TEACHING REDUCTIVE THINKING

Micha Armoni; Judith Gal-Ezer

Mathematics and Computer Education; Spring 2005; 39, 2; Research Library Core
pg. 131

- MATHEMATICS AND COMPUTER EDUCATION -

TEACHING REDUCTIVE THINKING

Michal Armoni Judith Gal-Ezer
Computer Science Department Computer Science Department
The Open University of Israel The Open University of Israel

108 Ravutski Street 108 Ravutski Street

P. O. Box 808 P. O. Box 808
Raanana, 43107 Israel Raanana, 43107 Israel
and

Constantiner School of Education
Tel-Aviv University

Box 39040

Tel-Aviv, 69978 Israel
michal@openu. ac. il

INTRODUCTION

When dealing with a complex problem, solving it by reduction to
simpler problems, or problems for which the solution is already known, is
a common method in mathematics and other scientific disciplines, as in
computer science and, specifically, in the field of computability.
However, when teaching computational models (as part of computability)
this topic is not usually explicitly emphasized. The syllabus of most
courses dealing with computational models includes closure properties of
regular and context-free languages, properties which utilize the theoretical
basis for using reduction to prove that given languages are regular or
context-free. Indeed, such proof problems are usually given in any
computational models course, and solved using closure properties.
However, there is usually no didactic explicit emphasis on the reductive
nature of such solutions, on demonstrating the advantages of using
reduction for solving such problems or on the effect of the nature of
reduction on the characteristics of the solution. We believe that
developing reductive thinking patterns is an important goal in any
scientific discipline, and specifically in Computer Science (CS). Problems
that deal with computational models can nicely serve to demonstrate and
enable practice of such thinking patterns, especially if these problems are
carefully chosen, and have a few possible reductive solutions. This paper
demonstrates this principle using a number of problems for two
computational models: The finite automata model (representing finite state
machines with no additional memory) and the pushdown automata model
(representing finite state machines equipped with an infinite memory,
which may be accessed according to the Last-In-First-Out principle).

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

These problems were used, together with other problems, in a wider
study, in which the authors examined whether high school students tend to
use reduction while solving problems dealing with computational models,
and the characteristics of their solutions [1]. Even though the topic of
computational models is considered a difficult and abstract topic, the
designers of the new Israeli CS high school curriculum decided that it was
important to expose high school CS students to the theoretical foundations of
the discipline, and to the abstract thinking patterns characterizing it [2, 3].
We view reductive thinking as one of these patterns. The same didactic
principle - using appropriate problems with a few possible reductive
solutions — can also be applied in college and university courses dealing with
computational models.

FINITE AUTOMATA

For the finite automata model we present two problems. The first
one is simpler, but it clearly demonstrates that even a simple problem can
have a rich variety of possible solutions. It also shows an important
principle: in reductive solutions, the nature of the reduction usually affects
the technical complexity of the solution. The second problem is a bit more
complicated and it serves to demonstrate that the above-mentioned
principle can be taken to an extreme, at which point it becomes impossible
to apply it.

A Simple Problem: Let L be the language over the alphabet {a, b, c}, such

that each word in L takes the form a"b™c* (n, m, k >0), and in each word
either the number of a’s is even or the number of c’s is at least 3. Is L
regular? Prove your claim.

Although L does not seem very complex, this problem has many
possible solutions. The regularity of L can be proved directly, by
designing a finite automaton that accepts it. Such an automaton is quite
complex: A minimal automaton, with 9 states, would be deterministic
(since non-determinism does not help in this case) but would be non-
complete, utilizing the freedom of omitting transitions. The problem can
also be solved using reduction: L can be decomposed into simpler base
languages and then an automaton can be constructed for each, thus
proving that they are all regular. At this stage, there are two possible
solution methods: Either by using closure properties of regular languages
to deduce the regularity of L (without constructing an automaton accepting
it), or by using known construction algorithms that compose the automata
constructed for the base languages into an automaton for L. In both cases,

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

the technical effort needed to construct the base automata is equal, and
depends on the level of decomposition, as will be demonstrated below.
However, the second option involves another technical phase, which may
be quite long and tedious. The closure properties and algorithms needed
for this proof and for the other proofs in this paper can be found in many
textbooks about automata and formal languages, such as [4].

We now present the possible ways of decomposition and
demonstrate that the finer the decomposition, the simpler the technical
complexity of the solution. For simplicity, all the base languages are
defined over the alphabet {a, b, ¢}. These decompositions use union,
intersection or concatenation, and regular languages are closed under
these three operations. It is obvious that before presenting these problems
or other more complex problems, the students have already covered the
material relating to closure properties.

e [can be decomposed into two regular base languages:

L ={a”"b"c*| nmk>0}, Ly={a"b"c*| nm>0,k23}. L=LUlL,.
The corresponding automata are not simple. The first has 5 states, and the
second has 6.

e L can be decomposed into three regular base languages:

L = {a"bmck‘ nmk>0}, L,={w| the number of d's in w is even},
Ly = {wlw contains at least3¢'s} . L =L, (L, L;). The corresponding

automata are quite simple and standard. The first one has 4 states, the
second has 2 states and the third has 4 states.

e L can be decomposed into four regular base languages: L, and L, as
defined above, and L, decomposed into Lg={a"b"| n,m>0} and
Ly ={c*| k>0} (or symmetrically, {a"| n>0} and {b"c"| mk>0}).
L=(Lg-L;)n(LyV Ls). The corresponding automata for L, and L, are

very simple (having 3 and 2 states, respectively). This solution may seem
a bit artificial, but it was suggested by quite a few high school students.

e Another decomposition into four regular base languages is the
following: L, and L,, as defined above, L8={a2”b'"} nm>0} and

Ly ={c* | k>3}. L=(Lg-L;)U(Lg-Ly). Corresponding automata for Lg
and L, have 4 states each.

e L can be decomposed into five very simple regular base languages: L,
and [, as defined above, L,={a"| n>0}, L,={a""|n>0},

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

Ly, ={0"| m>0}. L=(Ly-Ly L)V (L, Ly L;). The corresponding
automata have 2, 4, 2, 3 and 2 states, respectively. Three of these
automata (for L,, L, and L;,) are isomorphic to each other, and differ

only in the letters appearing on the transitions, what further diminishes the
technical complexity of the solution since actually only 3 simple automata are
needed.

o And finally, there is another solution in which L is decomposed into
five even simpler regular base languages: L,, Ls, L;, L;, and L;,, all

defined above. L =(Ly- L, L;)" (L, Ls). The corresponding automata

have 2, 4, 2, 2 and 2 states respectively, and again, the last three
automata are isomorphic to each other.

This simple example demonstrates clearly that finer decomposition
leads to solutions which are technically simpler. This principle is usually
true, and it will be demonstrated again in the second example.

A Complex Problem: Let L' be the language over the alphabet {a, b, c}
which contains all the words, exactly, for which the following condition
holds: The number of a’s is equal to the number of b’s, and the sum of a’s
and b’s is bounded by 6. Is L' regular? Prove your claim.

A direct solution for this problem involves constructing an
automaton with 16 or 17 states (non-deterministic or deterministic
automaton, respectively). A corresponding non-deterministic finite
automaton is given in Figure 1. Once this automaton is designed, it is not
difficult to see a recursive pattern, but for high school students, designing
this automata is not a trivial assignment, and many failed to realize in
advance that this automata can be designed recursively (or iteratively,
from a different point of view).

We will give three additional reductive solutions which use
decomposition into regular base languages over the alphabet {a, b, c}.
These decompositions use union, intersection or concatenation, and the
regular languages are closed under these three operations.

e [' can be decomposed into four base languages: L, contains all the
words which do not include @ and do not include b. L, contains all the
words which have exactly one a and one b. L, contains all the words with
exactly two a’s and two b’s. L, contains all the words with exactly three

a’s and three b’s. L' is the union of these four languages. The
corresponding automata are given in Figures 2-5.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

Figure 1: Automaton for L’

Figure 2: Automaton for L,

c C
L \(/ \
P B] 7 ™.
’ N .)
| e |
o d g
\\ / \ //
i
| |
b b
¢ : C
Y ‘ Y \‘
“ a / y
g, oy

Figure 3: Automaton for L,

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

c < c
4 I - J
e a ’J' ‘- : a ; w
4 e a0 PR
- v |
b ‘ b. b
c } c | N
R ‘ \ ‘! L N i«\ A
N / e ,“
“ a / W' a ' W
e e B T
/ \ /
e N o
] |]
b b b ‘
! c ‘ c i c
ny) Y X/ \
. a fa a Ve '
9 /\\ ™ 9 ’} u 9y I
Figure 4: Automaton for L,
c c < 7C
P ST
P) T J { }
w a i - a A a / o’
9y i — T h q1 ! T ”\ q, - sl q;)
b b } b b
‘ ¢ i ¢ Lc i ¢
v } L \ . XL) ’ RN /
i - a .f \f a / \\A a I’/ \a
s T A e e B
b b b b
c < l c ¢
. Ay) ' YL \/ ’ . Y 3
/ “ a a a - a (' -
I \ TR 4y T 4y T 4y ‘
[‘
b bl b b
c ; c | 4 ¢
- a ‘ " a Y a ‘
4, | Y 9 e gy A
Figure 5: Automaton for L,

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

The technical complexity of this solution is not much simpler than that of
the direct one, since the automaton for L, is exactly the same size as the

direct automaton for L' (The only difference is in the set of final states).
However, this solution has one advantage: It shows the recursive pattern,
mentioned above. That is, in a way, the four automata can be derived from
each other, thus disintegrating the construction of the last automaton into
simpler sub-phases. The first and second automata are very simple. After
successfully constructing the third automaton, it is easier to understand how
to use the same principle, in order to construct the fourth one.

e [’ can be decomposed into seven regular base languages: L, is defined

above (it contains all the words which do not include a and do not include
b). Ls contains all the words which include exactly one a. L, contains all

the words with exactly one b. L, contains all the words with exactly two
a’s. Ly contains all the words with exactly two b’s. L, contains all the
words with exactly three a’s. L;, contains all the words with exactly three
b’s. Now, L'=L U(LsN L) V(L ML) U(Ly N L) .

The technical complexity of this solution is very slight. An
automaton for L, (given in Figure 2, above) is not difficult. Automata for
Ly, L, and L, are similar: The automaton for L, can be derived from
that for L, by adding one state, and similarly, the automaton for L, can
be derived from that for L,, by adding one state. The automata for L,
Ly and L, can be derived from the automata for L;, L, and L,

respectively, by replacing letters on the transitions. All six automata are
given in Figures 6 to 11.

Figure 7: Automaton for [,

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

b,”cr’ b c b, ¢

\\ a / \ a s//'/
/
4§ Fooea el e)

s / .Y
AN / N / \ ™ . /

T

Figure 8: Automaton for L,

a ¢ a, ¢ a, ¢
] (| | |
A J Y /
o e T
/ Vb I /A
L 4 f S T e S)
/ \ / LN /
= N

b ¢ b c b ¢ b, ¢
N / h \ / N
{ i 3 |
i .) i J
- e . ‘\x ’ - V\\\‘\«’ . \4/’
\oa Voa Voa AN
[S — boe——
‘0 '\ 4) " 9, ; L q, /})
J / LN
/ /' N

Figure 11: Automaton for L,

e The third solution demonstrates - to an extreme - how finer
decomposition simplifies the technical complexity. However, in this case,
the decomposition is so fine, that this solution seems too complicated.
This decomposition uses only three very simple base languages: L,
defined above (containing all the words which do not include a and do not
include b). L,; contains all the words with exactly one a and no b’s. L;,
contains all the words with exactly one b and no a’s. Corresponding

automata for these languages (in Figure 2, above, and in Figures 12 and
13) have 2 states each.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

Figure 13: Automaton for L,

Using these base languages L' can be defined as:
Loy - L)Ly L)Ly Ly Ly - L))o
(Lyy - Lyy - Lyy - L) O (Lyy - Lyy - Ly - Ly)
(Lyy - Lyy Ly L) O (Lyg - Ly Ly - L) (Lyy Ly - Ly - Ly)
(Lyy Ly Ly L Ly - L) o (Lyy Ly Ly Ly Ly - L)
(Lyy Loy Lag Loy Ly Lyg) O (Lyy - Ly - Ly - Loy - Ly Ly)
(L L+ Lyy - Lyy - Ly L) O(Ly - Ly - Lyy - Ly - Ly - L)) O
(Lyy Ly Lyy Ly L - L))o (Lyy - Ly - Ly Ly Ly - L) w
(Lig - Lyy Ly Ly Lyy - L)\ (Lyy - Lyy - Lyy Loy - Ly Ly)
(Lyy Ly Lig- Ly Lyy - L) O (Lyy Ly - Ly Ly - Ly Ly) o
(Lyy Loy Ly L Ly L) oLy - Ly - L - Ly Ly L) v
(L Ly Ly Ly Ly - L)Ly - Ly - Ly Ly - Ly - L)) ©
(Ly-Lyg Ly Ly Ly Lyg) O (Lyy - Ly - Loy - Ly Ly - Ly) w
(Lyy - Lop Ly Lg - Ly Ly) (Lyy - Ly Ly - Ly - Ly - Lyy).
We thus see there is a trade-off - technical complexity vs. the complexity

of the decomposition. In a way, the overall complexity of the solution
depends on the balance point between them.

PUSHDOWN AUTOMATA

Pushdown automata are usually quite complicated and difficult to
design, since their transition function ranges over a tripled Cartesian
product. Therefore, simplifying the technical complexity of the solutions
in this case, using reduction, can be significant. Consider the following
problem, which may help demonstrate the advantages of reductive

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

solutions in this model:
Prove that the language L"={a"b"c* | nk>0,m=n+rr#kr>0} over

the alphabet {a, b, c} is context free.

As was the case for the first two examples, one optional solution is
the direct one: constructing a pushdown automaton that accepts L", thus
proving it is context free. However, this isn’t a simple automaton: This
automaton (accepting by final state) should have six phases. In the first
phase it reads a’s, while pushing A4 into the stack for each a it reads. The
next phase is reading b’s. In this phase it pops an 4 from the stack for
each b it reads. When it reaches the bottom of the stack (that is, the
number of b’s read is equal to the number of a’s) it starts the third phase.
In this phase it reads b’s, while pushing a B into the stack for each b it
reads. In this phase the automaton should be in a final state (since
r>k=0), and a double bottom for the stack should be created by a special
letter, at the beginning of the phase. The fourth phase is reading ¢’s. In
this phase the automaton pops a B from the stack for each c it reads, while
remaining in a final state (since r>k>0), until it reaches the special letter
which marks the double bottom of the stack. Reading ¢ when this special
letter is at the top of the stack causes the automaton to start the fifth
phase, in which it moves to a non-final state (since r=k) while popping
the special letter. Reading another c starts the sixth and last phase, in
which the automaton is in a final state (since r<k), and can continue
reading ¢’s without touching the stack. In addition to the transitions
described here, the automaton should also have transitions which handle
the special cases (n=0,r=0,r=1o0ra combination of these).

We will present three other solutions, all reductive and using
decomposition into simpler context-free base languages. These
decompositions use concatenation and union, and the context-free
languages are closed under these two operations.

e L" can be decomposed into two base languages:
L'=L-L,, L ={a"b"| n20} over the alphabet {a, b} and
L= (et l rk>0r#k} over the alphabet {b, c}. An automaton for L,

is a classic one, appearing in most text books. An automaton for L, can

be derived from it, using an additional state, adding a few transitions, and
replacing each a for b and each b for c.

e L’ can be decomposed into three base languages:
L'=L (L, UL,), L, as defined above, Ly ={b"c*| k>r>0} and

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

L, = {b’ck] r>k20}. Automata for L, and L, can be derived, through

quite simple changes, from the automaton for Z,. However, the technical

complexity of this solution is not significantly different than that of the
previous one.

e L" can be decomposed into four base languages: L, as defined above,
L ={b"c"| r=0}, Ly ={b*| k>0} and Ly ={c*| k>0}.
L"=(L-Lg-Ls) (L, - Ls- Ly) . The technical complexity of this solution is
very simple: The automaton for L is actually isomorphic to the

automaton for Z;, and can be derived from it by replacing each a with b
and each b with ¢. L¢ is a regular language, for which a 2-state finite
automaton is not difficult to construct, and an automaton for L, can be
derived from it, by replacing each b with c.

SUMMARY

While carrying out the study in [1], in which we examined various
problems related to the perception of computational models by high school
students, we came to the conclusion that developing reductive thinking is
important and should be explicitly emphasized when teaching
computational models.

In order to develop this skill the explicit use of reductive solutions
and the demonstration of the advantages of the reductive strategy is
recommended wherever possible throughout the computer science
curriculum. In this paper we have shown how this can be done with
problems dealing with computational models. Although the problems
presented here were used for high school students, appropriate problems
can be defined that are suitable for college and university courses. Using
such problems demonstrates the trade-off between technical complexity
and the complexity of decomposition. In most cases the finer the
decomposition, the simpler the technical complexity. Thus, using such
problems encourages students to look for finer decompositions, and
therefore helps to develop reductive thinking.

REFERENCES

1. Michal Armoni, Judith Gal-Ezer, and Dina Tirosh, “Solving Problems Reductively”,
Accepted for publication in Journal of Educational Computing Research, ISSN:
0735-6331.

2. J. Gal-Ezer, C. Beeri, D. Harel and A. Yehudai, “A high school program in computer

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- MATHEMATICS AND COMPUTER EDUCATION -

science”, Computer, Vol. 28, pp. 73-80, ISSN: 0018-9162 (1995).

3. J. Gal-Ezer, and D. Harel, “Curriculum and course syllabi for a high-school program
in computer science”, Computer Science Education, Vol. 9, pp. 114-147, ISSN:
0899-3408 (1999).

4. J. E. Hoperoft, and J. D. Ullman, Introduction to Automata Theory, Languages and
Computations, Addison-Wesley, Reading, MA, ISBN: 020102988x (1979).

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

