determinant,
which is a polynomial function of the matrix entries for which the value is nonzero if and only if
the matrix is of full rank. We are not aware of such a polynomial function, which is efficiently
computable, in the case where the matrix is not square. Such a polynomial function exists over
fields of characteristic zero2. Over finite fields, on the other hand, there exists a polynomial
with the desired property but it is not efficiently computable3. Instead, we propose the following
alternative solution.

In case d := k + ℓ− r > 0, Alice may define the r(ℓ− d)-variate polynomial of degree ℓ− d,

PA(y1, . . . ,yℓ−d) = PA(y1,1, . . . , y1,r; . . . ; yℓ−d,1, . . . , yℓ−d,r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 · · · x1,r
...

xk,1 · · · xk,r
y1,1 · · · y1,r
...

yℓ−d,1 · · · yℓ−d,r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7)

Alice and Bob may then engage in a sequence of OMPE protocols in order to evaluate PA at the
point that corresponds to a selection of ℓ−d vectors from among the ℓ vectors that Bob possesses.
If in one of those instantiations of the OMPE protocol the result is nonzero, then A∪B is of full
rank. If, on the other hand, in all

(
ℓ
d

)
possible selections the result was zero, A ∪ B is not of full

rank. (Clearly, in each such instantiation of the protocol, Alice and Bob should multiply one of
their input vectors by a new random nonzero scalar.) A similar solution may be utilized when
d = k + ℓ− r < 0.

4.2.4 Creating coalitions in linear secret sharing

The concept of linear secret sharing schemes was introduced by Brickell [3] in the ideal setting
and was later generalized to non-ideal schemes. Linear schemes are equivalent to monotone
span programs [13]. Let us recall the basic definitions of linear secret sharing (for simplicity we
concentrate on ideal linear schemes).

The domain of secrets in such schemes is some finite field F. Every participant ui is identified
by a unique vector xi ∈ Fr, 1 ≤ i ≤ n (n is the number of participants), where r is some dimension
that is determined by the dealer. The dealer also defines a so-called target vector t ∈ Fr and
a random vector a for which a · t = S, where S is the secret. Finally, the dealer assigns to
participant ui the share a · xi. A subset of participants is able to recover the secret S if and only
if their corresponding vectors span the target vector t. If the vectors of such a subset do not span
the target vector then the shares held by the participants in that subset reveal no information
about the value of S.

Consider such a linear secret sharing setting and assume that Alice and Bob are two malicious
parties that wish to get hold of the secret S. To that end, they corrupt participants and buy their

2An s× r matrix M over a field of characteristic zero is of full rank if either s ≥ r and |M tM | ̸= 0 or s ≤ r and
|MM t| ̸= 0.

3Let M be an s× r matrix over a finite field of a prime order p, and assume that s > r. Let {d1, . . . , dt}, where
t :=

(
s
r

)
, be the set of all r × r minors of M . Define PM := 1−

∏t
i=1(1− dp−1

i ). Then PM , which is a polynomial
in the entries of M , equals one if M is of full rank, and zero otherwise.
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shares. As a result, Alice has k shares that correspond to the vectors A = {x1, . . . ,xk}, and Bob
has ℓ shares that correspond to the vectors B = {y1, . . . ,yℓ}. We may assume that the vectors
in A are independent and so are the vectors in B. (If, for example, one of the vectors in A was
a linear combination of the other vectors in A, Alice would not have invested the time and effort
to get hold of the share that corresponds to that vector.)

Assume that the vectors in A do not span the target vector t and neither do the vectors in B.
Alice and Bob have no more resources to corrupt additional participants and they contemplate
the possibility of colluding and unifying their vectors. To that end, both want to know upfront,
before exposing the identities of the participants that they had corrupted, whether the union
A ∪ B spans the target vector t. That is another problem of multi-party computation that may
be solved using OMPE.

Assume that Alice and Bob implemented the OMPE protocol from the previous section and
found out that the unified set of vectors A ∪ B is of full rank. If k + ℓ ≥ r then that implies
that Span(A ∪ B) = Fr and, consequently, t ∈ Span(A ∪ B). If, on the other hand, k + ℓ < r,
Alice and Bob may repeat the protocol, where Alice uses this time A∪ {t} instead of A. Clearly,
t ∈ Span(A ∪B) if and only if the augmented set A ∪ {t} ∪B is no longer of full rank.

The question of whether t ∈ Span(A ∪B) becomes harder when A ∪B is not of full rank. In
that case, Alice and Bob have first to extract a subset of A ∪ B which is of full rank and spans
the same subspace as A ∪ B. Only then they may implement the above described procedure.
Assuming that each of the two sets, A and B, is a set of full rank on its own, it is easy to see that
there exists a subset B′ ⊂ B such that A ∪ B′ is of full rank and Span(A ∪ B′) = Span(A ∪ B).
The following protocol computes such a subset B′ and then proceeds to determine whether t is
spanned by A ∪B.

1. Bob sets B′ = ∅ and i = 0.

2. While i < ℓ do:

(a) i = i+ 1; B′ = B′ ∪ {yi}.
(b) Alice and Bob implement the protocol from the previous section to determine whether

A ∪B′ has a full rank.

(c) If the answer is negative, set B′ = B′ \ {yi}.
(d) Else, if |A|+ |B′| = r stop and output “t ∈ Span(A ∪B)”.

3. Alice and Bob check whether A∪B′∪{t} is of full rank. If it is, output “t /∈ Span(A∪B)”.
Else output “t ∈ Span(A ∪B)”.

The above protocol finds a subset B′ such that A ∪ B′ is of full rank either in Step 2(d) or in
Step 3. Step 2(d) corresponds to the case where A ∪B spans the entire space Fr. The algorithm
reaches Step 3 in case A ∪ B spans only a subspace of Fr. In that stage, B′ is a subset of B
for which Span(A ∪ B′) = Span(A ∪ B). The protocol then proceeds to determine whether t is
spanned by A ∪B′ in the manner that we discussed earlier.

The above protocol discloses, in addition to the inclusion of t in Span(A ∪ B), also the di-
mension of Span(A ∪ B), which is |A| + |B′|. That information is useful, since if Alice and Bob
find out that t /∈ Span(A ∪B), the dimension of Span(A ∪B) quantifies the advantage that each
of them gains by forming the coalition between them and how “far” they are from being able to
span the target vector.
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4.3 Private support vector machine

Support vector machines (SVM) are supervised machine learning methods that analyze data and
recognize patterns. SVM is used for classification or regression analysis in numerous applications,
such as chemistry, bioinformatics, handwriting recognition, text and data mining. Given points
in space that have binary labels, the SVM algorithm computes a binary classifier by finding a
hyperplane that optimally separates the data into two classes. If it finds no linear separation in
the original space where the points are, the algorithm maps the points into a higher dimensional
space where linear separation is possible. Since mapping the points into a higher-dimensional
space has a large computational toll, the mappings used by SVM schemes are designed to ensure
that inner products may be computed easily in terms of the variables in the original space, by
defining them in terms of a kernel function K(x1,x2).

Assume that the training set consists of n points, x1, . . . ,xn, in an r-dimensional space X.
Each of these points has a binary label yi ∈ {−1, 1}. Let ⟨·, ·⟩ be an inner product in X. Then if
the SVM algorithm was able to find a linear separation of the training points within the original
space X, it issues a binary classifier of the form

C(x) = sign(f(x)) (8)

where the separating function is

f(x) =
n∑

i=1

αiyi ⟨xi,x⟩+ b ,

and αi and b are parameters that it learned from the training data. If it did not find a linear
separation, it constructs a kernel function K(·, ·) on X × X, and then the separating function
takes the form

f(x) =

n∑
i=1

αiK(xi,x) + b . (9)

4.3.1 Private SVM

Assume that Alice has n pairs of training points ({x1, y1}, . . . , {xn, yn}), as described above.
Assume that based on the training data, Alice learns a binary classifier of the form (8)+(9),
where K(·, ·) is a kernel function which is a polynomial of degree d. Therefore, the separating
function f(x) is a polynomial of degree d in x. Next, assume that Bob has a point α ∈ X and he
wishes to classify it, using the classifier that Alice learnt from her training data, without revealing
α to Alice. On the one hand, Alice does not want to send the separation function f(·) to Bob,
since she charges fees for providing classification services and then, if she sent the function to
Bob, Bob would be able to start his own business that would compete with hers; she wants to
enable Bob to compute f(α) without learning the separation function f . On the other hand, Bob
wishes to keep private the point α which he needs to classify.

If we relax the requirements by allowing Bob to learn the value of f(α) rather than the final
class label C(α) = sign(f(α)), the problem may be solved by invoking an OMPE protocol, where
Alice’s input is f(·) and Bob’s input is α. It should be noted that f(·) is typically a real-valued
function, while the OMPE framework is defined over finite fields. Hence, all real values should
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be discretized according to the required level of precision, and then they can be easily embedded
within a finite field F.

The above described relaxation enables Bob to learn more information than just the class
lable; e.g., he may learn the distance of f(α) from the hyperplane, a value that provides an
indication of how far α is from the boundary that separates between the two classes. In order
to achieve full privacy, a slight modification of the basic OMPE protocol is needed. Assume that
the points x1, . . . ,xn, as well as Bob’s point x, are confined to some large box B in X, and let
M := maxx∈B |f(x)|. Let p be a large prime which is larger than 2M . Then Alice and Bob
perform the OMPE protocol over a finite field F of size p. Alice selects at random any integer
0 ≤ r < p/2 and then sets her input to the protocol to be fr(·) = f(·) + r. Consequently, Bob
learns fr(α). Then, Alice and Bob invoke a secure comparison protocol [19] where Bob learns
whether fr(α) > r or not.
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