
Computer Science Education
2004, Vol. 14, No. 3, pp. 235–248

Teaching Algorithm Efficiency at CS1 Level:
A Different Approach

Judith Gal-Ezer, Tamar Vilner, and Ela Zur
The Open University of Israel, Tel-Aviv, Israel

ABSTRACT

Realizing the importance of teaching efficiency at early stages of the program of study in
computer science (CS) on one hand, and the difficulties encountered when introducing this
concept on the other, we advocate a different didactic approach in the introductory CS course
(CS1). This paper describes the approach as it is used at the Open University of Israel (OUI).

The OUI, a distance teaching institution with no prior educational requirements, runs
a full-fledged CS program. Because of its open door policy, the dropout rate, especially
in introductory courses, as well as the percentage of failures, is very high. Using the new
approach has raised the percentage of students who pass the course. The new approach
advocates integrating three-part questions which ask not only to identify the algorithmic
problem that a given algorithm solves and to analyze its complexity, but also to design a new
algorithm that performs the same task, while increasing efficiency by an order of magnitude,
not only by a constant factor. The research we conducted to examine the implications of
using this approach is described here.

1. BACKGROUND

The design of efficient algorithms to solve algorithmic problems is one of

the most important research fields within computer science (Gal-Ezer &

Zur, 2002b; Ginat, 1996, 2001; Harel, 1992). Algorithms are the spirit

of computing, and good algorithm design is crucial to the performance

of all software systems, as is the ability to select algorithms appropri-

ate for specific purposes or recognizing the possibility that sometimes

no suitable algorithm exists. Algorithms are therefore also central to

Address correspondence to: Judith Gal-Ezer, The Open University of Israel, 108 Ravutski
St., Raanana, Israel. Tel.: þ972-9-7782202. Fax: þ972-9-7780642. E-mail: galezer@
openu.ac.il

10.1080/0899340042000302736 # Taylor & Francis Ltd.

computer science education. The study of algorithms gives the learner

insight into the problems involved in providing techniques for solutions

that are independent of programming languages, or other implementational

aspects.

From Computing Curricula 2001 (IEEE Computer Society/ACM Task

Force, 2001), we learn that a large part of the core and elective course material

is devoted to algorithms. Efficiency and complexity are pervasive themes

throughout the study of algorithms; however, they are difficult concepts to

conceive. Students first become familiar with these concepts in the

introductory course. When teaching CS1 at our university, we found that

students had difficulty conceiving the notion of algorithm efficiency and its

implementation. We sought a new didactic approach, different to that found in

existing textbooks for teaching efficiency, to provide students with better

insight into the subject.

The OUI is a distance education institution, open to all those who wish

to study a single course or a number of courses, or to pursue a full program of

study towards a Bachelor’s degree. Enrollment does not require matriculation

or any other certificate from an educational institution. Because of its open

admissions policy, the first courses serve as ‘‘the proof of the pudding’’; these

courses actually help students to find out whether they are capable of coping

with academic studies. Many students, unfortunately, fail. Computer science

is known as a difficult field of study, one that requires a great deal of

mathematics, and indeed the percentage of dropouts in the introductory

courses is relatively high – in some courses reaching about 50%. In addition,

less than 60% of those who take the final exam pass it. A great deal of effort is

devoted to improving these statistics without lowering the high academic

standards.

2. INTRODUCTORY COURSE IN CS: A CASE STUDY

In the OUI, CS1 is based on the book Fundamentals of Computing I, by

Tucker et al. (1995), and on a study guide we developed. The course is similar

to introductory courses given in other universities, including the topics

recommended in Computing Curricula 2001: Basic logic, algorithms and

problem solving, fundamental data structures, fundamental programming con-

structs, recursion, fundamental computing algorithms, basic computability,

236 JUDITH GAL-EZER ET AL.

etc. In our study guide, we added exercises, examples and explanations

relating to themes that were not included in the book, the most important of

which is efficiency. The language introduced in the course is Cþþ, but mainly

the procedural facet of the language, with very little space devoted to the

object-oriented facet.

Algorithm complexity is measured in terms of space and time. Space

complexity is measured by elements such as the number and size of the data

structures used; while time complexity is measured by the number of

elementary actions carried out during the execution of the algorithm.

Since the concept of complexity is essential, we recommend introducing it

as early as possible (see also Ginat, 1996, 2001; Linn, 1985; Linn & Clancy,

1992). The relatively early introduction of the concept encourages students to

consider alternative designs of algorithms, to analyze various algorithms, and

to formulate them correctly.

However, such early introduction may lead to difficulties: the problems

discussed at early stages of the introductory course are almost always toy

problems, making it difficult to convince students that a more efficient

algorithm is indeed needed. Also, the analysis of algorithm efficiency

requires mathematics that students are not always familiar with when they

take the introductory course. Misconceptions are encountered (Gal-Ezer &

Zur, 2002a, 2002b) for instance, students often bring up the myth of the

speed of the computer, saying that computers are so incredibly fast that

there is no real time problem. This belief is, of course, groundless: time is

crucial in almost every use of the computer. Many examples can be found to

show that whatever the speed of computers is or will be, there is still

importance in speeding up the execution of algorithms (see, e.g., Harel,

1992). Moreover, an algorithm might just be too expensive and thus

unacceptable. One well-known example is that of the traveling salesman.

The traveling salesman has to visit each of the cities in a given network

before returning to the starting point, using the cheapest route. Though this

is a very important issue in the field of computer networks, no algorithm has

yet been found that solves the problem in reasonable time. This is one of the

examples we use in the course to illustrate the importance of efficiency in

designing algorithms.

Despite the obstacles mentioned above, we still think it is important to

introduce efficiency gradually in the introductory course, thus enhancing,

almost from the beginning, a deeper perspective of computer science. In our

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 237

course, we first present algorithmic problems with unreasonable algorithmic

solutions, because we believe that this will increase motivation to learn the

topic. Students begin to understand how important it is to be able to analyze

the complexity of an algorithm and to realize that some algorithms are

unreasonable even if we have a very fast computer. We then explain how to

measure efficiency, and how to compare the complexity of different

algorithms.

We discuss linear and binary search and introduce the big-O notation. We

explain how critical it is to reduce the running time of algorithms by an order

of magnitude and not only in terms of a constant factor. The concepts of

average-case, best-case and worst-case are introduced, as well as the

robustness of big-O. Bubble sort and merge-sort are taught and their

complexity is analyzed; exponential algorithms and their inapplicability are

discussed.

After teaching the course, we discovered that students are usually able to

analyze the algorithm and compute its efficiency, but find it very difficult to

design an algorithmic solution to a given problem that improves the efficiency

by an order of magnitude. So we tried a new approach to teaching efficiency in

CS1, without adding material to the already overloaded course. We changed

the pedagogy of the subject by applying a series of carefully designed three-

part exercises. The exercises vary from year to year, but all follow the same

general scheme. Each exercise presents an algorithm (or a program); in the

first part, we ask students to identify the algorithmic problem that the

algorithm solves; in the second part, the students are asked to analyze

the complexity of the algorithm; and in the third part, they are asked to de-

sign a more efficient algorithm (order-of-magnitude improvement) that

performs the same task that the given algorithm performed. It is likely that

this type of question has been used in CS courses occasionally, though

not necessarily systematically.

For each problem, three questions are given:

(a) What task does the function perform? Explain briefly what the function

does in general terms, not how it executes the task.

(b) What is the time complexity of the function?
(c) Write a function which performs the same task but which is an order-of-

magnitude (not a constant factor) improvement in time complexity.

A function with greater (time or space) complexity will not get full

credit.

238 JUDITH GAL-EZER ET AL.

Four examples of exercises are presented below:

Example 1

Suppose a is a given array of length n. Consider the following function:

int something (int a[n])

{
int temp ¼ 0, i, j;
for (i ¼ 0; i < n; iþþ)
for (j ¼ i þ 1; j < n; jþþ)
if (abs (a[j]� a[i]) > temp)

temp ¼ abs (a[j]� a[i]);
return temp;

}

Answers, Example 1:

(a) The function finds the maximum difference between two values in the array.

(b) O(n2).

(c) Finding the maximum and minimum values in the array and calculating the

difference between them. Therefore the problem will be solved in O(n).

Example 2

Suppose a and b are given arrays of length n. a is sorted in increasing order,

and b is not sorted. Consider the following function:

int what(int a[], int b[], int &i, int &j)

{
for (j ¼ 0; j < n; jþþ)
for (i ¼ 0; i < n � 1; iþþ)
if (b[j] ¼¼ a[i]þ a[iþ1])

return 1;
return 0;

}

Answers, Example 2:

(a) The function checks whether a value in array b equals the sum of two

consecutive values in array a.

(b) O(n2).

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 239

(c) For each value in array b, a variation of a binary search needs to be carried

out in array a, therefore the problem will be solved in O(n log n).

Example 3

Suppose a is a given array of length n. Consider the following function:

int something (int a[n])

{
for (i ¼ 0; i < n; iþþ)
for (j ¼ i þ 1; j < n; jþþ)
if (a[i]¼¼ a[j])

return 0;
return 1;

}

Answers, Example 3:

(a) The function checks whether all the values stored in the array a are different.

(b) O(n2).

(c) First, sort the array a, and then pass for finding two adjust cells with the

same value. The sort takes O(n log n), and the passing O(n). Therefore the

problem will be solved in O(n log n).

Example 4

Suppose a is a given array of length n. Consider the following function:

int something (int a[n])
{

int i, j, temp;
for (i ¼ 0; i < n; iþþ)
if (a[i]%2 ¼¼ 0)

{
temp ¼ a[i];

for (j ¼ i; j > 0; j��)
a[j]¼ a[j� 1];

a[0]¼ temp;
}

}

240 JUDITH GAL-EZER ET AL.

Answers, Example 4:

(a) The function rearranges the array a that all the even values will be at the

first cells, and the odd values will be at the last cells.

(b) O(n2).

(c) Pass on the array from both sides, and make the necessary exchanges. The

following function makes that in O(n):

int something (int a[n])
{

int head ¼ 0, tail ¼ n � 1, temp;
while (head < tail)

{
if (a[head]%2 ¼¼ 0)

headþþ;
else if (a[tail]%2! ¼ 0)

tail��;
else
{

temp ¼ a[head];
a[head]¼ a[tail];

a[tail]¼ temp;
headþþ;
tail��;

}

}
}

This kind of exercise is rarely found in textbooks (see, e.g., the excellent

text, Introduction to Algorithms, Cormen et al., 1990). In most texts, the

best algorithm is given and its complexity is analyzed, whereas in our

method, the student is exposed to a number of possible solutions to the same

problem. In this way, students internalize the concept of a more efficient

algorithm. The study guide as well as the assignments both emphasize this

approach.

After acquiring practical experience teaching the course over several

semesters, we conducted a study that investigated how students internalized

time and space efficiency after solving exercises of the kind described above.

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 241

We posed two main research questions:

1. To what extent are students successful in analyzing the complexity of a

given function?
2. To what extent are students successful in designing a better (more efficient)

algorithm in terms of order of magnitude.

3. THE STUDY

Our study was carried out with 189 CS students during the spring semester of

2002. The students took the introductory course (based on Tucker et al. as

described above). On their final examination, the students weregiven the follow-

ing problem, with questions of the type they had practiced during the course:

Suppose a is a given array of length n� 1. Each element of a is an integer between

1 and n. All the elements of a are different. Consider the following function:

int something (int a[n �1])
{
int i, j, flag;
for (j ¼ 1; j <¼ n; jþþ)
{
flag ¼ 0;

for (i ¼ 0; i < n � 1; iþþ)
{

if (a[i]¼¼ j)
{

flag ¼ 1;
break;

}
}
if (!flag)

return j;
}

return �1;
}

(a) What task does the function perform? Explain briefly what the function

does in general terms, not how it executes the task.

(b) What is the time complexity of the function?

242 JUDITH GAL-EZER ET AL.

(c) Write a function which performs the same task but which is an order-of-

magnitude (not a constant factor) improvement in time complexity.

A function with greater (time or space) complexity will not get full

credit.

4. RESULTS

The given function returns a missing value (the integer between 1 and n

missing in the given array a). Of 189 students, 120 gave the right answer to the

first part of the question; that is, 63% correctly described the task that the

function performs.

A majority of the students (168 out of 189–89%) correctly identified the

complexity of the given function as O(n2). What is interesting here, is that

26% of the students who did not know what the function does, were able to

analyze its efficiency. Our feeling is that since the complexity of ‘‘for loops’’

was discussed very thoroughly during the course, students were able to

analyze complexity even without understanding what task the algorithm

performs.

Regarding the third part of the question, things are more complicated. Here

we found a variety of answers:

The best solution uses the formula for the sum of an arithmetic series (this

is given in the text, and is studied in the course) in order to find the sum of the

arithmetic series from 1 to n� 1, then find the sum of the array’s elements; and

the difference between the two is obviously the missing integer. The time

efficiency of this algorithm is O(n), while the space efficiency is constant O(1).

This is the optimal solution:

int miss_num1 (int a[])

{

int sum, result ¼ 0, i;
sum ¼ n? (n þ 1)/2;

for (i ¼ 0; i < n � 1; iþþ)
result þ¼ a[i];

return (sum�result);
}

A very similar solution is adding up the arithmetic series (without using the

formula). This is still a good solution; the time complexity here is 2n.

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 243

int miss_num2 (int a[])
{
int sum ¼ 0, result ¼ 0, i;
for (i ¼ 1; i <¼ n; iþþ)
sum þ¼ i;

for (i ¼ 0; i < n � 1; iþþ)
result þ¼ a[i];

return (sum� result);
}

There was also a quite different solution, using an additional array, marking

the elements given in the original array. The unmarked element is the missing

one. This solution reduces the time complexity to O(n), but adds space

requirements of O(n).

int miss_num3 (int a[])

{
int temp[n]¼ {0};

int i, num;
for (i ¼ 0; i < n � 1; iþþ)
{
num ¼ a[i];
temp[num] ¼ 1;

}
for (i ¼ 1; i < n; iþþ)
if (!temp[i])
return i;

return �1;
}

Another interesting solution used merge-sort, and then going through all the

elements to check which is missing. This reduced the complexity to

O(n log2 n).

int miss_num4 (int a[])

{
merge_sortðaÞ; == calling the function

== which uses
== merge-sort to sort
== the given array:

244 JUDITH GAL-EZER ET AL.

for (int i ¼ 0;i < n� 1;iþþ)
{
if (a½i�!¼iþ 1)

return iþ 1;
}

return �1;
}

Another variation of the solution above, but a more expensive one, was using

merge-sort and then n times binary search, not exploiting the advantage

merge-sort provided. This yielded a 2n log2 n algorithm.

Finally the solution that did not reduce time complexity at all was one that

used bubble-sort and then checking which element is missing.

int miss num6 (int a[])
{

bubble_sort(a); //calling the function
== which uses

== bubble-sort, to
== sort the array:

for (int i ¼ 0; i < n � 1; iþþ)
{
if (a½i�!¼ iþ 1)

return iþ 1;
}

return �1;
}

There were additional incorrect solutions that we will not mention here.

It is worth mentioning that in our analysis, we used item discrimination

(Linn, 1989) (biserial correlation), which provides a relatively accurate

estimate of how well the item can be expected to discriminate at some point

on the ability scale. A biserial correlation between 0.35 and 0.7 is con-

sidered good discrimination. This question had a discrimination index of 0.6,

which indicates that the question discriminated very well. The distribution

of the various solutions is given in Table 1, and is shown graphically in

Figure 1.

We also observed that on the exam, students used patterns or templates of

known algorithmic problems, or problems they had come across during the

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 245

course. This may be the reason that 38% of the students used merge-sort and

binary search. Indeed, Ginat (2001) advocates the use of patterns when

teaching efficiency.

We were somewhat disappointed that only 3% of the students used the sum

of an arithmetic series, though it is taught when dealing with bubble sort. It

turns out that students avoid using mathematical analysis even when they are

familiar with the material, and despite the fact that Tucker integrates

mathematics when necessary, to motivate the students to learn the

mathematical material needed, not many of them actually make use of this.

Fig. 1. Graphic distribution of solutions.

Table 1. Distribution of Solutions.

Percentage Number of
students

Solution

1% 2 Summing the array and using the arithmetic series formula (n)
2% 4 Summing the array and summing the arithmetic series (2n)

17% 33 Using of another array (n timeþ n space)
32% 60 Merge-sort and linear search (n log2 n)
6% 12 Merge-sort and n binary searches (2n log2 n)
5% 10 Complexity of n2

37% 68 Incorrect solution

246 JUDITH GAL-EZER ET AL.

5. CONCLUSIONS

The answers to the two research questions we posed were:

1. Most of the students who took the exam (89%) were able to analyze the

complexity of a given function (despite the fact that only 63% were able to

identify the task that it performs).

2. Designing a more efficient algorithm by order of magnitude was much

more difficult for them, but still, more than half of them (58%) were able to

design a more efficient algorithm.

As we have noted, about 45% of the students enrolled in the course used

to fail the final examination. When grading the examinations we realized

that the students’ Achilles Heel was the question relating to efficiency.

Integrating the three-part questions into the assignments that students

submit during the semester seems to improve the results on the final

exam. More than 66% of the students who took the exam described here

passed.

Thus we recommend using three-part questions when teaching algorithms

and algorithm efficiency in CS1 in order to enable students to get more insight

into and understanding of this basic issue. We plan to use this same approach

in the data structures course that follows CS1.

Basically, we were pleased to see that most of the students perceived the

notion of efficiency correctly. It is worth noting that the question was given in

a classroom exam, not a take-home exam, which makes the students’

achievements even more impressive. We believe that our approach can help

students to internalize the concept of algorithm efficiency, and reduce the

number of failures in the course.

REFERENCES

Cormen, T.H., Leiserson, C.E., & Rivest, R.L. (1990). Introduction to algorithms. Cambridge,
MA: MIT Press.

Gal-Ezer, J., & Zur, E. (2002a). The concept of ‘algorithm efficiency’ in the high school CS
curriculum. In proceedings of the 32nd ASEE/IEEE Frontiers in Education Conference,
November.

Gal-Ezer, J., & Zur, E. (2002b). The efficiency of algorithms – misconceptions. Computers and
Education, 38(4), 319–329.

TEACHING ALGORITHM EFFICIENCY AT CS1 LEVEL 247

Ginat, D. (1996). Efficiency of algorithms for programming beginners. In Proceedings of the
27th ACM Computer Science Education Symposium (pp. 256–260). New York: ACM
Press.

Ginat, D. (2001). Early algorithm efficiency with design patterns. Computer Science Education,
11(2), 89–109.

Harel, D. (1992). Algorithmics: The spirit of computing (2nd ed.) Reading, MA:
Addison-Wesley.

IEEE Computer Society/ACM Task Force. (2001). Computing curricula 2001 (CC-2001)
[On-line]. Available: http://www.computer.org/education/cc2001/final

Linn, M.C. (1985). The cognitive consequences of programming instruction in classrooms.
Educational Researcher, 14(5), 29.

Linn, M.C., & Clancy, M.J. (1992). The case for case studies of programming problems.
Communications of the ACM, 35(3), 121–132.

Linn, R.L. (1989). Educational measurement (3rd ed.). New York: Macmillan.
Tucker, A.B., Bernat, A.P., Bradley, W.J., Cupper, R.D., & Scragg, G.W. (1995). Fundamentals

of computing I. New York: McGraw-Hill.

248 JUDITH GAL-EZER ET AL.

