Introducing Nondeter minism

Micha Armoni; Judith Gal-Ezer]]

The Journal of Computers in Mathematics and Science Teaching; 2006; 25, 4; Education Module
pg. 325

JI. of Computers in Mathematics and Science Teaching (2006) 25(4), 325-359

Introducing Nondeterminism

MICHAL ARMONI AND JUDITH GAL-EZER
The Open University of Israel
Israel
michal @openu.ac.il
galezer@cs.openu.ac.il

Nondeterminism is an essential concept in mathematics and
one of the important concepts in computer science. It is also
among the most abstract ones. Thus, many students find it
difficult to cope with. In this article, we describe some di-
dactic considerations, which guided the development of a
“Computational Models” course for high school students, a
course in which the concept of nondeterminism is introduced.
Some of these considerations are relevant to college and uni-
versity students as well. We also discuss students’ perceptions
of nondeterminism and their achievements in this area. Our
findings show that many students prefer to avoid nondeter-
minism, even when it can significantly simplify the solution’s
design process. We analyze and categorize the students’ solu-
tions, thus shedding light on their perceptions of the abstract
concept of nondeterminism.

Nondeterminism is an essential concept in computer science as well as
in mathematics. In a typical bachelor CS program, the concept is introduced
in the computational models course, and is often discussed again later in an
artificial intelligence course. Sometimes it is also discussed in the context
of operating systems and distributed algorithms. In a traditional high school
program, the concept is rarely included. A high school student may, in a
sense, be exposed to the concept when studying probability theory. In that
context, nondeterminism is forced by the random nature of events.

In the CS high school curriculum described by Gal-Ezer, Beeri, Harel
and Yehudai (1995; Gal-Ezer & Harel, 1999) the concept of nondeterminism

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

is introduced in the Computational Models (CM) unit. The CM unit moti-
vates the need for nondeterministic computational models, and encourages
students to choose them, even when deterministic models are sufficient, by
demonstrating their advantages.

This unit is unique, compared to other units in this curriculum, and to
the best of our knowledge is also unique compared to other high school cur-
ricula in other countries. For example, the ACM high school computer sci-
ence curriculum (Merritt, 1994) includes very few references to few of the
topics of the CM unit, only as optional topics, and the more recent ACM K-
12 computer science curriculum (Tucker, Deek, Jones, McCowan, Sthepen-
son, & Verno, 2003) mentions only limits of computability, in one of its five
units, as one topic among 10.

In this article we describe the introduction of nondeterminism in the
CM unit, and the didactic considerations that guided it, some of which
can be applied on college and university levels as well. We also describe
the results of a study we conducted on the perception of nondeterminism
(partial information on this study was given in Armoni & Gal-Ezer, 2003).
This study was part of a wider study, which examined various aspects of
the teaching and learning process of the CM unit, such as students’ achieve-
ments (Armoni & Gal-Ezer, 2004), teaching reductive thinking (Armoni &
Gal-Ezer, 2005), and the tendency of students to choose reductive solutions
(Armoni, Gal-Ezer, & Tirosh, 2005). The aspect of nondeterminism studied
here focuses on the level of use of nondeterminism by students when they
have freedom of choice, from which we can deduce their perceptions of this
concept.

This article is organized as follows: in the second section * Computa-
tional Models in a High School CS Curriculum” we give a brief descrip-
tion of the CM unit; the third section “The Introduction of Nondetermin-
ism” describes the way nondeterminism is introduced; the fourth section
“The Study” describes the findings of our study regarding the perception of
nondeterminism. Our conclusions and suggestions for further research are
discussed in the fifth and last section.

COMPUTATIONAL MODELS IN A HIGH SCHOOL CS CURRICULUM

The CM unit is part of a high school curriculum described in detail in
Gal-Ezer et al. (1995) and Gal-Ezer and Harel (1999). According to this
curriculum, students who decide to take a comprehensive computer science
program, study five 90 hours courses (units), taught over two or three school

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 327

years. The last unit is one of the two elective units in this curriculum, and
one of the alternatives offered for it is the CM unit. The CM unit is unique,
compared to other units of this curriculum, since an important portion of it
is dedicated to discussing properties of abstract computational models, rath-
er than implementations within these models. It is the only unit in the cur-
riculum, which does not have a clear aspect of solving algorithmic problems
and implementing the solutions in a programming language.

CM introduces finite automata (deterministic and nondeterministic),
pushdown automata, and Turing machines. We will elaborate on the choice
of these models in the following subsection. The unit demonstrates and
drills automata design, but it also discusses the theoretical properties of each
model: computational power (in relation to previously introduced models),
computational limits and closure properties.

The main educational goal of the CM unit is to expose students to the-
oretical thinking patterns, which are mathematical in nature, including ab-
straction and generalization (demonstrated by defining abstract models, in-
spired by simple automatic machines), abstract analysis (demonstrated by
investigating the introduced computational models and their properties) and
abstract conceptual flexibility (demonstrated by various changes in the defi-
nitions of models and by investigating the effect of such changes).

To preserve the uniqueness of the CM unit, compared to other units
in this high school CS curriculum, it was decided to focus on theoretical
issues, and to relate to automata design as a tool exploited in theoretical
discussions. Therefore, this unit intentionally does not mention “real life”
various applications of computational models, such as compilers, natural
language processing, and so forth, nor does it integrate any simulation or
visualization tools into the teaching process. We assumed that introducing
such tools would only affect the perception of the technical aspects (i.e., de-
signing automata), aspects which we found to be easier to cope with (Ar-
moni & Gal-Ezer, 2004). Also, since such tools are usually quite attractive,
and since most high school students are not fully mature, we were afraid
they might invest too much time and attention in these tools, disrupting the
learning process of the theoretical aspects.

The CM unit was developed by a team chaired by the first author, in
consultation with the second. The teaching process is guided by a textbook
and a teacher guide especially designed for the unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

The Choice of Models

To fit into the 90 hours limit, not all classical models, traditionally in-
troduced in a college or university computational models course, could be
introduced in the CM unit. A didactic decision had to be taken, regarding
the choice of models. The CM unit focuses on models, which are automa-
ta-based and does not introduce other common models, such as regular ex-
pressions or grammars. This restriction leaves us with relatively “concrete”
models, as they resemble real automatic machines, and thus may be easier
to cope with for high school students. In addition, these models have very
similar definitions, enabling the introduction of each new model as based on
the preceding one. This minimizes the conceptual adaptation that a student
needs to learn a new model. For example, the Turing machine model is pre-
sented as a generalization of pushdown automata, achieved by permitting
access to cells beneath the top cell of the stack. In spite of the restriction to
automata-based models the chain of models we introduce is rich enough and
enables meaningful theoretical discussion, through which major concepts in
computer science are introduced: Some models are equivalent and some are
not, some models are nondeterministic, some models differ in their closure
properties and in the contribution of nondeterminism to their computational
power, and one of the models is equivalent to a computer program (or an
algorithm).

The CM Unit Syllabus

The CM unit consists of three parts: (a) finite automata, (b) pushdown
automata, and (c) Turing machines.

The first part introduces three computational models: Determinis-
tic Finite Automata (DFA), Noncomplete Deterministic Finite Automata
(NCDFA) and Nondeterministic Finite Automata (NFA). The introduction
of each new model is followed by a technical part, which focuses on design-
ing automata within this model, and then there is a theoretical discussion.
The theoretical aspects discussed in the first part include the definition of
regular languages, computational limits (that is, the existence of nonregular
languages), equivalence of the three models and some closure properties.

The second part of the CM unit focuses on the Pushdown Automata
model (PDA). Again, the technical part is followed by a theoretical discus-
sion in which PDA are proved to be stronger than finite automata, the com-
putational limits of the model are discussed, and some closure properties of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 329

the family of languages accepted by this model (context-free languages) are
proved.

The third and final part of the CM unit is dedicated to the Turing Ma-
chine model (TM). The technical aspects include designing simple machines
that accept formal languages, and simple machines that calculate functions.
The theoretical aspects include a discussion of the computational power of
TM (i.e., the Church-Turing thesis) and, in particular, the equivalence of the
new model to a computer; and a discussion of the new model computational
limits, demonstrated by proving the noncomputability of the halting prob-
lem.

THE INTRODUCTION OF NONDETERMINISM

The concept of nondeterminism is introduced and discussed in the
fourth chapter of the CM unit, which takes about 15 hours.

We chose a way somewhat different from the traditional way of intro-
ducing nondeterminism. The nondeterministic finite automaton (NFA) mod-
el is usually defined as a straightforward version of the deterministic finite
automaton (DFA) (Hopcroft & Ullman, 1979). In a DFA, the transition func-
tion maps each pair of a state and an input letter to a single state, while in an
NFA, the transition function maps each pair of a state and an input letter to a
set of states (which may also be empty). Figure 1 shows an NFA, accepting
the language that contains all the words over {a, b, ¢} that end with bc.

Figure 1. An Example of an NFA

The definition of NFA is a generalization of the definition of DFA, since
it enables the range of the transition function to include any sets of states
and not just singletons. However, this generalization encapsulates two im-
portant differences between a DFA and an NFA, only one of which relates to
nondeterminism: The first difference is that an NFA permits omitting transi-
tions (that is, a state and an input letter can be mapped to an empty set), but
this option still preserves the deterministic nature of the model. The second
difference is that in an NFA, a state and an input letter can be mapped to a
set of two or more states, and this introduces real nondeterminism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

We thought that since the concept of nondeterminism (expressed by the
second difference) is an abstract one, and is therefore probably difficult to
understand, it is better to introduce it by itself, thus making its perception
easier. Therefore, the introduction of NFA in the CM unit is preceded by
the introduction of another model: the Noncomplete Deterministic Finite
Automaton (NCDFA). In this model, the transition function maps each state
and input letter to a single state or to an empty set of states. Figure 2 shows
an example of an NCDFA, accepting the language of all the words over {a,
b, ¢} that begin with bc.

Figure 2. An example of an NCDFA

Thus, the first difference between a DFA and an NFA, which permits
omitting transitions while preserving the deterministic nature of the model,
is shown in the definition of the NCDFA; while the second difference, which
permits nondeterminism, is expressed only in the definition of the next mod-
el, the NFA. The abstract concept of nondeterminism is thus isolated, and
is introduced by itself. The addition of the NCDFA model also enriches the
variety of models introduced in the CM unit, and enables practicing com-
parison of models.

The desire to focus on nondeterminism guided the decision to make an-
other change in the traditional definition of an NFA. The common definition
of NFA permits e-transitions (transitions that can be made without reading
any input symbol). To avoid additional perceptional difficulties, it was de-
cided not to include &-transitions in the CM unit, for the following reasons:

e Introducing e-transitions may enhance the expected difficulties in the
perception of nondeterminism since €-transitions increase the level of
nondeterminism.
g-transitions do not correspond to the familiar role of an automaton
as representing machines activated by external events. In a sense, an
g-transition represents a reaction of the system to an internal event, and
thus it is expected to be less natural and intuitive.
e-transitions do not enhance the computational power of NFAs.

In accordance with the spirit of the CM unit, a new model cannot
be introduced without discussing its properties and comparing it to
previously introduced models. The unit time limits could not enable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 331

both introducing €-transitions and discussing the equivalence of the two
variations of NFA.

One of the challenges in introducing NFA was deciding how to justify
the introduction of the new model. In the CM unit, the motivation for intro-
ducing NFA is explained in three ways:

e Practicing the “theoretical game” which characterizes theoretical
study in CS. That is, after a certain mathematical abstraction is defined
(in this case DFA), it is interesting to check the theoretical results of
generalizing this definition in various ways and determining whether the
resulting models are equivalent to the original one, stronger or weaker.

¢ A few examples, given in the chapter, demonstrate that for certain
formal languages, constructing an NFA is simpler and more natural
than constructing a DFA. This natural tendency is used in the theoretical
game previously mentioned: If we sometimes tend to design an illegal
automaton, which does not comply with the model definition, why not
try to generalize the definition to make such an automaton legal, and
then examine the effects of this generalization?

¢ Finally, it is shown that by using the nondeterministic model, additional
closure properties of regular languages can be proven.

The last two explanations demonstrate the advantages of the nondeter-
ministic model: The relative ease of designing nondeterministic automata
and of proving claims using this model. It is reasonable to assume that em-
phasizing the first of these two advantages may encourage students to use
the nondeterministic model when solving design problems, in which a regu-
lar language is given and the student is required to design an automaton ac-
cepting it.

To clarify how nondeterministic models work, mainly their acceptance
mechanism, the CM unit uses the magic coin metaphor, introduced by Harel
(1987): Students are told that they should think of a nondeterministic au-
tomaton as if it were equipped with a coin which it flips before it decides
which transition to choose. However, this is an unbalanced magic coin—it
will always tend to accepting paths. That is, each time the automaton has to
select one of several possible transitions, flipping the coin will cause it to
choose a transition which can lead to a final state, while reading the suffix
of the input word (if such a transition exists). Thus, if there is an accepting
path for a given input word, the magic coin will guide the automaton to such
a path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

Nondeterminism is again discussed in the CM unit when introducing
PDA. The definition of this model is obtained by changing the definition of
the last model introduced to the students, the NFA model. The only change
is adding a stack to NFA. The resulting model is thus nondeterministic. The
desire to keep the changes between models as clean as possible guided our
decision not to permit €-transitions in PDAs as well, and to define accep-
tance in the PDA model as reaching a final state, and not as emptying the
stack. It is well known that both definitions of acceptance of PDA are equiv-
alent; introducing only one definition does not decrease the computational
power of the resulting model. It can also be proved that the computational
power is not decreased by not permitting €-transitions.

The PDA model is also used to demonstrate different behaviors of dif-
ferent models in relation to nondeterminism: For finite automata, nondeter-
minism does not increase the computational power, while for PDA it does.

THE STUDY

The first part of this section describes the method and population of the

study, the second describes our findings and the third part discusses nonde-
terminism in the context of PDAs.

Method and Population

Developing the CM unit involved an experiment, during which the unit
was taught in selected schools under the close supervision of the develop-
ment team. The developers provided the teachers who taught in this ex-
periment with a number of questions, each related to a certain subject. The
teachers were asked to include these questions on exams held immediately
after the students finished studying the corresponding subjects. The teach-
ers were asked to send the students’ full answers to these questions to the
research team. Among these questions was the following one, included in
the exam given immediately after introducing, practicing, and investigating
nondeterminism in the context of finite automata. This question served as
the research tool for studying the perception of nondeterminism:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Infroducing Nondeterminism 333

Design an automaton that accepts the language over the alphabet {a, b, c},
that contains exactly the words for which at least one of the following con-
ditions holds:

1. The word ends with the string bc.
2. The word consists of two parts: The first part contains the string ba, and
the second part contains the string ab.

Two main factors are involved in the process of solving this problem:
the reduction of the problem into sub-problems and the use of nondetermin-
ism. Though these two factors may seem orthogonal to each other, they are
not fully independent. For example, if the student chooses to decompose the
language into two or three sublanguages, the resulting sublanguages will be
quite simple, and therefore constructing a DFA for each will not be overly
complicated. However, in this article we limit ourselves only to the factor of
nondeterminism. Reduction was part of our wider study, and is discussed in
Armoni, Gal-Ezer, and Tirosh (2005).

The research population included 339 students who took an exam which
included the above question and their solutions were sent to us. These stu-
dents studied in 17 classes, in 9 schools, taught by 11 teachers; 244 students
were 12th graders, and 95 were 11th graders.

The teachers were also asked to send the developers the students’ an-
swers on the final exams. We received 48 solutions for questions from the
final exams, to which nondeterminism was relevant.

The Use of Nondeterminism—Findings

Quantitative results. Most of this section is dedicated to a quantitative anal-
ysis of the students’ solutions to the question presented earlier. Later we will
briefly relate to the findings of the final exams.

After reading the full answers of the 339 students to the question and
identifying common characteristics, the authors categorized the solutions in
relation to the level of use of nondeterminism and divided them into five
groups:

e Fully deterministic solutions.

e Solutions in which the students used decomposition to two or three
sublanguages. The automata built for these sublanguages were
fully deterministic, and only the use of construction algorithms
introduced nondeterminism into the process. We categorized this as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

deterministically-based solution, since when independent thinking was
required, the deterministic model was used.

Almost deterministic solutions, with only a few local nondeterministic
behaviors.

Almost nondeterministic solutions, with only a few instances in which
the student ignored the freedom of the nondeterministic model and used
redundant transitions.

Fully nondeterministic solutions.

When categorizing the students’ answers, we found no solutions which
could be defined as “equally deterministic and nondeterministic,” that is, so-
lutions in which the portion of nondeterminism is more or less equal to the
portion of determinism, and none seem to be more dominant than the other.
This is not surprising. It is reasonable to assume that if students do not un-
derstand the nondeterministic mechanism, they will not use it (partially or at
all), whereas if they understand the mechanism and its advantages, they will
try to use it as much as possible.

It should be emphasized that we did not ask the students specifically to
construct a nondeterministic automaton, so they had the freedom of choice.
It is possible that if the question had been asked differently, students who
did not choose the nondeterministic model might have successfully con-
structed an NFA. However, since the CM unit emphasizes and demonstrates
the relative ease of the design process in the nondeterministic model, as
compared to the deterministic model, we reasoned that if, in spite of that,
the students preferred to use the deterministic model, this may indicate that
they did not fully understand the nondeterministic model. That is, the ten-
dency to use the deterministic model is in itself an important indicator of
students’ level of understanding of the nondeterministic model.

The distribution of the various types of solutions is shown in Figure 3
(originally in Armoni & Gal-Ezer, 2003).

Figure 4 (originally in Armoni & Gal-Ezer, 2003) is a version of Figure
3, but combines the three deterministic or almost deterministic columns, and
the two almost nondeterministic and nondeterministic columns.

About half of the students solved this question deterministically, or al-
most deterministically. No significant statistical differences were found for
grade (11" and 12") or level of mathematics. These findings definitely indi-
cate a strong tendency toward determinism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 335

fully deterministic
determhistically- based
aimos t deterministic
aimost non-determnistio
fully non-deterministic

T T T

0 50 100 150
numbar of students

Figure 3. Solutions by type

00" M 168

150

100

detemninistic non-detem inistic
approach approach

Figure 4. Deterministic versus nondeterministic approach

Our findings for the final exams indicate an even higher tendency to de-
terminism. The final exams were held at the end of the school year, three
or four months after the exam including the question above. The final ex-
ams included two proof questions for which a nondeterministic approach
could result in simpler automata than those induced by a deterministic ap-
proach. We will not give here the questions and the complete results, just
briefly say that only about a third of the solutions for these questions were
nondeterministic or almost nondeterministic. Indeed, the first exams were
held immediately after the students learned the nondeterministic model, but
they should have been exposed to it throughout the rest of the CM unit. In
a proper teaching process, after introducing the nondeterministic model, it
should have become the main tool for solving design problems (for regu-
lar and context-free languages). Therefore, by the end of the year, students

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

were expected to feel quite comfortable with nondeterminism and to be fully
aware of its advantages. A reasonable explanation for these findings is that
those students who did not fully understand the nondeterministic model im-
mediately after it was taught, continued to cling to the deterministic model,
and used the nondeterministic approach rarely or not at all. Thus, at the end
of the year, they felt even more uncomfortable with the nondeterministic
model than they had felt immediately after learning it, since it was not as
fresh in their minds.

The teachers were not at the focus of our study. However, we consid-
ered the data for the above question for each teacher separately, and found
that for about half of the teachers (5 of 11), the ratio between students using
the deterministic approach and those using the nondeterministic approach
was about 50-50. Regarding the rest of the teachers, for three the ratio was
about 60%, 70%, and 85%, in favor of the deterministic approach, while for
the other three, the ratio was about 70%, 85%, and 90%, in favor of the non-
deterministic approach. In addition, when interviewed, some of the teachers
said that they did not feel as comfortable with the nondeterministic model as
with the deterministic model, and therefore they did not tend to emphasize
the nondeterministic model and its advantages during the teaching process.
Thus, there appears to be some preliminary evidence that the teachers them-
selves vary significantly in their perception of nondeterminism. It therefore
seems reasonable to hypothesize that the teacher factor is significant and
should be further studied in future research: Is there really a significant vari-
ance among teachers regarding their perception of nondeterminism? If there
is, is there a clear connection between the teacher’s level of perception of
nondeterminism and its students’ tendency to use nondeterminism?

Qualitative results. While reading the students’ solutions, we identified four
patterns, which seem to indicate the existence of a problem in the percep-
tion of nondeterminism. We believe that these patterns deserve close at-
tention. Teachers should be aware of these patterns, and learn to recognize
them in their students’ answers in order to identify perception problems. We
will briefly describe these patterns and then demonstrate and analyze each
through students’ solutions.

The first pattern, local nondeterminism, was found among the solutions
in the category “almost deterministic.” These solutions include automata
which are basically deterministic, but contain local nondeterminism
expressed in a few nondeterministic transitions. This pattern was found
in about 10% of the 339 solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 337

e The second pattern, locally deterministic solutions, is “symmetric” to
the first. It can be found among the solutions in the category “almost
nondeterministic.” These solutions include automata which are
basically nondeterministic but contain a few transitions characteristic of
deterministic automata. This pattern was found in about 11% of the 339
solutions.

o The third pattern—shifting from nondeterminism to determinism:
In some cases, we could identify traces of the solution process in a
student’s answer. Sometimes students wrote a few preliminary versions
which they chose not to complete. In the few such cases we encountered
in our data, the process indicates a change from a nondeterministic
model to a deterministic one. Counting the number of these solutions is
meaningless since the fact that other students didn’t leave such traces
does not necessarily mean that they did not go through a similar process.

¢ The fourth and last pattern, noncomplete deterministic solutions, was
found among the fully deterministic solutions, or the solutions in which
some of the automata for the sublanguages were deterministic. In these
cases, the students constructed NCDFAs. Even though the automata
constructed in this pattern were fully deterministic, this pattern points at
partial understanding of the nondeterministic mechanism. The solutions
matching this pattern were few (about 4%).

Each of these four patterns will now be demonstrated using examples of
students’ solutions.

First Pattern: Local Nondeterminism

The four examples below show basically deterministic solutions, with
local nondeterminism.

Example 1 — Direct solution with a hidden decomposition to three sub-
languages

Andy designed the automaton shown in Figure 5. This is a direct solu-
tion, bur there are clear traces of decomposition: This automaton consists of
three basically deterministic segments: {q,, q,, q,}, { 9 93 9.} {90 95 96}
accepting the languages of all words containing ba, of all words containing
ab, and of all words ending with bc, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

338 Armoni and Gal-Ezer

a b« h ab.c [a b
; : { ; { i
oot b ’ e g N ‘
! " i . - i
4y i 4, e gy] Yy ! s q, !
proy - ¢ e
a b @ h.c
Loge el g,
bt)

Figure 5. Andy’s design

There is local nondeterminism in this automaton in two places: in q,
with b and in g, with a. Since most of the automaton is fully deterministic,
the nondeterminism in these two states is redundant. Perhaps, even though
there was no implicit decomposition, Andy designed this automaton by
combining segments corresponding to base languages, and this process led
to the nondeterminism in q, (where two segments are glued), since as a final
state in an automaton which accepts the language of all words containing
ba, q, should have a self loop with all the letters of the alphabet.

In g, there are three transitions with b: One is to q,, searching for ba,
the second one is to g, searching for bc. These two transitions are essential,
and this local nondeterminism is probably also due to combining two seg-
ments into an automaton accepting a union language. But the self loop with
b in q, is hard to explain. This transition was not made by any combination
algorithm, and it is not consistent with the logical structure of this automa-
ton. It is a redundant and artificial nondeterministic addition. Indeed, it does
not violate the correctness of this automaton (which still accepts the given
language), but it probably points at only partial understanding of the nonde-
terministic mechanism.

Note that the transition with b in q is incorrect. Instead of going back
to q,, it returns to q,. This is a relatively common mistake when designing
autornata to look for a string which ends a word. In this specific case, the re-
dundant transition in the initial state covers this mistake, and the automaton
remains correct, but we cannot assume that this was the reason for adding
this transition.

Example 2 — Full decomposition to three sublanguages

For each of the three sublanguages, Bonnie designed an automaton
which is basically fully deterministic (Figures 6-8). All three automata have
a self loop with all the letters in the alphabet in their initial state, and this
self loop introduces local and redundant nondeterminism. As in the first ex-
ample, these redundant transitions may indicate a problem in the perception
of the concept of nondeterminism. As was the case for Andy, the local non-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introducing Nondeterminism 339

determinism in the first automaton (Figure 6) covers up incorrect transitions
in the final state.

a b c

@

a X
Figure 6. Bonnie’s design, part 1

a b c a b c

@:8_@

Figure 7. Bonnie’s design, part 2

a, b c

Then Bonnie combined the last two automata (Figures 7 and 8), using
the construction algorithm for concatenation, thus introducing addition-
al nondeterministic transitions. In order to construct an automaton for the
union language, she did not use the relatively simple algorithm for NFAs but
decided to use the Cartesian product algorithm, though it was defined only
for deterministic automata and results in a very complicated automaton.

Example 3 — Direct solution

Cal designed an essentially deterministic automaton (Figure 9). There is
local nondeterminism in this automaton in the initial state with the letter b,
and again it is a meaningless and redundant nondeterminism. In this case as
well, this redundant transition covers up a mistake—a missing transition in
q, with the letter b. This transition was probably left out by mistake—in q,
and q, which have the same logical role as q, the corresponding transition
is not missing. Thus, this flaw may be categorized as a merely “syntactic”
mistake.

a b c

Figure 8. Bonnie’s design, part 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

Figure 9. Cal’s design

There is another, more significant mistake in Cal’s solution: The autom-
aton reaches q, after reading bc, whether ba was found before or not. For
example, the word bcab is accepted by this automaton though it should be
rejected. This mistake probably stems from incorrect logical design, and not
from incorrect perception of the nondeterministic mechanism, but it dem-
onstrates that directly designing deterministic automata is complicated, and
nondeterminism might help to overcome this complexity.

Interestingly enough, Cal first tried a reductive and nondeterministic
solution, decomposing the language into two sublanguages and designing
an NFA for each of them. Instead of using the known, simple algorithm to
combine these two NFAs into a new NFA, accepting the union language, he
turned to a direct, almost deterministic design. Therefore this example fits
also the third pattern, of shifting from nondeterminism to determinism.

Example 4 — Direct solution with a hidden decomposition to three sub-
languages

Dan’s solution (Figure 10) is also a direct solution, with clear traces
of decomposition. As in the first example, this automaton consists of three
fully deterministic segments, {q,, q,» q,}, {4, 9, q,} and {q,;, q;, q,}, which
are basically deterministic automata accepting the languages of all words
containing ba, of all words containing ab, and of all words ending with bc,
respectively.

In Dan’s solution we can see the familiar mistake—the transitions going
back from g, miss their correct destinations, and in this case we can again
see artificial, redundant local nondeterminism in the initial state, introduced
by the self loop, which covers up the incorrect transitions, resulting in a cor-
rect automaton. What about the other nondeterminism in the initial state,
introduced by the transition with b to q, and the transition with b to g,? It
appears that this nondeterminism enables the automaton to “guess™ whether

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism M1

the input word fits the first condition or the second one. Therefore, the up-
per segment and the lower segment should be disjoint. However, in spite of
this nondeterminism in the initial state, Dan added transitions which con-
nect these two segments and try to fix an incorrect guess, though this is not
necessary in a nondeterministic model. These connecting transitions point at
only partial understanding of the concept of nondeterminism.

abc b

Figure 10. Dan’s design

All four examples include redundant nondeterministic transitions,
which do not violate the correctness of the automata but are meaningless
when added to basically deterministic automata. The existence of such
transitions seems to indicate an only partial understanding of the concept
of nondeterminism. In all the examples, among the redundant transitions,
there was a redundant nondeterministic self loop in the initial state. This was
common to most of the other solutions which fit the first pattern. It seems
that students who do not fully understand the nondeterministic mechanism
identify nondeterminism with a self loop for all the letters in the alphabet in
the initial state. Indeed, many of the nondeterministic automata presented in
the CM textbook have such a self loop. This may call for a revision of the
textbook—adding and emphasizing examples in which nondeterminism is
expressed differently.

Second Pattern: Locally Deterministic Solutions
The three examples below represent an essentially nondeterministic ap-
proach, but cling to some deterministic characteristics.

Examples 1 and 2 — Full decomposition to three sublanguages
Edith decomposed the given language into three sublanguages. The au-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

tomaton accepting the language of all words ending with bc was a correct
fully-deterministic automaton. Figures 11 and 12 show the automata she de-
signed to accept all the words which contain ba, and all the words which
contain ab, respectively.

a b ¢ b ¢

Py)

'(Py } """b’“'((

/ \

Figure 12. Edith’s design, part

Fred also decomposed the language into three sublanguages. The au-
tomaton accepting the language of all words containing ba, and the one ac-
cepting the language of all words containing ab were correct fully-nonde-
terministic automata. The automaton Fred designed for accepting all words
ending with bc is shown in Figure 13.

Figure 13. Fred’s design

All three automata accept the corresponding languages, and are basi-
cally nondeterministic, with one redundant transition (a self loop in the sec-
ond state of Figures 11 and 12, and a transition with b from q, in Figure 13).
Such transitions are essential for deterministic automata accepting these lan-
guages but are meaningless in a nondeterministic context.

Example 3 - Direct solution

George designed the automaton shown in Figure 14. This is a direct and
essentially nondeterministic solution, and the resulting automaton indeed
accepts the required language. However, the states q, and q, and the transi-
tions connecting them to the automaton are redundant, due to the nondeter-
ministic nature of this automaton.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 343

Figure 14. George's design

All three examples demonstrate almost nondeterministic automata with
a few redundant transitions (one in the first two examples and two in the last
one). It is reasonable to assume that these students’ level of perception of
nondeterminism is quite good, but not full. The redundant transitions seem
to demonstrate residual deterministic thinking, expressed only locally. At
some point, these students returned to a deterministic thinking pattern, ac-
cording to which unsuccessful guesses should be corrected.

Third Pattern: Shifting from Nondeterminism to Determinism

The examples presented for this category represent the few solutions in
which we could find traces of the solution process. At the beginning of this
process, some or all early versions are nondeterministic or almost nondeter-
ministic (or at least have a meaningful nondeterministic portion), but as the
students “improve on” the solution, they construct almost deterministic or
fully deterministic automata. In some of these cases, the preliminary ver-
sions were indeed incorrect, and usually only simple and local corrections
were necessary.

Example 1 — Shifting during a direct solution

In his first attempt, Henry tried a reductive solution, decomposing the
language into two sublanguages. The automaton for the first language was
fully deterministic, and the one for the second sublanguage was merely a
skeleton, with many transitions missing (and with some mistakes). Henry
decided not to complete this line, but turned to a direct approach, trying to
design a fully deterministic automaton (Figure 15).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

(v\

5 }—4‘(
‘ L

Figure 15. Henry’s second attempt

This attempt was also not completed. Henry may have faced some logi-
cal problems, such as how to handle a b that was read after ba had been
read. The redundant transition with b from g, to q, also points to a flaw in
the logical design of this automaton. Next, Henry designed a basically de-
terministic automaton (Figure 16), but with meaningful nondeterminism in
q,. Introducing such nondeterminism is the proper way to handle the logi-
cal problem of reading b after ba, mentioned above. Yet, even though this
solution is basically correct (he only needed to make q; a final state and add
a self loop in q, with all the letters of the alphabet), Henry decided not to
complete it. He left the design unfinished and began another one.

Figure 16. Henry’s third design

At this point, Henry abandoned nondeterminism and retreated to the
deterministic approach. He designed a fully deterministic automaton (Figure
17), which is almost correct, except for one missing essential transition (a
self loop with & in q).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 345

Figure 17. Henry’s final design

Example 2 — Shifting during a reductive solution

Ian decomposed the language into two sublanguages. For one sublan-
guage, he designed a basically nondeterministic automaton, with a redun-
dant self loop with b in q, (Figure 18). For the second sublanguage, he de-
signed a fully nondeterministic automaton (Figure 19).

“/',.[-’4" b
RNOD R U I

0
(oo 2o (e

S’ N N

Figure 18. Ian’s design, part 1

a, b a, _&!\c a, b
R T = WS)
(o o o P2 p ()

Figure 19. Ian’s design, part 2

Next, he combined these two automata into one automaton, accepting
the union language (Figure 20). For that purpose he did not use the common
algorithm. He joined the first two states of these automata. Then he added a
new state, t,, with a self loop with all the letters of the alphabet, a transition
from t to t, with all the letters of the alphabet and a self loop with a in t.
All these did not exist in the original base automata and they are redundant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

Figure 20. [an’s full design

In both examples, at some point the students designed an automaton
with a meaningful portion of nondeterminism, which was correct or al-
most correct. Yet, both of them preferred to replace it with a deterministic
automaton. In Henry’s case this was done explicitly, by not completing the
nondeterministic version and starting a new deterministic one. Perhaps, af-
ter recognizing a problem in the automaton, Henry preferred to shift—or
retreat—to the deterministic, not necessarily simpler but perhaps more fa-
miliar, model, instead of correcting the mistake within the nondeterministic
model. In the second example, lan’s solution, this was done implicitly, by
fixing the combination process: lan added a new state and new transitions,
all redundant, and none exists in the original base automata. Adding them
implies that Ian felt insecure as to the ability of the nondeterministic model
to cope with incorrect guesses. It seems that he thought that the combination
process (which added nondeterminism) resulted in an incorrect automaton,
which should be fixed. In example 3 of the first pattern (which fits the third
pattern as well), the retreat occurred after designing two nondeterministic
base automata, before combining them into one automaton.

We found very few solutions in which the solution process could be
traced. However, it is reasonable to assume that other students also under-
went a similar process—explicitly or implicitly—but did not document it.
For example, if we take another look at example 3 of the second pattern
(Figure 14), one may speculate that this student may have started with two
or three nondeterministic automata, and while combining them added the
additional two states, creating some dependency between the two segments
which under a nondeterministic approach should be disjoint, thus demon-
strating a partial retreat from nondeterminism to determinism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 347

Fourth Pattern: Noncomplete Deterministic Solutions

The examples presented under this category represent solutions which
do not use nondeterminism at all, but instead use NCDFAs. For the languag-
es corresponding to this problem, introducing incompleteness necessitates
introducing nondeterminism as well, and thus a noncomplete deterministic
solution is necessarily incorrect (the resulting automata do not accept the
required language). Below are two examples which fit this pattern.

Example 1 — Decomposition into two sublanguages

Jane decomposed the language into two sublanguages. Neither one of
the two corresponding automata (Figures 21 and 22) uses nondeterminism
(even in the initial state), but they are both incomplete. The result is incor-
rect in both cases. For these languages, it is not possible to omit transitions
without taking advantage of the freedom offered by nondeterminism. Note
that in the second automaton (Figure 22), the right segment is actually fully
deterministic (only a self loop with all the alphabet letters is missing in the
final state).

ac
7N
;(‘/*\\) &/—\l P

(o 2o o F(a)

M’ g et

Figure 21. Jane’s design, part 1

a.c b b a
D S G N 0 B o
h b/ \ a f _a Vo TR
(\ Po)_<\ l /)_- ,,,,,,, *(7, I ————— s s)\(P, J /)
S N R ¢ RN S

Figure 22. Jane’s design, part 2

Example 2 — A direct solution

The skeleton of the automaton designed by Larry (Figure 23) is very
similar in its structure to the natural nondeterministic automaton for this
language, only this automaton is deterministic. Omitting the nondeterminis-
tic self loops in q, and q, violates the correctness of the automaton (as does
also the missing self loop with all the letters of the alphabet in q,).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

348 Armoni and Gal-Ezer

bI (/w\f. ¢
I REEEN P ///::.':::\-\
DTNy
S e S N

AN

Figure 23. Larry’s design

Interestingly enough, in these two examples we see a tendency oppo-
site to the one demonstrated in the first pattern. There we saw redundant
self loops that introduced redundant nondeterminism. Here, the self loops
are missing, but since the automata are deterministic, omitting these loops
violates the correctness of the resulting automata.

A possible explanation for using the freedom of omitting necessary
transitions, characteristic of the nondeterministic model, without introduc-
ing the nondeterministic transitions that enable it, is that some students find
it hard to cope with nondeterministic models, but are willing to “accept”
noncomplete deterministic automata. We will relate to this below, when ana-
lyzing an interview with one of the students. Thus, even though the autom-
ata constructed in this pattern were fully deterministic, the error probably
stemmed from a partial understanding of the nondeterministic mechanism.
It is important for teachers to understand that such erroneous automata, al-
though deterministic, may indicate a problem in the perception of nondeter-
minism.

Interviews. We conducted interviews with four students who had fin-
ished studying the fourth chapter of the CM unit a few weeks before, and
had been tested on the material a week before. Through these interviews we
hoped to gain some insight into the solution process, and the reasons for
choosing one model over another. Students on various levels of achievement
were chosen by the teacher, who did not know in advance what the students
would be asked. The four students were asked to solve the question.

After completing their first version of the solution, they were asked
about decisions they made while solving the problem. Three of the students
gave a nondeterministic solution (two performed a direct construction and
one decomposed the language into two sublanguages). One of them was not
very cooperative and we were unable to glean any information regarding
his decision to use the nondeterministic model. The other two students ex-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 349

plained their choice of model by saying that they thought it was impossible
to construct a deterministic automaton for this language.

The fourth student, Mike, used a deterministic approach. He decom-
posed the language into three sublanguages. For the sublanguage corre-
sponding to condition 1, he designed a correct DFA. He misinterpreted the
two sublanguages corresponding to condition 2 and thus constructed two
NCDFAs, accepting the languages {ba} and {ab}, respectively (under this
misinterpretation, nondeterminism indeed would not be helpful). He com-
bined the two NCDFAs into an automaton for the concatenation language,
simply by combining the final state of one with the initial state of the other.
Next, he combined the DFA for condition 1 with the NCDFA of the concat-
enation language into an automaton for the union language. Mike did not
use any known construction algorithm to combine these two automata. In-
stead, he designed a deterministic automaton, by combining the initial and
final states and adding transitions to create some dependency between the
automata. This process caused a logical error, due to the combination of the
two final states into one. The resulting automaton is given in Figure 24.

Figure 24. Mike’s first full design

Mike was asked if he could think of any other automaton accepting
the first sublanguage. He could not think of any such automaton, but when
asked if he knew what a nondeterministic automaton was, he said he always
preferred the deterministic model because it suited him. He described him-
self as a person with a tendency toward the exact sciences (physics) and in
his opinion, nondeterministic thinking was not consistent with that.

When asked explicitly to design a nondeterministic automaton for the
first sublanguage, he designed a noncomplete deterministic automaton (Fig-
ure 25), but immediately changed it by deleting the self loop with b in q,
and adding b to the self loop in the initial state. The resulting automaton
(Figure 26) is a nondeterministic automaton with two redundant transitions,
thus matching the second pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

Figure 25. Mike’s second design, part 1, version 1

ach

SN

"l L N
9 L 4 I (9. /))
a N’ Nt

7/
Figure 26. Mike’s second design, part 1, version 2

Mike explained the last change by referring to the nondeterministic na-
ture of this automaton, saying that it could read all the b’s in the initial state
and move to q, only when the right b came along. When asked “Then why
do you need these two transitions [the back-transitions with b from the final
state and with a from q,]?” he immediately realized that these transitions
were redundant, deleted them and ended up with a fully nondeterministic
correct automaton. Still, he said that for him deterministic automata were
simpler.

Referring to the two NCDFAs that he designed for the other two sub-
languages, we asked if the missing transitions did not pose a problem for
him. He said that he had no problem with noncomplete deterministic autom-
ata since he knew he could add a sink state and direct all the missing transi-
tions into the sink. That is, for Mike, the equivalence between the determin-
istic model and the noncomplete deterministic model is clear. Though the
CM syllabus also includes the proof of the equivalence of the deterministic
and nondeterministic models (using the subset construction), this is a more
complicated and less intuitive proof. Even though Mike knew that these
models were equivalent, the gap between them seemed too wide to make
him comfortable with the nondeterministic model. Indeed, even when con-
fronted with his misinterpretation of the other two sublanguages and asked
to change his designs accordingly, he designed two correct but fully deter-
ministic automata.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 351

The next phase was to combine the two automata into one new automa-
ton, accepting the concatenation language (corresponding to condition 2).
Using the standard algorithm would have introduced nondeterminism. Mike
did not use this algorithm, and combined them directly, resulting in a fully
deterministic automaton.

Now Mike began to combine the last automaton with the nondetermin-
istic automaton designed for the first sublanguage. He did so by changing
his first version of this automaton, shown in Figure 24. The new version is
shown in Figure 27. Again, Mike did not use the standard algorithm, which
combined two NFAs into an NFA accepting the union language, but com-
bined the automata by joining their initial states and their final states (this
time, without adding transitions which create dependency), resulting, again,
in an incorrect automaton (for the same reason as in the first version). Dur-
ing the design process he said to himself, “Yes, this one should be nondeter-
ministic. It’s simpler.”

h b a

Figure 27. Mike’s second full design, version 1

To confront Mike with the logical error in this automaton, we asked
whether it was correct to add a self loop in the combined final state if such a
loop does not exist in the final state of the first automaton. At first, Mike said
that the nondeterministic nature of the automaton permits it. He said, *“You
can stay in q, until the string bc which ends the word comes along.” This in-
dicates a problem in understanding the asymmetric acceptance mechanism
of NFA: One accepting path is enough to accept an input word, whereas all
paths need to be rejecting paths in order to reject an input word.

Mike was asked to consider the input word bca. He immediately saw
the problem and corrected the automaton by splitting the final state into two
final states (Figure 28).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

Figure 28. Mike’s second full design, version 2

Note that when Mike designed the union automata, he said he was de-
signing a nondeterministic automaton. The resulting automaton was not
fully nondeterministic, and had many redundant transitions. In fact, Mike
considered it nondeterministic since during the combination process he did
not bother to add connecting transitions and left the two automata disjoint
and independent except for joining their initial and final states. When asked
why he chose to make it nondeterministic, even though he did not like non-
determinism, he said, “Otherwise, it would have been a mess, even more
than it already is now.” Indeed, Mike tried hard to keep his designs clean,
with different colors for states, transitions, and input letters. He turned to
the nondeterministic approach only when he felt that the design automaton
might be too complicated, with higher chances for erasing things and creat-
ing “a mess.”

At that point, Mike was asked to look again at one of the correct deter-
ministic base automata he had designed for the sublanguages of condition
2, and to make it nondeterministic. He did that perfectly. Then he was asked
to consider again the union automaton he designed (Figure 28) and make it
“even more nondeterministic.” Again, Mike did that perfectly, resulting in a
fully nondeterministic correct automaton.

Mike’s answers indicate a predetermined preference for the determin-
istic model over the nondeterministic one, irrespective of language. His an-
swers imply that he sees the nondeterministic model as inaccurate, but he
has no problem with the noncomplete deterministic model. Also, at least one
of his designs indicates only partial understanding of the nondeterminism.
Yet Mike appeared to be an intelligent student who understood his mistakes
as soon as he was confronted with them, and corrected them quite easily. A
preference such as his could perhaps be changed if the teacher emphasized
nondeterminism and gave her students enough opportunities to practice it
and gain a better perception of it. In this specific case, the teacher reported
that she herself felt more comfortable with the deterministic model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 353

The answers given by the two students who chose to use the nonde-
terministic model showed that technical knowledge of the model does not
necessarily reflect full understanding, or, in particular, a full perception of
its computational capabilities.

Nondeterministic Pushdown Automata

The PDA model, introduced in Chapter 5 of the CM unit, is also nonde-
terministic. However, in the context of the CM unit, PDAs are usually more
complicated than finite automata—they usually have more states and transi-
tions. It is reasonable to assume that if students have difficulties understand-
ing the nondeterministic mechanism when it is used with finite automata,
they will have greater difficulty using the nondeterministic mechanism with
PDAs. This may have two effects:

1. Students who choose to cling to the deterministic model, due to only
partial understanding of the nondeterministic model, may be reasonably
successful in designing DFAs for regular languages (even quite compli-
cated languages) but may be less successful when designing determin-
istic PDAs for context-free languages. Again, since the PDAs presented
in the CM unit usually have more states and transitions than DFAs, the
chances to err when designing them is higher. Decreasing the dimen-
sions of the automata by using nondeterminism could ease the design
process and decrease the chance of error.

2. With only partial perception of the nondeterministic mechanism, stu-
dents may choose a nondeterministic approach, but while they may be
reasonably successful in regular languages, this may not be the case for
context-free languages which induce more complicated automata. The
resulting (nondeterministic) PDAs may contain errors.

Case Study

The following event, which took place in one of the classes, nicely dem-
onstrates the second effect. The teacher had finished teaching the NFA mod-
el and was under the impression that the students had no problem with the
perception of this model, and specifically with its acceptance mechanism.
She began teaching the PDA model, and after defining it, she presented a
PDA accepting the language {a"b"|n>0). This is a noncomplete but deter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

ministic PDA. The nondeterministic mechanism does not help in accepting
this language. The PDA marks the first letter inserted at the bottom of the
stack. This is a common technique, often used in the CM unit, and is es-
sential for accepting certain languages, since, as mentioned earlier, the CM
unit defined acceptance in the PDA model by reaching a final state (and not
by emptying the stack). One of the students claimed that she could design a
nondeterministic PDA, which doesn’t need to mark the first letter inserted
into the stack. She presented the following PDA (Figure 29):

a. 4 /push A h. A pop A

«, emply stack/ i
. push A a.4 /pushd

" b4 popA
Ca 4 o -

A

b AippAa .)) b A /popA

Figure 29. Student PDA

This PDA is indeed nondeterministic and it does not mark the first letter
inserted into the stack. However, the problem with this automaton is that it
also accepts words, which do not belong to the given language. The student
demonstrated an accepting path for each word in the given language. All the
other students agreed that this was a correct PDA for the given language,
even after the teacher urged them to recheck it and look for a basic logical
flaw. Not only did the students not notice that this automaton accepts words
that do not belong to the given language, but even when the teacher con-
fronted them with an accepting path for such a word, some of them said, “If
a nondeterministic automaton can choose, then it can also choose a nonac-
cepting path for a word which doesn’t belong to the given language.”

These students’ problem had nothing to do with the stack mechanism. It
stemmed from an only partial understanding of the nondeterministic mecha-
nism, specifically, assuming symmetry of acceptance and rejection of words.
This partial understanding should have been discovered earlier, during the
teaching process of the NFA model, but in this class it was discovered only
in the context of PDAs, when the automata are bigger, and the number of
possible paths increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 355

SUMMARY, CONCLUSIONS, AND FURTHER RESEARCH

This article focused on the perception of nondeterminism, an important
recurring concept in computer science and mathematics, relevant, for exam-
ple, to probability theory, distributed computing, formal languages theory,
and computability theory. The concept of nondeterminism is introduced in
the CM unit integrated in a High-Schootl curriculum.

The didactic considerations which guided the development of the CM
unit were presented in this article: (a) Focusing on automata-based models
(finite automata, pushdown automata, Turing machines); (b) Emphasizing
theoretical aspects rather than implications in “real-life” fields (compilers,
natural languages processing, etc.); (c) Introducing a new model—noncom-
plete deterministic automata (NCDFA)—which distinguishes incomplete-
ness from nondeterminism, thus isolating the abstract concept of nondeter-
minism; (d) Omitting e-transitions in all nondeterministic models; (e) Not
integrating any simulation or visualization tools into the teaching process of
the CM unit. The third and fourth considerations may guide the introduction
of nondeterminism through computational models in the CS curriculum, the
fourth being more suitable for the high school level, for which the students'
ability of abstraction is less mature than that of university or college stu-
dents.

In spite of the restrictions that guidelines a and d impose on the CM
syllabus, the unit still succeeds in introducing meaningful theoretical discus-
sions, which enable students to become acquainted with the rich theoretical
foundations of computer science and the thinking patterns that character-
ize them. Specifically, the unit discusses the limits of computational power,
nondeterminism and its contribution to computational power, comparison of
various models in relation to computational power and closure properties.

Our findings regarding the use of nondeterminism show that a sig-
nificant number of students (about a half for the first exams and about two
thirds for the final exams) preferred to use a deterministic approach when
designing finite automata. We believe that the level of use of nondetermin-
ism reflects the level of students’ perception of the concept of nondetermin-
ism, since the teaching process of the CM unit explicitly emphasizes the ad-
vantages of the nondeterministic model. Our findings therefore imply that
many students have not completely understood the concept of nondetermin-
ism. The qualitative analysis of the students’ solutions to the question on the
first exam strengthens this conclusion. We saw that many students who used
nondeterministic models when designing finite automata did not fully utilize
them, and their designed automata also included deterministic characteris-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

tics. In some cases, clinging to the deterministic model caused errors, which
the students did not recognize, sometimes due to only partial understanding
of the nondeterministic mechanism.

In addition, we found some evidence of differences between classes in
the tendency to use nondeterminism. When interviewed, some of the teach-
ers (even some who are considered leading CS teachers) said that they felt
more comfortable with the deterministic approach, and therefore they did
not emphasize the nondeterministic model and its advantages, beyond the
minimal requirements of the syllabus.

We would like teachers to be aware of students’ possible difficulties,
and plan their teaching accordingly. A proper teaching process should
strongly emphasize nondeterminism. Teachers should use additional exam-
ples and exercises to improve their students’ understanding of nondetermin-
ism. Naturally, the teachers themselves should use nondeterminism freely
and consistently, both when first teaching the nondeterministic model and
thereafter. This will probably help to demonstrate the advantages of nonde-
terminism, increase the level of exposure to nondeterminism and thus prob-
ably improve student comprehension. While teaching, teachers should try to
asses each student’s understanding of nondeterminism. To accomplish this,
they can use the patterns introduced in this article. If a teacher sees a so-
lution that matches one of these patterns, it may indicate a problem in the
perception of nondeterminism, even when the solution is correct. In such
a case, the teacher can help the student by giving him or her more focused
examples and further focused practice. We also recommend that teachers in-
troduce similar solutions, corresponding to the four patterns, in class, and
highlight the differences between the solutions in relation to the level of
nondeterminism.

The unexpected answers given by two of the students interviewed—that
they didn’t think that constructing a DFA was possible—indicate a problem
in understanding the theory underlying the nondeterministic model. Even if
students construct nondeterministic automata freely and correctly, the teach-
er cannot assume that they fully understand the theoretical meaning of this
model. Specifically, students may not realize that the deterministic and non-
deterministic models are equivalent. The teaching process should emphasize
the theoretical aspects and not only the technical aspects.

To achieve these goals, this issue should be continuously addressed
when preparing teachers to teach such a unit (both preservice and inservice
training). Special effort should be made to ensure that teachers are appropri-
ately exposed to nondeterminism and practice it thoroughly. We recommend
introducing the four patterns and analyzing various examples corresponding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 357

to them in preparatory courses. It is important to convey to teachers who in-
tend to teach such a unit that the teaching process in class needs to properly
emphasize the nondeterministic model in both its theoretical and its techni-
cal aspects, as previously described.

The effects of implementing such teaching strategies on students’ per-
ception of nondeterminism should be further studied, using classroom ob-
servations and interviews with teachers. Specifically, the role of teachers in
the teaching process of this concept and the perception of nondeterminism
among teachers should be investigated.

We recommend future research in additional various directions:

e The reasons underlying students’ difficulties when learning nondeter-
minism: Mike said that he viewed nondeterministic models as inaccu-
rate. This may be one of the reasons for the tendency to determinism.
Another possible explanation relates these difficulties to the abstract
nature of nondeterminism. Several studies in mathematics and computer
science education (Hazzan, 1999, 2003a, 2003b) reported a tendency
of students to reduce the level of abstraction, that is, to work on a level
which is lower, more concrete, than the actual, appropriate level. This
tendency can be easily followed when dealing with deterministic mod-
els, for which it is relatively easy to see a possible concrete implemen-
tation. But such a reduction in the level of abstraction is more difficult
for nondeterministic models, which cannot be implemented as actual,
concrete machines. Adequate research should validate these explana-
tions, and search for other possible explanations.

e The effect of our didactic strategy: For example, does introducing NCD-
FA indeed have a positive effect on the perception of nondeterminism?
The same question can be asked regarding the magic coin metaphor.

o The effect of the perception of nondeterminism in finite automata on
the learning process of PDAs: We assume that in some cases, partial
misunderstandings might not be discovered until the introduction of
PDA. At that stage, relevant misconceptions which stem from this partial
perception of nondeterminism, might be mistakenly assumed by teachers
to reflect a partial misunderstanding of the stack mechanism.

Even though our results show that the concept of nondeterminism is a
difficult one for students to understand, we believe it is essential for students
to understand it properly since it is one of the basic topics of the CM unit,
and an important recurring concept in computer science in general. Full un-
derstanding of the nondeterministic model can affect students’ comprehen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Armoni and Gal-Ezer

sion of other topics, such as pushdown automata and context free languages,
threads and distributed computation.

As mentioned, nondeterminism is a basic computational and mathe-
matical concept, yet, for many students, the CM unit we developed is cur-
rently the only part of their high school program which introduces the con-
cept. The perception of nondeterminism has never before been examined in
a high school or college and university context. We conducted this research
with high school students, but since the issues are relevant to college and
university students as well, we plan to conduct such a study on university
students in the near future.

References

Armoni, M., & Gal-Ezer, J. (2003). Nondeterminism in CS high-school curricu-
la. Proceedings of the 33rd ASEE/IEEE Frontiers in Education Conference
(FIEO3), F2C (pp. 18-23).

Armoni, M., & Gal-Ezer, J. (2004). On the achievements of high school students
studying computational models. Proceedings of the 9" Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITICSEO4), (pp. 17-21).

Armoni, M., & Gal-Ezer, J. (2005). Teaching reductive thinking. Mathematics
and Computer Education, 39(2), 131-142.

Armoni, M., Gal-Ezer, J., & Tirosh, D. (2005). Solving problems reductively.
Journal of Educational Computing Research, 32(2), 113-129.

Gal-Ezer, J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high school program
in computer science. Computer, 28, 73-80.

Gal-Ezer, J., & Harel, D. (1999). Curriculum and course syllabi for a high-school
program in computer science. Computer Science Education, 9, 114-147.
Harel, D. (1987). Algorithmics: The spirit of computing. Reading, MA: Addison-

Wesley.

Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra
concepts. Educational Studies in Mathematics, 40(1), 71-90.

Hazzan, O. (2003a). How students attempt to reduce abstraction in the learning
of mathematics and in the learning of computer science. Computer Science
Education, 13(2), 95-122.

Hazzan, O. (2003b). Reducing abstraction when learning computability theory,
Journal of Computers in Mathematics and Science Teaching, (2), 95-117.

Hopcroft, J.E., & Ullman, J.D. (1979). Introduction to automata theory, Lan-
guages and computations. Reading, MA: Addison-Wesley.

Merritt, S.M., Bruen, C.J,, East, J.P., Grantham, D., Rice, C., Proulx, V.K. et al.
(1994). ACM model high school computer science curriculum. The report
of the task force of the pre-college committee of the Education Board of the
ACM , (pp. 1-25).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introducing Nondeterminism 359

Tucker, A., Deek, F., Jones, J., McCowan, D., Sthepenson, C., Verno, A. (2003).
A model curriculum for K-12 computer science. Final report of the ACM K-
12 task force curriculum committee.

Acknowledgements
The authors would like to thank David Harel and Noa Lewenstein, con-

sultants for the CM unit development team, for inspiring many of the didac-
tic considerations described in this article.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

