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ABSTRACT
Most gamma-ray bursts (GRBs) observed by the Swift satellite show an early steep decay
phase (SDP) in their X-ray light curve, which is usually a smooth continuation of the prompt
gamma-ray emission, strongly suggesting that it is its tail. However, the mechanism behind it is
still not clear. The most popular model for this SDP is high-latitude emission (HLE), in which
after the prompt emission from a (quasi-) spherical shell stops photons from increasingly large
angles relative to the line of sight still reach the observer, with a smaller Doppler factor. This
results in a simple relation between the temporal and spectral indexes, α = 2 + β where
Fν ∝ t−αν−β . While HLE is expected in many models for the prompt GRB emission, such
as the popular internal shocks model, there are models in which it is not expected, such as
sporadic magnetic reconnection events. Therefore, testing whether the SDP is consistent with
HLE can help distinguish between different prompt emission models. In order to adequately
address this question in a careful quantitative manner we develop a realistic self-consistent
model for the prompt emission and its HLE tail, which can be used for combined temporal
and spectral fits to GRB data that would provide strict tests for the HLE model. We model the
prompt emission as the sum of its individual pulses with their HLE tails, where each pulse
arises from an ultrarelativistic uniform thin spherical shell that emits isotropically in its own
rest frame over a finite range of radii. Analytic expressions for the observed flux density are
obtained for the internal shock case with a Band function emission spectrum. We find that the
observed instantaneous spectrum is also a Band function. Our model naturally produces, at
least qualitatively, the observed spectral softening and steepening of the flux decay as the peak
photon energy sweeps across the observed energy range. The observed flux during the SDP is
initially dominated by the tail of the last pulse, but the tails of one or more earlier pulses can
become dominant later on. A simple criterion is given for the dominant pulse at late times.
The relation α = 2 + β holds also as β and α change in time. Modelling several overlapping
pulses as a single wider pulse would overpredict the emission tail.
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1 IN T RO D U C T I O N

Before the launch of the Swift satellite (Gehrels et al. 2004), gamma-ray burst (GRB) X-ray afterglows were detected at least several hours
after the burst (Soffitta et al. 2004 and references therein). They typically displayed a power-law decay ∼ t−1–t−1.5 around their detection time
(De Pasquale et al. 2006). Swift’s ability to rapidly and autonomously slew when the Burst Alert Telescope (BAT, observing in the energy
range 15–350 keV; Barthelmy et al. 2005) instrument detects a GRB enables it to point its other instruments – the X-Ray Telescope (XRT,
observing in the energy range 0.2–10 keV; Burrows et al. 2005a) and UV/Optical Telescope (UVOT, observing at wavelengths 170–650 nm,
i.e. from the optical to the near UV; Roming et al. 2005) – toward the GRB within 10 s from the GRB trigger time. The XRT thus filled
the observational gap between the end of the prompt emission and the beginning of the pre-Swift afterglow observations several hours later.
It revealed a complex behaviour usually consisting of three phases, followed by most GRBs, and referred to as a canonical light curve
(Nousek et al. 2006), consisting of three distinct power-law segments where F ν ∝ t−α: an initial (at t < tbreak,1, with 300 � tbreak,1 � 500 s)
very steep decay with time t (with a power-law index 3 � α1 � 5; see also Barthelmy et al. 2005; Tagliaferri et al. 2005); a subsequent
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(at tbreak,1 < t < tbreak,2, with 103 � tbreak,2 � 104 s) very shallow decay (0.2 � α2 � 0.8) and a final steepening (at t > tbreak,2) to the familiar
pre-Swift power-law behaviour (1 � α3 � 1.5). In many cases there are X-ray flares superimposed on this underlying smooth component
(typically during the first two phases, at t < tbreak,2; Burrows et al. 2005b; Falcone et al. 2006; Krimm et al. 2007), and in some cases there is
a later (at tj > tbreak,2) further steepening due to a jet.

The third decay phase (Fν ∝ t−α3 ) is the afterglow emission that was observed before Swift and is well explained by synchrotron
radiation from the forward shock that is driven into the external medium as the GRB ejecta are decelerated, where the energy in the afterglow
shock is constant in time (no significant energy gains or losses). The plateau (or shallow decay) phase can be explained either by pre-Swift
models or by later models that have been developed especially for this purpose (Nousek et al. 2006; Panaitescu et al. 2006; Granot 2007).
It could be due to energy injection, either by a tail of decreasing Lorentz factors at the end of the ejection phase (Rees & Mészaros 1998;
Sari & Mészaros 2000; Ramirez-Ruiz, Merloni & Rees 2001; Granot & Kumar 2006) or by a relativistic wind produced by a long lasting
source activity (Rees & Mészaros 2000; MacFadyen, Woosley & Heger 2001; Lee & Ramirez-Ruiz 2002; Dai 2004; Ramirez-Ruiz 2004),
by an increasing efficiency of X-ray afterglow emission due to time dependence of the shock microphysics parameters (Granot, Königl &
Piran 2006), by a viewing angle slightly outside the region of prominent afterglow emission (Eichler & Granot 2006), by a contribution from
the reverse shock (Genet, Daigne & Mochkovitch 2007) or by a two-component jet model (Peng, Königl & Granot 2005; Granot, Königl &
Piran 2006).

The steep decay phase (SDP) is observed in most bursts, and is in the great majority of cases a smooth continuation of the prompt
emission, both temporally and spectrally (O’Brien et al. 2006). This strongly suggests that it is the tail of the prompt emission. Several
explanations for this phase have been suggested in the context of previously existing models (Tagliaferri et al. 2005; Nousek et al. 2006), such
as emission from the hot cocoon in the collapsar model (Mészaros & Rees 2001; Ramirez-Ruiz, Celotti & Rees 2002). The most popular
model, by far, is high-latitude emission (HLE) originally referred to as emission from a ‘naked’ GRB (Kumar & Panaitescu 2000a). In this
model the prompt GRB emission is from a (quasi-)spherical shell, and after it turns off at some radius, then photons keep reaching the observer
from increasingly larger angles relative to the line of sight, due to the added path length caused by the curvature of the emitting region. Such
late arriving photons experience a smaller Doppler factor. This leads to a simple relation between the temporal and spectral indexes, α = 2 +
β where F ν(t) ∝ t−αν−β , that holds at late times when t − t0 � �t , where t0 and �t are the start time and width of the pulse, respectively.
The SDP also shows a softening of the spectrum with time (see Zhang, Liang & Zhang 2007 and references therein).

The consistency of the SDP with HLE has been studied by several authors (Liang et al. 2006; Nousek et al. 2006; Yamazaki et al.
2006; Butler & Kocevski 2007; Zhang et al. 2007; Qin 2008). However, some simplifying assumptions were usually made, which may affect
the comparison between this model and the observations. One such assumption is the choice of the reference time t0 for the steep decay,
especially when the prompt emission consists of several pulses. Liang et al. (2006) find that when assuming the HLE relation α = 2 + β and
fitting for t0 its derived value is consistent with the onset of the last pulse of the prompt emission (or of the individual spike or flare whose tail
is being fit). Zhang et al. (2007) find that the HLE cannot explain the steep decays accompanied by a spectral softening, but can explain the
cases with no observed spectral evolution. Barniol Duran & Kumar (2008) find that only 20 per cent of their sample is consistent with HLE.
Butler & Kocevski (2007) find that for a (physically motivated) time-independent soft X-ray absorption (fixed NH) the spectrum during the
SDP is much better fit by an intrinsic Band function spectrum (Band et al. 1993) rather than by a power law, and that the peak photon energy
shifts to lower energies with time. Qin (2008) finds that such a behaviour can, at least qualitatively, be produced for a delta function emission
in radius with a Band function spectrum. It is therefore still a largely open question whether the temporal and spectral properties of the steep
decay are consistent with HLE. Moreover, it appear that a physically motivated model for the prompt emission with realistic assumptions
about the emission (e.g. over a finite range of radii with a Band function emissivity) is needed in order to address this question in a more
quantitative and fully self-consistent manner.

The nature of the prompt GRB emission is what ultimately determines the properties of its tail. HLE is expected only in models where
the prompt emission is from a quasi-spherical shell and turns off rather abruptly at some finite radius (or lab frame time). The best example
for this type of model is internal shocks (Rees & Mészaros 1994; Sari & Piran 1997) where variability in the Lorentz factor of the relativistic
GRB outflow causes faster shells of ejecta to collide with slower sells resulting in shocks going into the shell over a finite range of radii
(typically �R ∼ R). On the other hands, there are models in which HLE is not expected, such as in the case of isolated sporadic magnetic
reconnection events within a Poynting flux dominated outflow (e.g. Lyutikov & Blandford 2003) in which each spike in the GRB light curve
is from a distinct small and well localized region. Therefore, testing whether the SDP is consistent with HLE would help distinguish between
these two types (or classes) of prompt GRB models. This can be an important step toward identifying the basic underlying mechanism for the
prompt emission, which is still one the most striking open questions in GRB research more than four decades after the discovery of GRBs.

In order to address this question, we develop a model for the prompt and its HLE tail that is physically motivated, realistic and easy to
use (fully analytic in its simplest version) in global joint fits (to all of the available data at all times and photon energies) of the prompt GRB
and its SDP tail. Such global fits can provide a stringent and fully self-consistent test of HLE model for the SDP in GRBs.

The prompt emission is modelled as the sum of a finite number of pulses. Each pulse corresponds to a spike in the prompt GRB light curve
and has its own HLE tail. An individual spike is modelled as arising from a thin uniform spherical relativistic shell that emits isotropically in
its own rest frame over a finite range of radii, while the observed flux is calculated by integrating over the equal arrival time surface (EATS;
Granot, Piran & Sari 1999; Granot 2005; Granot, Cohen-Tanugi & do Couto e Silva 2008) of photons to a distant observer. Our model is
particularly suitable for internal shocks, which we focus on in this paper. For the emitted spectrum we consider the phenomenological Band
function, which provides a good fit the prompt emission spectrum of the vast majority of GRBs. We point out that our model can also be
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used for X-ray flares, which appear to have temporal and spectral properties similar to the spikes of the prompt GRB emission. The main text
provides the most useful results in an easy to use form, while the full derivations of these results are provided in appendixes in order to help
understand their origin and make it easier to extend or generalize our model. We stress here that our main aim is not necessarily to uniquely
determine all of the model parameters, which may be subject to various degeneracies and may prove hard when fitting to real data, but instead
to test whether our model can provide a good fit to the data for any set of physical parameters. While such a good fit would still not prove that
the HLE must be at work, it would definitely support HLE as a viable and arguably most plausible model. Our model for an individual pulse
is described in Section 2, and results for the flux in the case for internal shocks with a Band function spectrum are given in Section 3. The
dependence of a single pulse on the model parameters is then investigated in Section 4, while Section 5 discusses how to combine several
pulses in order obtain to the total prompt emission and its tail. Both are intended to help the reader when using our model to fit data, which
is one of the main aims of our paper. Our conclusions are discussed in Section 6. This paper describes in detail our theoretical model and its
main properties, and stresses some important caveats that one should keep in mind when using it to fit data in order to test the HLE model.
In subsequent work we intend to confront it with Swift BAT + XRT data.

2 D E S C R I P T I O N O F TH E M O D E L

2.1 The basic physical model

We consider an ultrarelativistic (� � 1) thin (of width �R/�2) spherical expanding shell that emits over a range of radii R0 � R � Rf ≡
R0 + �R. The emission turns on at radius R0 and turns off at radius Rf ≥ R0. The Lorentz factor of the emitting shell is assumed to scale as
a power law with radius, �2 = �2

0 (R/R0)−m where �0 ≡ �(R0). The emission is assumed to be isotropic in the comoving frame of the shell,
and uniform over the shell, i.e. the comoving spectral luminosity depends only on the radius of the shell, L′

ν′ = L′
ν′ (R). As the main purpose

of this work is to check the consistency of the tail of the prompt emission with HLE, we need to model the prompt emission. We therefore use
for the emission spectrum the phenomenological Band function (Band et al. 1993) spectrum that provides a good fit to the observed prompt
emission spectrum of the vast majority of GRBs. In the following we mainly consider emission over a finite range of radii, R0 ≤ R ≤ Rf =
R0 + �R. The comoving luminosity is then

L′
ν′ = L′

0

(
R

R0

)a

S

(
ν ′

ν ′
p

)
, S(x) = e1+b1

{
xb1 e−(1+b1)x x � xb,

xb2x
b1−b2
b e−(b1−b2) x � xb,

(1)

where ν ′
p(R) ≡ ν ′

0(R/R0)d is the frequency where ν ′L′
ν′ (R) peaks, with ν ′

0 ≡ ν ′
p(R0); xb = (b1 − b2)/(1 + b1), while b1 and b2 are the

high- and low-energy slopes of the spectrum. For b1 > −1 > b2 the Band function has a peak in the νF ν spectrum, at x = 1, and therefore
since S(x) is normalized such that S(x) = xS(x) = 1 at x = 1, it will not affect normalization of νF ν at its peak. The two functional forms
used in the band function are matched at ν ′

b = xbν
′
p. The peak luminosity L′

ν′
p

evolve as a power law with radius, L′
ν′

p
= L′

0(R/R0)a , where
L′

0 = L′
ν′

p
(R0) is a normalization factor.

Throughout the paper, primed quantities are quantities measured in the comoving frame (i.e. the local rest frame of the emitting shell),
unprimed quantities are measured either in the source rest frame (the lab frame, i.e. the cosmological frame of the GRB; this includes �, R,
θ and t) or the observer frame (this refers to observed quantities, such as F ν , ν and T).

2.2 Calculating the observed flux

The observer is assumed to be located at a distance from the source that is much larger than the source size, so that the angle extended by the
source as seen by the observer is very small and the observer effectively at ‘infinity’. In order to calculate the flux density F ν that reaches
the observer at an observed time T we integrate the luminosity L′

ν′ over the EATS (see Fig. 1), i.e. the locus of points from which photons
that are emitted by the shell at a radius R, angle θ relative to the line of sight and a lab frame time t, reach the observer simultaneously at an
observed time T (for full derivation see Appendix A).

2.3 Expected parameters values for internal shocks

The internal shocks model is the most popular model for the prompt GRB emission. Moreover, our model is very suitable for internal shocks.
Therefore, we consider it in the following. Here we calculate the scalings of the various quantities with radius, that are expected for the
internal shocks model. First, when different shells (i.e. parts of the outflow with different Lorentz factors) collide, they are expected to be in
the coasting phase, corresponding to m = 0. Moreover, for the simplest case of uniform shells, the strength of the shocks going into the two
shells, as characterized by the relative upstream to downstream Lorentz factor, �ud, is expected to be roughly constant with radius while the
shock are crossing the shells. The electrons are expected to be fast cooling, i.e. cool significantly on a time-scale much shorter than the shell
crossing time of the shock, and therefore most of the emission is expected to arise from a thin cooling layer behind the shock. Therefore, our
thin shell approximation is expected to be reasonably valid. Admittedly, we use one emitting thin shell, corresponding to a single shock front,
while the shock going into the other shell is not explicitly modelled. One could always model such a second shock by adding another thin
emitting shell that turns on and off at the same radii (R0 and Rf , respectively) but has a slightly smaller or larger Lorentz factor. This will not
introduce a big difference in the overall result, so for the sake of simplicity we do not include this here.
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Figure 1. Illustration of EATS. The particular EATS shown here are for a coasting shell (m = 0), and are ellipsoids (Rees 1966) with an ellipticity ε = β and
a semimajor to semiminor axis ration of � (which for display purposes is only 3 here). The red solid lines correspond to the inner (R0) and outer (Rf ) radii of
the emission region. We call RL(T ) the outermost radius of the EATS at observed time T . Shown are the EATS for the limiting cases corresponding to RL =
R0 (T = T ej + T 0; thick short-dashed line) and RL = Rf (T = T ej + T f ; thick long-dashed line) as well as representative cases for RL < R0, R0 < RL < Rf

and RL > Rf (dotted lines). For RL < R0 the EATS does not intersect the emission region, and therefore the first photons start reaching the observer only at
T = T ej + T 0 from R = R0 along the line of sight. At R0 < RL < Rf the flux typically rises (for �R � R0). At T = T ej + T f the last photons from the line
of sight (at R = Rf ) reach the observer, while for T > T ej + T f the front part of the EATS, which would otherwise contribute the most to the observed flux,
sticks outside of the emission radius resulting in a sharp decay in the observed flux, which is then dominated by emission from large angles relative to the line
of sight (HLE).

Now we turn to find the expected scaling of L′
ν′

p
and ν ′

p with radius, under the assumption that the observed soft gamma-ray range is

dominated by synchrotron emission. For fast cooling, the peak frequency ν ′
p of the ν F ν spectrum is ν ′

m ≈ (eB ′γ 2
m)/(2πmec

2) where dN e/

dγ e ∝ γ −p
e for γ e > γ m where γ m = (p − 2)/(p − 1)(εe/ξ e)(mp/me)(�ud − 1), while εe is the fraction of the internal energy behind the shock

in the power-law distribution of the relativistic electron, and ξ e is the fraction of all electrons taking part in this power energy distribution
(and an electron–proton plasma is assumed for the composition of the outflow). As mentioned above, �ud is expected to be roughly constant
during the shell crossing (for roughly uniform colliding shells), and therefore γ m would also be approximately constant, so that ν ′

p ∝ B ′.
The magnetic field is expected to be predominantly normal to the radial direction, so that B ′ ≈ B/� ∝ B for m = 0. Moreover, B ∝ R−1 is
expected both for a magnetic field convected from the central source, and for a field generated at the shock that hold some constant fraction
(εB) of the internal energy behind the shock. Therefore, one expects the peak frequency to evolve as ν ′

p ∝ R−1. We have also assumed
L′

ν′
p

∝ (R/R0)a . For synchrotron emission L′
ν′,max ∝ NeB

′ ∝ R0 as the number of emitting electron is proportional to the radius, N e ∝ R.

Since the cooling break frequency scales as ν ′
c ∝ R, we have L′

ν′
p

≈ L′
ν′,max(ν ′

m/ν ′
c)

−1/2 ∝ R1, implying a = 1.
More generally (without specifying the emission mechanism) for roughly uniform shells with constant �ud both the rate at which particles

cross the shock and the average energy per particle are constant with radius, implying a constant rate of internal energy generation (dE′
int/

dt ′ ∝ R0), and therefore for fast cooling this also applies for the total comoving luminosity, L′ ∼ ν ′
pL

′
ν′

p
∝ R0, and therefore d + a = 0. This

is indeed satisfied for synchrotron emission for which d = −1 and a = 1, and holds more generally for other emission mechanisms in the
fast cooling regime.

For now on the values m = 0 and d = −1 derived in this part will be used throughout the paper. However, since the expressions do
not become much simpler by specifying the value of a, we leave a in the simpler expressions, and use the value of a = 1 for figures only.
In particular, all the figures showing light curves in this paper use these parameter values, as well as the mean BATSE values for the Band
function spectral slopes: b1 = −0.25 and b2 = −1.25 (Preece et al. 2000).

2.4 Relevant times and time-scales

A photon emitted from the source (at the origin) when the shell is ejected from it (i.e. at a lab frame time tej when the shell radius is R =
0) arrives at the observer at an observer time Tej which can be thought of as the observed ejection time of the shell. We define T0 the initial
radial time by T = T ej + T 0 being the time at which the first photons emitted reach the observer (that is, photons emitted at a radius R0 along
the line of sight). We also define T f the final angular time by T = T ej + T f being the time at which the last photons that are emitted along
the line of sight (from Rf and θ = 0) reach the observer.

For a constant Lorentz factor with radius (m = 0), as expected for internal shocks, the expressions for T0 and T f are simple:

T0 = (1 + z)R0

2c�2
0

, Tf = T0

(
1 + �R

R0

)
. (2)

We also define two normalized times (and their corresponding values at T f ) that will be used in the following:

T̃ ≡ 1 + T̄ ≡ T − Tej

T0
, T̃f ≡ 1 + T̄f ≡ Tf

T0
= 1 + �R

R0
, (3)
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where T̃ = 1 (or T̄ = 0) corresponds to the onset of the spike – the very first photon that reaches the observer (emitted at R0 on the line
of sight). The main motivation for defining these two times is that they correspond to the two most natural choices for the zero to, T̃ = 0
corresponding to the ejection time of the shell, and T̄ = 0 corresponding to the onset of the spike in the light curve. The choice of the zero
time is important for the definition of the temporal index in Section 4.1, where we explore these two choices in detail. Moreover, it is more
convenient to use T̄ in some expressions and T̃ in others.

3 R E S U LT S F O R IN T E R NA L SH O C K S W I T H A BA N D F U N C T I O N S P E C T RU M

3.1 Emission from a single radius

Before to turn to the more generic case of emission from a range of radii, we first consider the limiting case of emission from a single radius
R0. The peak frequency is then ν ′

p = ν ′
0, and the luminosity is

L′
ν′ = L′

0S

(
ν ′

ν ′
p

)
R0δ(R − R0), (4)

which after some algebra (see Appendix A for details, and in particular Section A3) we obtain the flux:

Fν(T̃ ≥ 1) = (1 + z)

4πd2
L

L0T̃
−2S

(
ν

ν0
T̃

)
, (5)

where dL and z are the luminosity distance and cosmological redshift of the source, L0 ≡ 2�0L
′
0 and ν0 ≡ 2�0ν

′
0/(1 + z). Denoting F s ≡

L0(1 + z)/(4πd2
L) and using the explicit expression for the Band function (equation 1), the observed flux reads

Fν(T̃ ≥ 1)

Fs
=

{
T̃ b1−2(ν/ν0)b1 e(1+b1)(1−T̃ ν/ν0) T̃ � xbν0/ν,

T̃ b2−2(ν/ν0)b2x
b1−b2
b e1+b2 T̃ � xbν0/ν.

(6)

3.2 Emission from a finite range of radii

Integrating the luminosity (equation 1) over the EATS (for details of the calculation see Appendix A, and in particular its Section A4) leads
to the following expression for the flux:

Fν(T̃ ≥ 1) = F0T̃
−2

[
min

(
T̃ , T̃f

)2+a − 1
]
S

(
ν

ν0
T̃

)
, (7)

where F 0 ≡ (1 + z)L0/[(2 + a)4πd2
L]. This can be explicitly expressed as

Fν(T̃ ≥ 1)

F0
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ν/ν0)b1 T̃ b1−2
(
T̃ 2+a − 1

)
e(1+b1)(1−T̃ ν/ν0) T̃ < min

(
T̃f, xbν0/ν

)
,

(ν/ν0)b1 T̃ b1−2
(
T̃ 2+a

f − 1
)

e(1+b1)(1−T̃ ν/ν0) T̃f < T̃ < xbν0/ν,

(ν/ν0)b2 T̃ b2−2
(
T̃ 2+a − 1

)
x

b1−b2
b e1+b2 xbν0/ν < T̃ < T̃f,

(ν/ν0)b2 T̃ b2−2
(
T̃ 2+a

f − 1
)
x

b1−b2
b e1+b2 T̃ > max

(
T̃f, xbν0/ν

)
.

(8)

Note that the observed function has exactly the same shape as the local spectral emissivity – a pure Band function. This occurs only for m =
0 and d = −1.

In terms of number of photons N per unit photon energy E, area A and observed normalized time T (which is simply equal to F ν/hE),
this can be expressed as

dN

dE dA dT
(E, T̃ ≥ 1) = T̃ −1

[
min

(
T̃ , T̃f

)a+2 − 1
]
B

(
E

E0
T̃

)
, (9)

where

B(z) = Bnorm

{
zb1−1 e−z z � b1 − b2,

zb2−1(b1 − b2)b1−b2 e−(b1−b2) z � b1 − b2

(10)

is the familiar Band function with a normalization constant Bnorm, where z = (E/E0)T̃ = (1 + b1)x, while E = hν and E0 = hν0 are the
corresponding photon energies (the more common notation is αBand = b1 − 1 and βBand = b2 − 1).

4 PRO PERTIES OF THE SINGLE PULSE EMI SSI ON

Now that we have derived the observed flux for a single emission episode (or single pulse in the light curve), we study its temporal and
spectral behaviour for any radial width �R � 0 of the emitting region. We remind the reader that we consider only internal shocks, and use
the corresponding model parameter values (a = 1, m = 0 and d = −1) for fast cooling synchrotron emission, with a Band function emission
(and observed) spectrum (except in some cases where the discussion can stay general without much complication). Some of the results may
not hold for more general parameter values of m or d, and we point this out when relevant. For all figures showing light curves (throughout
the whole paper), the panels or figures with a linear scale show F ν/F max where Fmax ≡ Fν(T̃f ), while panels or figures with a logarithmic
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scale show F ν/F 0 where we remind the reader that F 0(a = 1) = (1 + z)L0/(12πd2
L). All figures showing temporal evolution of parameters

or light curves with a logarithmic time axis in this section use T̄ , as this shows the early behaviour much more clearly than for T̃ .
From equation (7), for reasonable values of the parameters T̃f, b1, b2, ν/ν0 and a, the pulse peaks at T = Tej + Tf (T̃ = T̃f ). While this is

generally the case, for some combinations of parameters (often involving relatively large values of T̃f ) the pulse has a round peak and starts
decaying before T̃f .

For T̃ < 1, the EATS does not intersect the emission region and no photons reach the observer (its outermost radius RL is smaller
than R0): Fν(T̃ < 1) = 0. When 1 � T̃ � T̃f (R0 � RL � Rf ), the EATS intersects the emission region but does not yet encounter its
outer edge (in particular the observed flux is independent of the radial extension �R of the emission region); the fraction of the EATS
within the emission region increases with time, as does the maximal angle θmax relative to the line of sight from which photons reach the
observer, (θmax�0)2 = (T̃ − 1). When T̃ > T̃f (RL > Rf ), the front part of the EATS is outside the emission region, and its parts inside
the emission region are at increasing angles from the line of sight. In particular, photons reach the observers from θmin � θ � θmax, where
(θmin�0)2 = (T̃ − T̃f )T̃

−1
f . Note that at T̃ � T̃f , well into the tail of the pulse, θmax/θmin ≈ T̃

1/2
f , so that the emission comes from a rather

narrow range of angles θ , whose typical value increases linearly with T̃ . Moreover, for T̃ > T̃f , the flux ratio for two identical sets of emission
parameters that differ only in their T̃f (denoted by subscripts 1 and 2) is constant in time and equal to

Fν(T̃ > T̃f ,2 > 1)

Fν(T̃ > T̃f ,1 > 1)
= T̃ 2+a

f ,2 − 1

T̃ 2+a
f ,1 − 1

,
Fν(T̃ > T̃f ,2 > 1)

Fν(T̃ > T̃f ,1 = 1)
= T̃ 2+a

f ,2 − 1

2 + a
. (11)

The first ratio approaches �R2/�R1 for �R1,2 � R0, since this corresponds to the thin shell limit, while the overall emitted energy is
proportional to �R, since L′

ν′ (R) ≈ L′
ν′ (R0) is almost independent of R within the very thin emission region. For the second ratio, the

denominator is the flux for a delta function emission with radius, for which the total emitted energy is held fixed, and therefore the ratio
approaches �R2/R0 � 1 in the limit of a thin emission region. The fact that the flux ratio is constant in time at T̃ > T̃f holds only for
m = 0 and d = −1, and means that the flux at these late times (typically after the peak of the spike, which is usually at T̃f ) has the same time
dependence regardless the width of the emitting region (�R). This can simplify the calculation of the flux for a family of pulses that differ
only in �R: one can calculate the flux for �R = 0 (T̃f = 1) and apply it to T̃ � T̃f , multiplied by a factor [T̃ 2+a

f − 1]/(2 + a) for any value
�R > 0 (T̃f > 1). Moreover, it is also sufficient to calculate the flux for �R → ∞ and apply it to T̃ � T̃f (this holds much more generally;
Granot et al. 2008).

Fig. 2 shows light curves for a single pulse in both linear and logarithmic scales, for different values of the normalized frequency ν/ν0.
The peak time is at T̃f = 2 (equivalent to T̄f = 1). The light curves sample the two parts of the Band function both before and after the peak
time. The differences between the light curves for different frequencies reflect the spectral evolution, and in particular the evolution of the
spectral break frequency νp. At higher observed frequencies ν the change in the spectral and temporal indexes associated with the passages of
νp occurs earlier. The shape of a pulse (left-hand panel of Fig. 2) can vary from being very spiky (dotted line) to a rounder peak (dot–dashed
line), depending on the frequency. It may thus provide some latitude in the fitting of actual observed pulses.

Fig. 3 shows the dependence of the same pulse on T̄f for three values of the normalized frequency ν/ν0(0.01, 0.1 and 1). It is evident
from the logarithmic scale figures that at T̄ � T̄f the flux is independent of �R (and therefore of T̄f ), and that at T̄ � T̄f all the light curves
have the same time dependence (i.e. their flux ratio is constant in time). At any given time the spectrum is independent of �R (this is valid
only for m = 0 and d = −1). The bottom right-hand panel of this figure shows linear scale to help visualize a case where the peak of the
pulse is before T̃f .

Figure 2. Light curves of a single pulse at different normalized frequencies, ν/ν0. The low- and high-energy slopes of the spectrum are b1 = −0.25 and b2 =
−1.25, while a = 1. �R/R0 = 1, so that T̃f = 2 and T̄f = 1. Left: normalized flux density shown as a function of T̃ in linear scale. Right: flux density shown
as a function of T̄ in logarithmic scale.
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Figure 3. The same pulse as in Fig. 2 is shown for different values of T̄f for (ν/ν0) = 0.01, 0.1 and 1 in the first, second and third panel, respectively (in
logarithmic scale). The fourth panel shows the case (ν/ν0) = 1 in linear scale in order to show the shape of a pulse having its peak before T = T f . The
normalized flux density is shown as a function of T T0,i /Tfi , where the subscript i denotes the ith pulse, so that all the T f,i would appear to coincide, and the
decay times of the different pulses would appear to be the same.

Fig. 4 shows the dependence of the same pulse on the parameter a for three values of the normalized frequency ν/ν0 (0.01, 0.1 and 1).
We can see that, compared to the case for a = 1, when a increases the peak is at T̄f and becomes sharper. When a decreases the pulse becomes
larger, the slope for T̄ � T̄f becoming closer to zero up to a point where it is zero. For values of a even smaller, the peak of the pulse occurs
before T̄f and becomes rounder; in this case at T̄f only a sharp break is observed.

4.1 Local temporal and spectral indexes

It is natural to define the local values of the spectral and temporal indexes as the logarithmic derivatives of the flux density with respect to
frequency and time, respectively. For the spectral index, there is no ambiguity and β ≡ − d log F ν/d log ν. For the temporal index, however, we
must choose a reference time, and the choice is not obvious. for this reason we consider two alternative definitions: αej ≡ −d log Fν/d log T̃ ,
that uses the ejection time as the reference time, and αon ≡ −d log Fν/d log T̄ that uses the onset of the spike as the reference time. The figures
in this subsection use the observed frequency ν instead of its normalized value ν/ν0, in order to provide a more realistic example that could
be at least qualitatively compared with data, and include the BAT and XRT energy ranges. For these figures we consider E0 = 2�0E

′
0/(1 +

z) = 300 keV, which could for example correspond to E′
0 = 1 keV, �0 = 300 and z = 1.

Fig. 5 shows the evolution of the temporal indexes αej and αon during a pulse (see Appendix B for the detailed evolution of the temporal
and spectral slopes). The temporal index αej starts at very negative values and gradually increases, until at T̄f it makes an abrupt jump to its
value during the decaying part of the pulse, which is exactly 2 + β (see equation B7). The temporal index αon starts at early times, T̄ � 1,
either at −1 for T̄f > 0 and T̄ < T̄f , or from 0 for T̄f → 0. Moreover, for 0 < T̄f � 1, αon ≈ −1 for T̄ < T̄f and αon ≈ 0 for T̄f < T̄ � 1
(see equations B2 and B4). Note that when αon jumps from its negative value to a positive value at T̄ = T̄f (i.e. at the peak of the spike), it
reaches the same function of T̄ , independent of the time of the jump, T̄f , and therefore the same function also holds for T̄f = �R/R0 = 0
(see equations B2 and B4). At late times, T̄ � 1 and T̄ > T̄f , the HLE relation is approached, αon ≈ 2 − b2.

The left-hand panel of Fig. 6 shows the evolution of 2 + β (where β is the spectral index) with the temporal indexes αej and αon. The
spectral index naturally softens (β increases with time), similar to what is typically observed (at least qualitatively), until it reaches −b2 at

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 1328–1346



Prompt and high-latitude emission in GRBs 1335

Figure 4. Effect of the variation of a on the shape of a pulse for (ν/ν0) = 0.01, 0.1 and 1 in the first, second and third panel, respectively (in logarithmic scale).
We can see that increasing a makes the pulse sharper. The constant parameters are T 0 = 1 s and T f = 2 s and the low- and high-energy spectral slopes are b1

= −0.25 and b2 = −1.25.

Figure 5. Evolution of the temporal indexes αej = −d log Fν/d log T̃ (left-hand panel) and αon = −d log Fν/d log T̄ (right-hand panel) with normalized
observed time T̄ , at different observed photon energies (for E0 = 300 keV). Different line styles are used for the different energies. The colour coding shows
the temporal indexes for several values of T̄f = �R/R0: 0 (green), 0.1 (blue), 1 (black) and 10 (red). The low- and high-energy spectral slopes are b1 = −0.25
and b2 = −1.25, while a = 1.

late times (T̄ ≥ xbν0/ν − 1). The change in β occurs earlier at higher photon energies. At T̄ ≥ T̄f, αej = 2 + β while αon only approaches
2 + β at late times.

In order to get a better idea of how the observed spectral index β is expected to behave in Swift XRT observations, we calculate its
average values over the XRT energy range (0.2–10 keV). We define two average values, by integrating over either the frequency ν or its
logarithm log ν:

〈β〉ν ≡ 1

(νmax − νmin)

∫ νmax

νmin

dν β(ν), 〈β〉log ν ≡ 1

log(νmax/νmin)

∫ νmax

νmin

dν

ν
β(ν) = − log(Fνmax/Fνmin )

log(νmax/νmin)
. (12)

The middle panel of Fig. 6 shows the evolution of these two averages as well as the values of β at νmin = 0.2 keV, νmax/2 = 5 keV and νmax =
10 keV. As expected, 〈β〉ν gives a larger weight to higher frequencies compared to 〈β〉log ν , and its value it is usually very close to the spectral
slope at νmax/2 (5 keV), except when the break frequency νp of the Band spectrum passes through the XRT range, and the change in β within
this range is the largest. Therefore, 〈β〉log ν appears to better reflect the spectral slope measured over a finite frequency range.

4.2 Spectrum

The local spectral emissivity in the comoving frame is taken to be a Band function. We have seen previously that for the parameter values
relevant for internal shocks (m = 0, d = −1), the observed spectrum is also a pure Band function. This is evident in the right-hand panel of
Fig. 6, which shows the temporal evolution of the observed spectrum in our model. It results from the fact that for these parameter values
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Figure 6. Left-hand panel: comparison of the evolution of the spectral (β – thin lines) and temporal (αej – thick lines – and αon – very thick lines) indexes at
different photon energies (E0 = 300 keV). The low- and high-energy spectral slopes are b1 = −0.25 and b2 = −1.25, while a = 1. Middle panel: evolution
of spectral index β over the Swift XRT energy range (νmin < ν < νmax with νmin = 0.2 keV and νmax = 10 keV). Shown are the local values of β at νmin

(short-dashed line), νmax/2 (dotted line) and νmax (long-dashed line), as well as the average values of β over the XRT range, taken either over ν (thin solid
line) or over log ν (thick solid line). The low- and high-energy spectral slopes are b1 = −0.25 and b2 = −1.25, while a = 1. Right-hand panel: evolution of
the observed spectrum with time. The spectrum, νF ν/(ν0F 0), is shown as a function of the normalized frequency, ν/ν0, for different values of the normalized
time, log10(T̄ /T̄f ), where we have used T̄f = 1. The red thin lines correspond to the rising stage of the pulse (T̄ < T̄f ), while the black thick lines are for its
peak (T̄ = T̄f ) and decaying stage (T̄ > T̄f ). The low- and high-energy spectral slopes of the spectrum are b1 = −0.25 and b2 = −1.25, while a = 1.

the observed peak frequency νp is constant along the EATS. We have νp/ν0 = Ep(T )/E0 = 1/T̃ = 1/(1 + T̄ ) (see equation A18) which is
independent of T̄f . This behaviour is evident in the right-hand panel of Fig. 6, where Ep/E0 is 1 at the onset of the spike (T̄ = 0), Ep/E0 =
1/2 at the peak of the spike (T̄ = T̄f = 1) and Ep/E0 decreases roughly linearly with T̄ at later times, during the tail of the pulse.

5 C OMBINING PULSES TO O BTAIN THE PROMPT EMI SSI ON

There is good observational evidence that the SDP is the tail of the prompt emission (O’Brien et al. 2006). Within our model, the prompt
emission is the sum over a finite number of pulses, and therefore the SDP is the sum of their tails. In this section we provide examples of
combining several pulses to model the prompt emission, and study the effect of varying the different pulse parameters. To this end, we start
with a simple prompt emission model consisting of six pulses that are identical except for their ejection time Tej (see Fig. 7a). Each pulse
corresponds to a single emission episode of a particular shell that was ejected at T ej,i (for ith pulse) has an initial radial time T 0,i, and a final
angular time of T f,i. Then, we study the effect of changing the other model parameters one by one among the pulses. All light curves in this
section are drawn against T , as the ejection time is different for each pulse (and then the definition of a T̃ T̄ would differ for each pulse). In
Fig. 7(b) the peak flux Fpeak is varied. Next, we vary T0 and/or T f . In Fig. 7(c), T0 is varied while T f/T 0 remains constant. In Fig. 7(d), T f

and �R/R0 vary while T0 and R0 remain constant. In Fig. 7(e), T0 and �R/R0 vary while T f and Rf remain constant. Each of these panels
show the light curve in logarithmic scales, T = 0 is set to the onset time of the first pulse, which means that T ej,1 = −T 0,1, thus showing the
modelled prompt from a time close to what would be the trigger time for an observed burst. The red solid line represents the total prompt
emission (the sum of all the pulses), while the black non-solid lines are the individual underlying pulses. All the examples shown here of the
prompt emission are for ν/ν0 = 0.1.

In the case of six equal pulses (Fig. 7a), later pulses appear to decay much more steeply just after their peak in a logarithmic scale with
the zero time near the beginning of the first pulse. At very late times the relative contribution from the different pulses becomes almost the
same. As the only parameter that varies between pulses is the ejection time, Tej, this change in slope must depend only on it. Noting that the
temporal slope is α ≡ −d log F ν/d log T = αej/(1 − T ej/T ), and that the value of αej just after the peak is independent of Tej (it depends
only on T̃f ; see equation B6), we can see that the value of α just after the peak scales as αpeak = αej,peak(1 + T ej/T f ), since T = T ej + T f is
the time of the peak of the pulse. Since the pulses are equal they have the same T f and αej,peak, it is clear that αpeak increases with Tej. At late
times when T � T ej, α approaches αej = 2 + β.

When varying Fpeak while fixing the other parameters (see Fig. 7b), the relative flux from each pulse at very late times is proportional to
its Fpeak, so that the largest contribution is from the pulse with the largest Fpeak.

At late times the observed flux density of a single spike scales as Fν ∝ T̃ b2−2 (see e.g. equation 8). If at the peak time of the spike, which
for simplicity is assumed here to be at T = T ej + T f (as is usually the case), the observed photon energy is at the high-energy part of the
Band function, E ≥ E∗ ≡ E0(T 0/T f )xb or ν ≥ ν∗ ≡ ν0(T 0/T f )xb, then (using equation 8) the flux from the peak onwards is simply given by

Fν≥ν∗ (T ≥ Tej + Tf ) = Fν,peak

(
T − Tej

Tf

)b2−2

, (13)
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Figure 7. For all panels, the black lines show the individual pulses, while the red line shows the total prompt emission. The normalized observed frequency
is ν/ν0 = 0.1. (a) Prompt emission with six pulses, all having the same following parameters: m = 0, d = −1, a = 1, b1 = −0.25, b2 = −1.25, T 0 = 2 s,
T̄f = �R/R0 = 3 and F peak/F 0 = 1. The ejection times Tej are (from the first to the last pulse) −2, 8, 18, 28, 38 and 48 s. (b) Same as top left-hand panel
except for varying F peak/F 0, which is from the first to the last pulse: 0.1, 0.5, 1, 0.8, 0.3 and 0.2. (c) Same as top left-hand panel except for varying T0 while
�R/R0 = 3 remains constant, whose values are (from first to last pulse) 6, 5, 4, 3, 2 and 1 s, which correspond to T f = 24, 20, 16, 12, 8 and 4 s. To keep
tej,1 = − T 0,1 the ejection times in this case are −6, 4, 14, 24, 34 and 44 s. (d) Same as top left-hand panel except for varying �R/R0 while keeping R0 and
therefore T0 constant. The values of �R/R0 are (from first to last pulse) 5, 4, 3, 2, 1 and 0. Since T 0 = 2 s, this corresponds to T f = (1 + �R/R0)T 0 = 12,
10, 8, 6, 4 and 2 s, respectively. (e) Same as top left-hand panel except for varying �R/R0 while keeping Rf constant and therefore T f and T 0/R0 also remain
constant, while both R0 and T0 vary. From first to last pulse, �R/R0 = 10, 3, 1, 0.3, 0.1 and 0.03, and since T f = 8 s this corresponds to T 0 = 0.727, 2, 4,
6.15, 7.27 and 7.77 s. The final peak frequency νp(T̃f ) = (T0/Tf )ν0 at T f is also kept constant, so that from the first to the last pulse ν/ν0 = 0.0091, 0.025,
0.05, 0.0769, 0.0909 and 0.0971. (f) Example of a more realistic prompt emission consisting of three pulses with T ej = −1, 13 and 21 s, T 0 = 2 s for all three
pulses, �R/R0 = 3, 2, 1 and F peak/F 0 = 0.7, 1, 0.7.

while for E/E∗ = ν/ν∗ < 1 the expression is slightly more complicated,

Fν<ν∗
Fν,peak

=

⎧⎪⎨
⎪⎩

(
T −Tej

Tf

)b1−2
e−(1+b1)(ν/ν0)(T −Tej−Tf )/T0 Tf ≤ T − Tej ≤ T0xbν0/ν,(

T0xbν0
Tfν

)b1−b2
eb2−b1+(1+b1)(Tf/T0)(ν/ν0)

(
T −Tej

Tf

)b2−2
T − Tej ≥ T0xbν0/ν,

(14)

but the qualitative behaviour is still rather similar. Therefore, the flux ratio of two pulses with ejection times T ej,1 ≤ T ej,2 and a comparable
Ep(T̄f ) = (T0/Tf )E0 (as is usually the case for different pulses in the prompt emission of the same GRB), at late times (T > max (T ej,1 +
T f ,1, T ej,2 + T f ,2) and T − T ej,2 � T ej,2 − T ej,1) is approximately

Fν,1(T )

Fν,2(T )
∼ Fpeak,1

Fpeak,2

(
Tf ,1

Tf ,2

)2+β

for min[T̄f ,1, T̄f ,2] > 1 and T − Tej,2 � Tej,2 − Tej,1, (15)

where β = −b2 for ν ≥ ν∗ while β is generally intermediate between −b2 and −b1 for ν < ν∗.
Fig. 7(c) demonstrates this nicely for a series of six pulses with the same Fpeak but decreasing T f , so that the later pulses with a smaller

T f decay faster and become subdominant at late times. At the latest times the first spike, which has the largest T f , dominates the observed
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flux in the tail emission. A similar behaviour is also seen in Fig. 7(d). In Fig. 7(e) both Fpeak and T f are the same between the different pulses,
and therefore their tail fluxes at late times are similar. In Fig. 7(c), T0 and T f are varied while T f/T 0 is constant, and it can be seen that this
corresponds to a rescaling of the pulse width (its typical duration) without effecting its shape. In Fig. 7(d), T f and T f/T 0 are varied while T0

is constant, and this nicely demonstrates how the shape of the pulse depends on T f/T 0. Typically, the rise time of a pulse is T f − T 0 while its
decay time is T f , so that the ratio of the rise and decay time is 1 − T 0/T f . In Fig. 7(e), T0 and T f/T 0 are varied while T f is constant. In this
case the rise time varies considerably between the different pulses while the decay time-scale and the late time tail of the pulses are practically
the same. This arises since the tail is dominated by emission from R ∼ Rf , that in this case is very similar for all the pulses. Moreover, for the
particular choice of parameters in Fig. 7(e), where Ep(T̄f ) = (T0/Tf )E0 and E∗ = xbEp(T̄f ) remain constant for all the pulses, their late time
tails have the same flux normalization. This can be understood from equation (14), where the flux for T̃ > max(T̃f, xbν0/ν) can be written as
Fν/Fν,peak = (E/E∗)b2−b1 exp[(b1 − b2)(E − E∗)/E∗]T̃ b2−2.

Fig. 7(f) shows a more realistic example of the prompt emission, in which a larger number of model parameters is varied between the
different pulses. This example contains only three pulses in order to be clearer. It can be seen that the flux during the decaying phase is
initially dominated by the last pulse just after its peak (T > 27 s), but the second peak becomes dominant (even if only by a small factor) as
early as T ∼ 37 s, and finally at T ∼ 140 s the first pulse becomes the dominant one. This demonstrates that different pulses can dominate the
observed flux during the course of the SDP. Which pulses would contribute more to the SDP can be estimated according to their typical width
(or duration), peak flux and peak time. The peak time is most important at the beginning of the SDP, where the last spike always dominates
just after its peak if its peak is above the flux from the other spikes. Later on the relative contribution of the different spikes can be estimated
according to equation (15). Since the late time flux scales as F peakT

2+β

f and usually 0 � β � 2, the power of T f (which corresponds to the
typical width of the spike) is higher than that of Fpeak, so that wider spikes tend to dominate over narrower spikes, even if their peak flux is
somewhat lower.

One should be very careful when fitting actual data with such a model. Fig. 8 shows what can happen if because of noisy data or coarse
time bins, a prompt emission (red solid line) which is actually composed by several pulses (three, six or 12 in the cases shown; black non-solid
lines; pulses’ parameters shown in Tables 1–3) is fitted by a single broad pulse (green solid line). In this case the tail of the prompt emission
can be significantly overestimated at late times, by a factor that tends to increase with the true number of underlying pulses. This can be
understood by the simple example of comparing a single spike with N identical spikes with the same peak flux but a duration smaller by a
factor of N, for which the sum of their late time tail flux would be smaller than that of the single pulse by a factor of ∼N 1+β . However, in more
realistic examples, the late time flux would often be dominated by the widest underlying pulse, so that its width would be more important
than the total number of narrower underlying spikes. It is important to keep this effect in mind when confronting such a model with actual
data.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented and explored a model for the prompt GRB emission and its HLE tail. This model is physically motivated and realistic: it
consists of a finite number of emission episodes, each of which corresponds to a single spike in the prompt light curve, and is modelled by
a relativistically expanding thin spherical uniform shell emitting isotropically in its own rest frame within a finite range of radii. Our model
thus describes the prompt emission and the SDP as a whole from its very start to its late tail. Yet this model is easy to use (fully analytic in
its simplest form described here), making it particularly suitable for detailed combined temporal and spectral global fits to the prompt GRB
emission and the following SDP. Such fits can provide a stricter test of the HLE model for the SDP compared to most previous models, since
we use a single self-consistent model to fit both the prompt emission and the SDP, while most previous models fit only the SDP and are
largely decoupled from the details of the prompt emission. Moreover, our model is also physically motivated, and more realistic than previous
models. We have derived analytic expressions for the flux in the realistic case of a Band function spectrum (equations 7 and 8), which consists
of two power laws that smoothly join at some typical photon energy.

The temporal evolution of the instantaneous values of the temporal (α) and spectral (β) indexes for a single emission episode was
studied, corresponding to a single observed pulse in the light curve. The definition of α is not unique as it depends on the choice of reference
time. We explored two options for the reference time, either the ejection time (αej) or the onset time of the spike (αon), and found that for
the former the HLE relation (αej = 2 + β) is satisfied from immediately after the peak of the spike (T̄ > T̄f ), while for the former it is only
approached at late times (αon ≈ 2 + β at for T̄ > T̄f and T̄ � 1).

We have intentionally chosen a simple model to describe the pulses, in order to reduce the number of free parameters. For a single emission
episode (or pulse), in the most generic case there are 10 free parameters: the power m = −2 d log �/d log R, d = d log ν ′

p/d log R, a =
d log L′

ν′
p
/d log R, the normalization factor F0 (or L0), three additional parameters for the Band function (the two spectral slopes, b1 and b2, as

well as the peak energy at the onset of the pulse E0), the two time-scales T0 and T f and the ejection time Tej. We have the general constraint
�R > 0, which implies T̃f = 1 + �R/R0 > 1. Focusing on the internal shocks model fixes some of these parameters: as the outflow is
typically in the coasting phase, m = 0, while for synchrotron emission from fast cooling electrons d = −1 and a = 1. Since we expect
�R/R0 = T̄f ∼ 1 we can fix T̄f ∼ 1 (although a wider range, such as 0.2�R/R0 � 5, may still be considered as plausible). Fixing m, d , a

and T f/T 0 in this manner would leave only six free parameters. For a prompt emission with several pulses, one may be able in some cases
to neglect the spectral evolution and use the same values of b1, b2 and E0 for all the different pulses (or at least two of them, e.g. b1 and b2),
which leads to a total number of free parameter of 3(N pulses + 1) (or 4N pulses + 2 if E0 cannot be fixed for all the pulses) for a burst with
Npulses pulses.
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Figure 8. Comparison between the emission from several partially temporally overlapping pulses (individual pulses are in non-solid black lines, while the
total prompt emission is in a solid red line), and a tentative fit to these pulses using a single broad pulse (thick solid green line). The same single broad pulse is
used as a tentative fit for three different prompt emissions, with 3 (top panels), 6 (middle panels) and 12 (bottom panels) pulses. The parameters of the pulses
are shown in Tables 1–3. The normalized observed frequency is ν/ν0 = 0.1. Left-hand panels: linear scale. Right-hand panels: logarithmic scale.

Table 1. Parameters of the pulses for Fig. 8 (top panels).

Pulse number
1 2 3 Broad pulse

Tej (s) −2 15 35 −4
T0 (s) 2 4 5 4
T f 16 16 25 36
F peak/F 0 0.85 1 0.12 1.03

The shape of the pulses in our model can vary considerably, from very spiky peaks to rounder ones, from a very sharp rise to shallower
rise and so on (see Figs 2–4). This can help reproduce some of the observed diversity in the shape of spike in the prompt light curve. This
appears to be a promising feature of our model. However, we have an abrupt change in the temporal index at T̄f , that usually corresponds
to a sharp peak of the spike. This is caused by our model assumption that the emission abruptly shuts off at the outer emission radius Rf .
Therefore, we also consider an alternative and more realistic assumption, which leads to a rounder peak for the spikes, where the emission
more gradually turns off at R > Rf . This is done by introducing and exponential turn-off with radius of the comoving spectral luminosity,
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Table 2. Parameters of the pulses for Fig. 8 (middle panels).

Pulse number
1 2 3 4 5 6 Broad pulse

Tej (s) −2 1 16 26 36 46 −4
T0 (s) 2 2 2 1.5 2 2 4
T f 6 10 6 6 8 8 36
F peak/F 0 0.25 0.8 0.9 1 0.4 0.2 1.03

Table 3. Parameters of the pulses for Fig. 8 (bottom panels).

Pulse number
1 2 3 4 5 6 7 8 9 10 11 12 Broad pulse

Tej (s) −2 −1 5 11 19 20 26 31 36 44 51 66 −4
T0 (s) 2 2 2 2 1 2 2 2 3 2 2 3 4
T f 4 6 6 6 2 5 6 6 7.5 8 6 6 36
F peak/F 0 0.25 0.5 0.75 0.85 0.75 0.85 0.95 0.55 0.35 0.25 0.11 0.11 1.03

L′
ν′ (R), and is examined in Appendix C. The more gradual the turn-off of the emission with radius the rounder the peak of the pulse in the

light curve. This can help fit the observed variety of pulse shapes even better (at the cost of adding an additional free parameter).
In the particular case of synchrotron emission from internal shocks, we find that the observed spectrum has the same shape as the

emitted one, which in our case is modelled as a Band function. The observed peak photon energy of the Band function decreases with time,
Ep(T̃ ) = E0/T̃ , naturally leading to a softening of the spectrum with time, similar to what is observed by Swift. Thus, our model can at
least qualitatively reproduce the main temporal and spectral features observed by Swift. The spectral index β evolves from its value below
Ep(β = −b1) to its value above Ep(β = −b2), where the transition that corresponds to the passage of Ep through the observed energy band
occurs at earlier times for higher observed photon energies (or frequencies).

When modelling the prompt emission by combining several pulses, the SDP is initially dominated by the last pulse (just after its peak,
if it is above the flux fro the other pulses), but can later be dominated by the tail of other pulses. The relative contribution of a pulse to the
late time flux scales as ∼F peakT

2+β

f , and therefore wider pulses (with a larger T f ), and to a lesser extent pulses with a larger peak flux (Fpeak),
tend to dominate the late time flux, deep into the SDP. Moreover, often the contribution to the total flux from the tails of several pulses can
be comparable, so it cannot be adequately modelled using a single pulse model. Therefore, we caution here that modelling the SDP using the
HLE of a single pulse, F ν ∝ (T − T ref )−(2+β), may lead to wrong conclusions, and all the more so if the reference time T ref is arbitrarily set
to the GRB trigger time. Even if T ref is set to the onset time of the last spike, this may still be a bad approximation in many cases since (i) we
find that αej = 2 + β (with T ref = T ej) rather than αon (with T ref = T ej + T 0, corresponding to the onset of the spike) while αon approaches
αej = 2 + β only at late times well after the peak of the last pulse, and (ii) at such late times the flux often becomes dominated by the tails of
earlier pulses.

Our model can produce different shapes for the tail of the prompt emission, from close to a power law (which can have a different
temporal index than its asymptotic late time value) to a curved shape with decreasing temporal index α. This is qualitatively consistent with
observations, where these type of behaviour are observed. We have demonstrated that just after the peak of the last pulse, the decay index of
the prompt emission tail can reach very large values, far greater than the typical average value observed during the SDP by Swift, of 3 � α �
5 (Nousek et al. 2006). Larger values for the temporal index, however, are sometimes observed close to the end of the prompt emission (for
example in GRB 050422, GRB 050803 or GRB 050916; see fig. 2 from O’Brien et al. 2006), in accord with our model.

Because of the large number of free parameters, the fitting of actual data should be handled with care, and there may be various
degeneracies involved. The results of such fits to data should also be taken cautiously because of the difficulty in properly resolving distinct
pulses in the prompt emission. For different reasons (such as noisy data, coarse time bins, pulse overlap etc.), a group of distinct pulses may
be fitted by a single broader pulse, resulting in an overprediction of the flux during the SDP, as well different spectral and temporal evolution,
which might lead to a misinterpretation of the SDP. Nevertheless, when handled with care, a fit of our model to a good combined data set
of the prompt GRB emission and its SDP tail can serve as a powerful test of the HLE model for the SDP, and thus help distinguish between
different models for the prompt GRB emission.
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APPENDIX A : D ETAILED CALCULATION O F THE FLUX

In order to calculate the flux density F ν that reaches the observer at an observed time T , we closely follow Granot et al. (2008): we integrate
over the EATS, i.e. the locus of points from which photons that are emitted by the shell at a radius R, angle θ relative to the line of sight and
a lab frame time t, reach the observer simultaneously at an observed time T . The lab frame time and the shell radius are related by

t − tej =
∫ R

0

dr

βc
≈ R

c
+ R

2(m + 1)c�2
. (A1)

From simple geometrical considerations, the EATS is given by

T − Tej

(1 + z)
= t − tej − R cos θ

c
≈ R

c

[
1 − cos θ + 1

2(m + 1)�2

]
. (A2)

Since � � 1 we can consider only small emission angles θ � 1, for which cos θ ≈ 1 − θ 2/2, so that the EATS reads

T − Tej

(1 + z)
≈ RL

2(m + 1)c�2
L

[
ym+1 + y(m + 1)(�Lθ )2

]
, (A3)

where we have introduced the normalized radius y ≡ R/RL, as well as RL = RL(T ) that is the largest radius on the EATS at time T , and
�L ≡ �(RL). Since RL is always obtained along the line of sight (at θ = 0),

RL = 2(m + 1)c�2
L

T − Tej

(1 + z)
= R0

(
T − Tej

T0

)1/(m+1)

, T0 = (1 + z)R0

2(m + 1)c�2
0

. (A4)
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Substituting equation (A4) into equation (A3) implies

1 − μ ≈ θ2

2
= y−1 − ym

(m + 1)�2
L

,
dμ

dy
= y−2 + mym−1

2(m + 1)�2
L

, (A5)

where μ ≡ cos θ . The Doppler factor between the comoving frame and the lab frame is given by

δ ≡ (1 + z)
ν

ν ′ = 1

�(1 − βμ)
≈ 2�

1 + (�θ )2
= 2(m + 1)�Ly−m/2

m + y−m−1
. (A6)

Remembering the reader that T = T ej + T f is the time at which the last photons that are emitted along the line of sight (from Rf and θ

= 0) reach the observer [which can be defined here by RL(T ej + T f ) ≡ Rf ], from equation (A4) its general value is

Tf = T0

(
Rf

R0

)m+1

= T0

(
1 + �R

R0

)m+1

. (A7)

In the limit �R → 0, T f → T 0.
The observed flux is then obtained by integration over the EATS (Sari 1998; Granot 2005):

Fν(T ) = (1 + z)

4πd2
L

∫
dLν = 1 + z

4πd2
L

∫
δ3dL′

ν′ = 1 + z

8πd2
L

∫ ymax

ymin

dy
dμ

dy
δ3(y) L′

ν′ (y), (A8)

where dL′
ν′ = L′

ν′ (R)dν dφ/4π → L′
ν′ (r) dμ/2 = (1/2)L′

ν′ (R)(dμ/dy) dy due to symmetry around the line of sight (no dependence of
the emission on the azimuthal angle φ), L′

ν′ (R) is the total comoving spectral luminosity of the shell (the emitted energy per unit time and
frequency), ν ′ = ν(1 + z)/δ and dL(z) is the luminosity distance of the source. The limits of integration over y are

ymin = min

[
1,

R0

RL(T )

]
=

⎧⎪⎨
⎪⎩

1 T ≤ Tej + T0,(
T −Tej

T0

)−1/(m+1)
T ≥ Tej + T0,

ymax = min

[
1,

R0 + �R

RL(T )

]
=

{
1 T ≤ Tej + Tf,(

T −Tej

Tf

)−1/(m+1)
T ≥ Tej + Tf .

(A9)

For T ≤ T ej + T 0 we have RL(T ) ≤ R0 and therefore ymin = ymax = 1 and F ν(T ) = 0. This is since the EATS does not intersect the emission
region for RL < R0, and only touches it at one point, (R, θ ) = (R0, 0), for RL = R0(T = T ej + T 0). The observed flux becomes non-zero for
RL > R0, corresponding to T > T ej + T 0. Substituting equations (A5) and (A6) into equation (A8) finally gives

Fν(T ) = (1 + z)

2πd2
L

�0

(
T − Tej

T0

)−m/[2(m+1)] ∫ ymax

ymin

dy y−1−m/2

(
m + 1

m + y−m−1

)2

L′
ν′ (y). (A10)

A1 Power-law spectrum

While a single power-law emission spectrum is not very realistic, it already shows many important properties that also appear for a Band
function emission spectrum (considered in the main text). This is the reason why this case is described here. The luminosity is then

L′
ν′ = L′

0

(
R

R0

)a (
ν ′

ν ′
0

)b

= L′
0T̃

(2a+mb)/[2(m+1)]

(
ν

ν0

)b

ya+mb/2

(
m + 1

m + y−m−1

)−b

, (A11)

where the comoving spectral luminosity also scales as a power law with radius when the emission is over a finite range of radii, ν ′
0 is a fixed

frequency in the comoving frame.

A1.1 Emission from an infinitely thin shell at radius R0

We first study the case where the whole emission comes from a single radius R0,

L′
ν′ = L′

0

(
ν ′

ν ′
0

)b

R0δ(R − R0) = L′
0

(
ν

ν0

)b (
y

ymin

)mb/2 (
m + 1

m + y−m−1

)−b

yminδ(y − ymin)

= L′
0

(
ν

ν0

)b (
m + 1

m + y−m−1
min

)−b

yminδ(y − ymin), (A12)

where this is valid only for T̃ ≥ 1 that corresponds to RL ≥ R0, for which ymin = R0/RL = [(T − T ej)/T 0]−1/(m+1). Equation (A10) then
implies

Fν(T ≥ Tej + T0) = (1 + z)

4πd2
L

L0

(
ν

ν0

)b [
T − Tej + mT0

(m + 1)T0

]b−2

. (A13)

There are two times of particular relevance here: the radial time T r(R0) = T 0 = (1 + z)R0/[2c(m + 1)�0], which is the time past Tej when
the first photons start reaching the observer, and the angular time T θ (R0) = (1 + z)R0/(2c�0) = (m + 1)T r(R0) that sets the time-scale for

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 1328–1346



Prompt and high-latitude emission in GRBs 1343

the width of the pulse. One can rewrite the expression for the observed flux density as

Fν(T > Tej + T0) = (1 + z)

4πd2
L

L0

(
ν

ν0

)b [
T − Ts

Tθ (R0)

]b−2

, (A14)

where T s = T ej + T 0 − T θ (R0) = T ej − mT 0 is the reference time for the power-law flux decay of the pulse, and is exactly T θ (R0) before
the onset of the pulse. Since the emission itself occurs at one particular radius (R0) it depends only on the Lorentz factor at that radius, and
is independent of m. In particular, T θ (R0) = (m + 1)T 0 and the pulse peak flux are independent of m. The value of m affects only the onset
time of the pulse (T = T ej + T 0) and the reference time for the power-law flux decay. For internal shocks we expect a coasting shell (m = 0)
for which T s = T ej and T θ (R0) = T 0. It can easily be seen that the HLE relation, α = 2 + β where F ν ∝ T −αν−β , is satisfied here as β =
−b and α = 2 − b = 2 + β.

A1.2 Emission from a region of finite width

We now turn to the case where the emission comes from a range of radii between R0 and Rf = R0 + �R > R0. The comoving spectral
luminosity in this case is L′

ν′ = L′
0(R/R0)a(ν ′/ν ′

0)b, and the flux density is given by (Granot et al. 2008):

Fν(T ) = (1 + z)

4πd2
L

L0

(
ν

ν0

)b

T̃
2a−m(1−b)

2(m+1)

∫ ymax

ymin

dy ya−1−m(1−b)/2

(
m + 1

m + y−m−1

)2−b

, (A15)

which for internal shocks (m = 0) becomes

Fν(T ≥ Tej + T0) = (1 + z)

4πd2
L

L0(ν/ν0)b

(2 + a − b)
T̃ b−2

[
min(T̃ , T̃f )

2+a−b − 1
]
. (A16)

It is therefore obvious that for T � T ej + T f the HLE relation is valid, where the reference time is the ejection time Tej, as in this case the
spectral slope is β = −b and the temporal slope is α = 2 − b = 2 + β. In this sense a finite range of emission radii with m = 0 is similar
to emission from a single radius, as in both cases the HLE relation α = 2 + β is strictly valid immediately from T ≥ T ej + T f , for some
reference time, though in the latter case the reference time for which this is valid is equal to the observed ejection time only for m = 0. For
emission from a finite range of radii with m �= 0 the relation α = 2 + β is approached asymptotically at T − T ej � T f .

A2 Band function spectrum: general case and late time dependence

In the main text we have given the flux in the specific case of internal shocks, m = 0 and d = −1. We derive here the flux for any values of
the parameters m and d.

A3 Emission from a single radius

When the whole emission comes from a single radius R0, the peak frequency is ν ′
p = ν ′

0, and the luminosity is thus

L′
ν′ = L′

0S

(
ν ′

ν ′
p

)
R0δ(R − R0) = L′

0S

(
ν ′

ν ′
p

)
yminδ(y − ymin). (A17)

Using this luminosity (equation A17) in the integral for the flux (equation A10) results in

Fν(T ≥ Tej + T0) = (1 + z)

4πd2
L

L0

[
T − Ts

Tθ (R0)

]−2

S

[
ν

νp(T )

]
,

νp(T )

ν0
= Ep(T )

E0
=

[
T − Ts

Tθ (R0)

]−1

, (A18)

where as in Section A1, T s ≡ T ej − mT 0 is the reference time for the power-law flux decay of the pulse, T θ (R0) = (m + 1)T 0 = (1 +
z)R0/2c�2

0 is the angular time at R0 and Ep(T ) = hνp(T ) is the photon energy corresponding to the peak of the Band function spectrum.
Note that for m = 0, T s = T ej. One can express the argument of S as

ν

νp(T )
= E

Ep(T )
= ν

ν0

[
T − Ts

Tθ (R0)

]
,

ν

ν0
= E

E0
= (1 + z)ν

2�0ν
′
0

. (A19)

Reminding that F s ≡ L0(1 + z)/(4π d2
L), we then use the explicit expression for the Band function (equation 1) to express the observed flux

as

Fν(T ≥ Tej + T0)

Fs
=

⎧⎪⎪⎨
⎪⎪⎩

[
T −Ts
Tθ (R0)

]b1−2 (
ν

ν0

)b1
e(1+b1)[1−(ν/ν0)(T −Ts)/Tθ (R0)] T −Ts

Tθ (R0) ≤ xb

(ν/ν0) ,

[
T −Ts
Tθ (R0)

]b2−2 (
ν

ν0

)b2
x

b1−b2
b e1+b2 T −Ts

Tθ (R0) ≥ xb

(ν/ν0) .

(A20)
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A4 Emission from a range of radii

In the case of emission with a Band function spectrum over a finite range of radii, R0 < R < Rf = R0 + �R, we remind that the comoving
luminosity is

L′
ν′ = L′

0

(
R

R0

)a

S

[
ν ′

ν ′
p(R)

]
. (A21)

Introducing (A21) into (A10) we obtain the general expression of the flux:

Fν

Fs
= y−a+m/2

min

∫ ymax

ymin

dy ya−1−m/2

(
m + 1

m + y−m−1

)2

S

(
ν ′

ν ′
p

)

=
∫ ỹmax

1
dỹ ỹa−1−m/2

(
m + 1

m + y−m−1
min ỹ−m−1

)2

S

(
ν ′

ν ′
p

)
, (A22)

where ỹ = y/ymin, ỹmax = min[y−1
min, (Tf/T0)1/(m+1)] and

ν ′

ν ′
p

= ν

ν0

(
y

ymin

)m/2−d (
m + y−m−1

m + 1

)
= ν

ν0
ỹm/2−d

(
m + y−m−1

min ỹ−m−1

m + 1

)
, (A23)

and the expression for ν ′/ν ′
p assumes that ν ′

p = ν ′
0(R/R0)d = ν ′

0(y/ymin)d. At late times, T − T ej � T f , we have y � 1, ỹmax = Tf/T0

and ν ′/ν ′
p ≈ (ν/ν0)ỹ−1−d−m/2y−m−1

min /(m + 1) increases with time so that S(ν ′/ν ′
p) ∝ (ν ′/ν ′

p)b2 and Fν ∝ (ν/ν0)b2y(m+1)(2−b2)
min = (ν/ν0)b2 [(T −

Tej)/T0]b2−2, i.e. the HLE relation α = 2 + β is satisfied.
In the case for internal shocks, with m = 0 and d = −1, ν ′/ν ′

p becomes independent of y and can be taken outside the integral
[ν ′/ν ′

p = (ν/ν0)/ymin = (ν/ν0)T̃ ], leading to the much simpler expression of the flux seen in the main text (equation 7).

A P P E N D I X B: EVO L U T I O N O F TH E T E M P O R A L A N D S P E C T R A L I N D E X E S

This appendix explicits the evolution of the temporal and spectral indexes with time.

B0.1 Single emission radius

Where the luminosity is a delta function with radius at radius R0, we obtain

β =

⎧⎪⎨
⎪⎩

−b1 + T̃ (1 + b1)ν/ν0 T̃ ≤ xbν0/ν,

−b2 T̃ ≥ xbν0/ν,

(B1)

αon =

⎧⎪⎨
⎪⎩

(2 − b1)T̄ /(1 + T̄ ) + T̄ (1 + b1)ν/ν0 T̄ ≤ xbν0/ν − 1,

(2 − b2)T̄ /(1 + T̄ ) T̄ ≥ xbν0/ν − 1,

(B2)

αej =

⎧⎪⎨
⎪⎩

2 − b1 + T̃ (1 + b1)ν/ν0 T̃ ≤ xbν0/ν,

2 − b2 T̃ ≥ xbν0/ν.

(B3)

We then have a very simple relation between αej and β: αej = 2 + β, as expected at asymptotically late times for HLE, just that for
αej it is satisfied all along for the local values of the temporal and spectral indexes. At late times αon approaches αej and a similar relation
approximately holds between αon and β (αon ≈ 2 + β).

B0.2 Emission from a finite range of radii: R0 < R < Rf

In this case, the spectral index β is still given by equation (B1), while the two temporal indexes are

αon =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − b1) T̄

(1+T̄ ) + T̄ (1 + b1) ν

ν0
− (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
T̄ < min(�R/R0, xbν0/ν − 1),

(2 − b1) T̄

(1+T̄ ) + T̄ (1 + b1) ν

ν0
�R/R0 < T̄ < xbν0/ν − 1,

(2 − b2) T̄

(1+T̄ ) − (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
xbν0/ν − 1 < T̄ < �R/R0,

(2 − b2) T̄

(1+T̄ ) T̄ > max(�R/R0, xbν0/ν − 1),

(B4)
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which limits at very early and very late times are

αon ≈

⎧⎪⎨
⎪⎩

−1 T̄ � 1,

2 − b2 T̄ � 1
(B5)

and

αej =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − b1 − (2 + a)/(1 − T̃ −a−2) + T̃ (1 + b1)ν/ν0 T̃ < min(Rf/R0, xbν0/ν),

2 − b1 + T̃ (1 + b1)ν/ν0 Rf/R0 < T̃ < xbν0/ν,

2 − b2 − (2 + a)/(1 − T̃ −a−2) xbν0/ν < T̃ < Rf/R0,

2 − b2 T̃ > max(Rf/R0, xbν0/ν).

(B6)

According to equations (B1) and (B6) αej has a simple relation with β:

αej =

⎧⎪⎨
⎪⎩

β + 2 − (2 + a)/(1 − T̃ −a−2) T̃ < Rf/R0(T̄ < T̄f ),

β + 2 T̃ > Rf/R0(T̄ > T̄f ).
(B7)

Note that in the limit T̄ → 0(T̃ → 1), at very early times, just after the onset of the spike, αej → −∞ while αon → −1. Moreover, the simple
HLE relation, αej = 2 + β, is valid as soon as T̃ > T̃f , for any value of T̃f . This is a relation between the local values of αej and β, that hold
as both change with time, and is strictly valid from T̃ > T̃f only for m = 0 and d = −1. For general values of m or d this local HLE relation
would be valid only at late times, T̄ � T̄f . Note, however, that for alternative other definitions of the temporal index, such as αon, this relation
is only approached at late time: αon ≈ 2 + β for T̄ > T̄f and T̄ � 1.

APPENDIX C : EXPONENTIAL TURN-OFF O F THE EMI SSI ON WI TH RADI US

Throughout the paper we have assumed that the emission abruptly turns off at Rf . This results in a sharp change in the temporal index at T̄f ,
which usually corresponds to a sharp peak for the pulses in the prompt GRB light curve. Observations sometimes show pulses with a round
peak, which may be hard to fit with spiky theoretical spikes. Such rounder peaks for the pulses may be obtain within the framework of our
model by introducing a more gradual turn-off of the emission at R > Rf . For convenience, we parametrize this here by assuming that the
luminosity starts decreasing exponentially with radius at R > Rf . For simplicity we consider here only �R > 0, but the results are similar for
�R = 0. Similarly, only the case for internal shock (m = 0, d = −1) is considered here. Thus, we introduce the following comoving spectral
luminosity:

L′
ν′ =

⎧⎪⎪⎨
⎪⎪⎩

L′
0

(
R

R0

)a

S
(

ν′
ν′

p

)
R0 ≤ R ≤ Rf,

L′
0

(
R

R0

)a

S
(

ν′
ν′

p

)
e−[q(R−Rf )]/�R R > Rf,

(C1)

where q is the decay constant (a larger q corresponds to a sharper turn-off of the emission).
For 1 ≤ T̃ ≤ T̃f the observed flux is identical to that without introducing the gradual emission turn-off, and is therefore given by

equation (7):

Fν(T̃ ≥ T̃f ) = F0T̃
−2

{[
min(T̃ , T̃f )

]2+a − 1
}

S

(
ν

ν0
T̃

)
. (C2)

The flux for T̃ > T̃f is obtained by calculations very similar to those of Section 3.2, and reads

Fν(T̃ ≥ T̃f ) = F0T̃
−2S(T̃ ν/ν0)

[
T̃ 2+a

f − 1 + J (T̃ )
]
, (C3)

J (T̃ ) ≡ (2 + a)
∫ T̃

T̃f

dỹ ỹa+1 e−(ỹ−T̃f )/Q, (C4)

where Q ≡ �R/(qR0), and we remind the reader that ỹ = T̃ y for m = 0. The expression for the flux is thus very similar its form for an
abrupt turn-off of the emission at Rf , but with the additional term J (T̃ ) that adds some flux at T̃ > T̃f (representing the added contributions
from R > Rf ). For a = 1 we have

J (T̃ , a = 1) = 6Q3 + 6Q2T̃f + 3QT̃ 2
f − e−(T̃ −T̃f )/Q

(
6Q3 + 6Q2T̃ + 3QT̃ 2

)
. (C5)

At late times J (T̃ , a = 1) approaches a constant value,

J∞ ≡ 6Q3 + 6Q2T̃f + 3QT̃ 2
f ∼

⎧⎨
⎩

6
(

�R

qR0

)3
q � �R/R0

1+�R/R0
,

3 �R

qR0

(
1 + �R

R0

)2
q � �R/R0

1+�R/R0
,

(C6)
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Figure C1. Left: dependence of the critical decay index qcrit of the exponential cut-off on T̄f = �R/R0, in semilogarithmic scale. It is defined by
J∞(qcrit) = T̃ 3

f − 1, i.e. at late time, the contribution to the flux from the exponential cut-off is equal to the contribution from the emitting region between R0

and Rf . Right: comparison of the shape of pulses with and without the exponential turn-off of the luminosity for a ratio �R/R0 = 1 in logarithmic scale. The
solid line shows the shape of the pulse for an abruptly stopping luminosity (no exponential turn-off), the other lines show the pulse shape for different values
of the decay constant q = 0.1 of the exponential turn-off.

where we have replaced Q and T̃f by their dependence on q and �R/R0. Since J (T̃ ) appears in equation (C3) in a sum with T̃ 2+a
f − 1, it will

dominate the observed flux at late times if J∞ > T̃ 2+a
f − 1 or equivalently if q < qcrit where J∞(qcrit) ≡ T̃ 2+a

f − 1.
The left-hand panel of Fig. C1 shows qcrit as a function of T̄f = �R/R0 for a = 1, and it can be seen that the limiting values of qcrit are 1

for T̄f � 1, and (7 + 221/2)1/3 + 1 + 3/(7 + 221/2)1/3 ≈ 4.59 for T̄f � 1, so that qcrit is always of order unity. Therefore, for q � qcrit ∼ 1 the
late time flux is dominated by contributions from R > Rf , the peak of the pulse is rounder and the peak flux is higher compared to an abrupt
turn-off of the emission with radius, which is approached in the opposite limit of q � qcrit ∼ 1. This can nicely be seen in the right-hand
panel of Fig. C1, which shows the shape of a pulse for different values of q, including the limiting case of q → ∞, which corresponds to an
abrupt turn-off of the emission at Rf .

Such an exponential turn-off could therefore be useful when fitting our model with data, in order to reproduce round-peaks pulses.
Of course, one should be aware that this adds a free parameter (q or Q), and might thus increases the degeneracy between the different fit
parameters. Therefore, adding this extra model parameter should be done only when it is required by the data.
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