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ABSTRACT
The power-law decay of gamma-ray burst (GRB) afterglow can be well described by synchrotron emis-

sion from a relativistic spherical blast wave, driven by an expanding Ðreball. We calculate the spectrum
and the light curve expected from an adiabatic blast wave which is described by the Blandford-McKee
self-similar solution. These calculations include emission from the whole blast wave and not just from
the shock front. We provide numerical corrections that can be used to modify simple analytic estimates
of such emission. We Ðnd that the expected light curve and spectra are Ñat near the peak. This rules out
the interpretation of the sharp optical peak observed in GRB 970508 as the peak of the light curve. We
also calculate the observed image of an afterglow. This image could be resolved in future VLBI obser-
vations, and its structure could inÑuence microlensing and scintillation. The observed image is ringlike :
brighter near the edge and dimmer at the center. The image depends on the observed frequency. The
contrast between the edge and the center increases and the ring becomes narrower at higher frequencies.
Subject headings : gamma rays : bursts È gamma rays : theory È hydrodynamics È magnetic Ðelds È

relativity È shock waves

1. INTRODUCTION

The delayed X-ray, optical, and radio emission
““ afterglow ÏÏ following a gamma-ray burst (GRB) was pre-
dicted as a natural outcome of the Ðreball model (Paczyn� ski
& Rhoads 1993 ; Katz 1994 ; & Rees 1997 ; Sari &Me� sza� ros
Piran 1997). It is reasonably described by emission from a
spherical relativistic shell, decelerating upon collision with
an ambient medium (Waxman 1997a ; & ReesMe� sza� ros
1997 ; Katz & Piran 1997 ; Sari, Piran, & Narayan 1998). A
relativistic blast wave is formed and expands through the
surrounding medium, heating the matter in its wake. The
observed afterglow is believed to be due to synchrotron
emission of relativistic electrons from the heated matter.
The surrounding medium will be referred to as interstellar
medium (ISM), although this may not necessarily be the
case.

At any given time, a detector receives photons that were
emitted at di†erent times in the observer frame, at di†erent
distances behind the shock front, and at di†erent angles
from the line of sight (LOS) to the center of the shell. The
properties of the matter are di†erent at each of these points,
and so are the emissivity and the frequency of the emitted
radiation. Early calculations have considered emission from
a single representative point & Rees 1997 ;(Me� sza� ros
Waxman 1997a ; Sari et al. 1998). Later works have
included more detailed calculations. Synchrotron emission
was considered from the shock front (Sari 1998 ; Panaitescu
& 1998), and monochromatic emission was con-Me� sza� ros
sidered from a uniform shell (Waxman 1997c).

Even if the electrons carry a large fraction of the internal
energy, the hydrodynamic evolution becomes adiabatic
after a short time, when the electrons can no longer cool
efficiently (Sari et al. 1998). For reasonable values of the
burst parameters this transition takes place approximately
an hour after the GRB. The adiabatic solution is valid from
there onward. Numerical simulations of the evolution of a
generic relativistic adiabatic Ðreball with arbitrary initial

conditions have shown that the solution converges quickly
to the Blandford-McKee (1976, hereafter BM) self-similar
solution. In the following we consider, therefore, synchro-
tron emission from this solution.

We neglect scattering, self-absorption, and electron
cooling. Self-absorption becomes important at frequencies
much smaller than the peak frequency, and for slow cooling,
electron cooling becomes important at frequencies much
higher than the peak frequency, so this should yield a good
approximation for the observed Ñux density around the
peak. An analysis of the spectrum over a wider range of
frequencies was made by Sari et al. (1998).

In ° 2 we derive the basic formula for the observed Ñux
density from a system moving relativistically. We present
the underlying physical model : synchrotron emission from
a power-law electron distribution in ° 3. In ° 4 we calculate
the spectrum and the light curve. We show that both the
light curve and the spectra are Ñat near the peak. This
causes difficulty in explaining the shape of the optical peak
of GRB 970508 (Sokolov et al. 1997). We compare our cal-
culations of the peak frequency and the peak Ñux with those
of a simpler analytic model. We provide a table for numeri-
cal corrections that can be used to modify the results of this
model. We also compare the spectra and light curves with
those of a uniform shell (Waxman 1997c). We show that the
two results are quite di†erent. This demonstrates the need
to consider synchrotron emission from the full BM solution.
In ° 5 we consider three alternative magnetic Ðeld models.
We show that the light curve and the spectrum do not vary
signiÐcantly when we model the magnetic Ðeld di†erently.
We calculate the surface brightness and obtain the observed
image of a GRB afterglow in ° 6. As indicated in previous
works (Waxman 1997c ; Sari 1998 ; Panaitescu & Me� sza� ros
1998), the image is ringlike : it is brighter near the edge and
dimmer near the center. At a given observed time, the con-
trast between the edge and the center of the image increases
and the width of the ring decreases at higher frequencies.
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We conclude, in ° 7, with a summary of our results and a
discussion of their observational implications.

2. THE FORMALISM

We consider a system that is moving relativistically while
emitting radiation. We calculate the Ñux density that is
measured by a distant detector (i.e., D? L , where D is the
distance to the detector and L is the size of the area emitting
radiation). We use a spherical coordinate system centered
on the shell. The z-axis points toward the detector (see Fig.
1). The detector is at rest in this frame, and so is the ambient
ISM. We refer to this frame as the observer frame. Consider
a small volume element dV \ r2 dr dk d/ (where k 4 cos h),
and let be the energy per unit time per unit volume perjl{@unit frequency per unit solid angle, emitted by the matter
within this volume in its local frame (note that generally jldepends on the direction ) as well as on the frequency,
place, and time). We denote quantities measured in the local
rest frame of the matter with a prime, while quantities
without a prime are measured in the observer frame. Note
that is Lorentz invariant (Rybicki & Lightman 1979,jl/l2chap. 4, p. 147) and where c and bc are thel@\ lc(1 [ bk

v
),

Lorentz factor and the velocity of the matter emitting the
radiation, respectively, and is the cosine of the anglek

vbetween the direction of the velocity of the matter and the
direction to the detector, in the observer frame. The contri-
bution to from this volume element is given byIl

dIl + jl
dr
k

\ jl{@
c2(1[ bk

v
)2

dr
k

(1)

(see Fig. 1). The contribution to the Ñux density at the detec-
tor is d), where ) is the solid angle seen from thedFl + Ildetector, and includes all the contributions from di†erentIlvolume elements along the trajectory arriving at the detec-
tor from the direction ) simultaneously and at the time for
which is calculated. Consider a photon emitted at time tFland place r in the observer frame. It will reach the detector
at a time T given by

T
z
\ T

1 ] z
\ t [ rk

c
, (2)

where z is the cosmological redshift of the GRB, and T \ 0
was chosen as the time of arrival at the detector of a photon
emitted at the origin at t \ 0. Using a + r(1[ k2)1@2/D, we
obtain

F(l, T )\ 1 ] z
d
L
2
P
0

2n
d/
P
~1

1
dk
P
0

=
r2 dr

]
j@()

d
@ , lc(1[ bk

v
), r, T

z
] rk/c)

c2(1[ bk
v
)2 , (3)

where is the luminosity distance to the GRB, andd
Lj@\ j@()@, l@, r, t), and later P@\ P@(l@, r, t) ; j@ is taken in the

direction at which a photon should be emitted in order)
d
@

to reach the detector, and c, b, should be taken at thek
vtime t implied by equation (2).

For a spherical expanding system, which emits iso-
tropically in its local rest frame, one obtains andk

v
\ k

so thatjl@ \ Pl@ /4n,

F(l, T )\1]z
2d

L
2
P
~1

1
dk
P
0

=
r2 dr

P@(lc(1[bk), r, T
z
]rk/c)

c2(1[ bk)2 .

(4)

FIG. 1.ÈThe contribution of a volume element dV to the Ñux observed
by a distant observer is d), where ds. Since the observerdFlB dIl dIl \ jlis far away, the direction of emission in the observer frame is almost
parallel to the z-axis.

Note that because of relativistic e†ects, a jet with an
opening angle h [ 1/c around the LOS can be considered
locally as spherical (Piran 1994).

In order to learn whether the radial integration is
important, we calculate the observed Ñux density from
emission only along the LOS. We do this by considering a
situation in which at each point the photons are emitted
only radially : Note that the correctjl{@ \ Pl{@ d()@ [ )@(rü )).
limit is obtained when the delta function in the direction of
the emission is taken in the local frame. Since
d)\ c2(1[ bk)2d)@ (Rybicki & Lightman 1979, chap. 4,
p. 141), we obtain

d()@[ )@(rü ))\ c2(1[ bk)2d()[ )(rü )) . (5)

Substituting this j@ in equation (3), we obtain

F(l, T ) \ 1 ] z
d
L
2
P
0

=
r2 dr P@

A l
c(1] b)

, r, T
z
] r

c
B

. (6)

Equation (4) is quite general, and includes integration
over all space. In the case of GRB afterglow, radiation is
emitted only from the region behind the shock front. The
spatial integration should therefore be taken over a Ðnite
volume, conÐned by the surface of the shock front. We
would therefore like to obtain an explicit expression for the
radius R of the shock as a function of k 4 cos h for a given
arrival time T . In the case of a shell moving with a constant
velocity bc, one obtains from equation (2)

R\ bcT
z

1 [ bk
. (7)

If one considers a constant arrival time T , this equation
describes an ellipsoid, which conÐnes the volume constitut-
ing the locus of points from which photons reach the detec-
tor simultaneously (Rees 1966). In GRBs, most of the matter
is concentrated in a thin shell which decelerates upon colli-
sion with the ambient medium. When the deceleration of
the shell is accounted for, the ellipsoid is distorted. The
details of this distortion depend on the evolution of the
shock radius R(t) (Sari 1998 ; Panaitescu & 1998).Me� sza� ros
In this paper we consider an adiabatic ultrarelativistic
hydrodynamic solution, which implies !P R~3@2, where !
is the Lorentz factor of the shock. For this case, equation (2)
yields

R\ cT
z

1 [ k ] 1/(8!2) . (8)

The shape of the volume constituting the locus of points
from which photons reach the detector simultaneously
resembles an elongated egg (see Fig. 2) and will be simply
referred to as ““ the egg. ÏÏ The side facing the observer (the
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right side in the Ðgures) will be referred to as the front of the
egg, and the side closer to the origin (the left side in the
Ðgures) will be referred to as the back of the egg.

From hydrodynamic considerations, we expect the
typical size of the region emitting radiation behind the
shock to scale as *P R/!2 in the observer frame. Despite
this fact, it is still important to consider the emission from
the whole volume of the egg, whose limits are given by
equation (8). To illustrate this, we give a simple example.
Consider a photon emitted on the LOS at a distance
d \ R/c2 behind the shock (point A in Fig. 2) at a time int0the observer frame, where is the Lorentz factor ofc\ !/J2
the matter just behind the shock. This photon will catch up
with the shock front at a later time in the observer framet1(at point B in Fig. 2) and will arrive at the detector together
with a photon emitted at that point at From equation (8)t1.we Ðnd that, on the LOS, and so we obtainR\ 16c2cT

z
,

This shows that the emission comesR(t1)/R(t0)\ 171@4 + 2.
from a substantial part of the volume of the egg, and not
just from a thin layer near its surface. This is illustrated by
the shaded region in Figures 7 and 9, which corresponds to
a shell of width *\ R/4c2 in the observer frame.

At a given observed time T , the emission should be con-
sidered from the volume of the egg, whose surface is
described by equation (8). Taking this into account, it is
simpler to calculate the Ñux density at a given observed time
T , using new variables y, s that depend on T (see Figs. 2
and 3) :

y 4
R
R

l
, s 4 1 ] 16c

f
2
AR[ r

R
B

, (9)

where R\ R(t) is the radius of the shock front, is thec
fLorentz factor of the matter just behind the shock at the

front of the radial proÐle, and is the radius of the pointR
lon the shock front, on the LOS, from which a photon

FIG. 2.ÈWe see here the egg-shaped region from which photons reach
an observer at a given time T . In all the Ðgures of the ““ egg ÏÏ the observer is
located far to the right, and the symmetry axis is the LOS to the center of
the GRB. In order to reach the observer simultaneously, photons emitted
at di†erent locations should be emitted at di†erent times in the observer
frame, according to eq. (2). Photons that are emitted simultaneously in the
observer frame along the dash-dotted line ac reach the observer simulta-
neously. Therefore, ac represents an equal-y contour line. The location of
the shock front at this time of emission is indicated by the solid line abc,
and its radius R appears in the deÐnitions of y, and s. A photon emitted at
point A, at a distance of d \ r/c2 behind the shock front and at a time t0(both in the observer frame) caches up with the shock front at point B, at a
later time in the observer frame.t1

FIG. 3.ÈEqual-y contour lines, y \ 0.1, 0.15, . . ., 0.95 (vertical lines) ;
equal-s contour lines, s \ 0, 0.15, 0.3, . . ., 3 (curved lines). The hori-log10zontal line is the LOS to the observer, which is located far to the right.

reaches the detector at a time T (see Fig. 2). Since we expect
the typical size of the emitting region behind the shock to
scale as *P R/c2, the choice of s is natural to this problem.
The exact form of s was chosen to suit the BM solution,
discussed below. Using equation (2) we can express r, k in
terms of y, s :

r + R
l
y , k + 1 [ 1 [ sy4

16c
l
2 y

, (10)

where is the Lorentz factor of the matter just behind thec
lshock, on the LOS.

We would like to express equation (4) in terms of y, s.
This will enable us to calculate the Ñux density for the BM
solution. This solution describes an adiabatic highly rela-
tivistic blast wave expanding into an ambient uniform and
cold medium (Blandford & McKee 1976). In terms of y and
s the BM solution is given by

n@\4c
f
n0 s~5@4 , c\c

f
s~1@2 , e@\4n0m

p
c2c

f
2 s~17@12 ,

(11)

where n@ and e@ are the number density and the energy
density in the local frame, respectively, c is the Lorentz
factor of the bulk motion of the matter behind the shock, m

pis the mass of a proton, cm~3 is the numbern0\ n1] 1
density of the unshocked ambient ISM in its local rest
frame, and For the BM solution, one obtainsc

f
\ c

l
y~3@2.

(Sari 1997)

c
l
+ 3.65
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B~3@8
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R
l
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cm , (12)

where is the total energy of the shell in units of 1052E52ergs, and is the observed time in days.TdaysFor any spherically symmetric self similar solution we
can deÐne g(s) by : where g(s) describes how cc24 c

f
2 g(s),

varies with the radial proÐle. For the BM solution
g(s) \ s~1, and for a uniform shell g(s) \ 1. Using the deÐ-
nitions above, we obtain from equation (4) after the change
of variables
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l
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]
y10P@(T

z
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M1 ] y4[8g(s)~1[ s]N2g(s)
. (13)
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This formula for the Ñux density takes into consideration
the contribution from the whole volume behind the shock
front, and will be referred to as the general formula.

We would like to single out the angular integration and
the radial integration, in order to Ðnd out the di†erent
e†ects each integration has on the observed Ñux density. In
order to single out the e†ect of the angular integration, we
consider a thin shell of thickness * in the observer frame
and take the limit *] 0. Because of kinematical spreading
we expect * to scale as *P R/c2. According to the deÐni-
tion of s, such a shell corresponds to a constant interval in
s, i.e., the shell lies within the interval s ½ [1, for somesmax]The limit *] 0 corresponds to taking a delta functionsmax.in s : d(s [ 1).

In order to single out the e†ect of the radial integration,
we changed variables in equation (6) from r to s. For the
BM solution we obtain

F(l, T )\ R
l
3(1] z)
4d

L
2

P
1

=
ds s~7@4P@

A
T
z
,

l
c(1] b)

, s
B

. (14)

3. THE PHYSICAL MODEL

According to the Ðreball model, a highly relativistic shell
moves outward and is decelerated upon collision with the
ambient ISM. This creates a relativistic blast wave that
expands through the ISM and heats up the matter that
passes through it. The relativistic electrons of the heated
material emit synchrotron radiation in the presence of a
magnetic Ðeld.

We now consider the synchrotron emission at a certain
point, in which the values of n@, c, and e@ are given by the
hydrodynamic solution. In order to estimate the local
emissivity, we assume that the energy of the electrons and of
the magnetic Ðeld at each point are a Ðxed fraction of the
total internal energy at that point : Weee@ \ v

e
e@, e

B
@ \ v

B
e@.

assume that the shock produces a power-law electron dis-
tribution : for (for the energy of theN(c

e
)\ Kc

e
~p c

e
º cminelectrons to remain Ðnite we must have p [ 2). In the Ðgures

for which a deÐnite numerical value of p is needed, we use
p \ 2.5. The constants K and in the electron distribu-cmintion can be calculated from the number density and energy
density :

cmin\
Ap [ 2
p [ 1

B v
e
e@

n@m
e
c2 , K \ (p [ 1)n@cminp~1 , (15)

where is the mass of the electron.m
eAssuming an isotropic velocity distribution, the total

emitted power of a single average electron (i.e., with c
e
\

is given bySc
e
T)

P
e,av@ \ 4

3
pT cb2Sc

e
T2e

B
@ , Sc

e
T 4

v
e
e@

n@m
e
c2 (16)

(Rybicki & Lightman 1979, chap. 6, p. 169), where is thepTThomson cross section, and where B is thee
B
@ \B2/8n,

magnetic Ðeld (in the local frame). Although we refer to the
magnetic Ðeld in the local frame, throughout the paper, we
make an exception and write it without a prime.

The synchrotron emission function (power per unit
frequency) of a single electron is characterized by Pl,e P l1@3
for frequencies much smaller than the electron synchrotron
frequency, and it drops exponentially at large frequencies.

The typical synchrotron frequency, averaged over an iso-
tropic distribution of electron velocities, is given by

lsyn@ (c
e
) \ 3c

e
2 q

e
B

16m
e
c

, (17)

where is the electric charge of the electron.q
eThe hydrodynamic evolution becomes adiabatic after

T0\ 0.02(1] z)
A v

B
0.1
B2A v

e
0.1
B2

E52 n1 days (18)

(Sari et al. 1998). At this stage the typical electron, which
radiates around no longer cools on the dynamicallpeak,time of the system. The cooling frequency at a given timel

cis the synchrotron frequency of an electron that
cools during the dynamical time. This frequency scales as

On the other hand, the peak frequency scales asl
c
P T ~1@2.

Since is deÐned as the time at whichlpeakP T ~3@2. T0 l
c
\

we obtainlpeak,

l
c

lpeak
\ T

T0
. (19)

This means that for electron cooling does not haveT ?T0a signiÐcant e†ect near the peak frequency, which is the
frequency range of interest in this paper.

The adiabatic (BM solution) and the slow cooling
approximations are well justiÐed for Various esti-T ? T0.mates of the burst parameters yield andE52 D n1D 1

(Wijers & Galama 1998 ; Granot, Piran, & Sariv
e
v
B
D 0.01

1998 ; Waxman 1997b). For these values, and for zB 1,
hr. Thus the adiabatic approximation is valid fromT0D 1

an hour after the burst and electron cooling can be ignored
(around the peak frequency) after about 5 hours. couldT0be large if Clearly, our solution is notv

e
D v

B
D n1D 1.

valid in this case.
We approximate the emission of a single electron as

up to the electron typical synchrotron frequency,Pl,e P l1@3
where we place a cuto† in the emitted power. We normal-
ized the emission function so that the total power emitted
by a single electron equals that of an exact synchrotron
emission.

Under these assumptions, we obtain, after integration
over the power-law electron distribution, that the spectral
power per unit volume (in the local frame) at any given
point is

Pl@ \
q

r

s

t

t

Pl,max@
A l
lmin@
B1@3

, l \ lmin@ ,

Pl,max@
A l
lmin@
B~(p~1)@2

, l [ lmin@ ,
(20)

where is the synchrotron frequency of anlmin@ \ lsyn@ (cmin)electron with the minimal Lorenz factor at that point. Since
the emitted power at each point peaks at this frequencylmin@ ,
can be looked upon as the typical emitted frequency around
which the emitted power is concentrated. Although this
emission function was obtained by approximating the spec-
tral emission of each electron as having the shape of the
low-frequency tail (Pl1@3), the spectral power for the whole
electron distribution resembles that obtained for an exact
synchrotron emission and an isotropic electron velocity dis-
tribution. The solid curve in Figure 4 represents the local
emissivity from an exact synchrotron emission of an iso-
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FIG. 4.ÈLocal emissivity from a power-law distribution of electrons,
emitting synchrotron radiation. The solid curve represents exact synchro-
tron emission with an isotropic electron velocity distribution, while the
dashed curve represents the approximation we used for the local emiss-
ivity. The di†erences in the local emissivity tend to smear out when inte-
gration is performed over the whole volume behind the shock front.

tropic distribution of electrons (Rybicki & Lightman 1979 ;
Wijers & Galama 1998), while the dashed curve represents
equation (20) with

Pl,max@ \ 0.88
C4(p [ 1)

3p [ 1
D n@P

e,av@
lsyn@ (Sc

e
T)

, (21)

where a factor of 0.88 was added to improve the Ðt to the
exact synchrotron emission. In our calculations we use the
local emission represented by the dashed line in Figure 4.
This local emission di†ers by up to D45% from that of an
exact synchrotron emission near the peak and is only
slightly di†erent above or below the peak. Note that di†er-
ences in the local emissivity tend to get smeared out when
the contribution to the observed Ñux density is integrated
over the whole volume behind the shock front. We expect
that considering exact synchrotron emission should some-
what lower the peak Ñux and the peak frequency, and make
the light curve and spectra more rounded and Ñat near the
peak. We evaluate that the peak Ñux would be lower by
about 30%. Since there are only slight di†erences in high
and low frequencies, there should hardly be any e†ect on
the value of the point where the extrapolations of the power
laws at high and low frequencies meet (see Table 1).

The results are presented as a function of the dimension-
less similarity variable where is deÐned as the/4 l/l

T
, l

Tobserved synchrotron frequency of an electron with c
e
\

TABLE 1

FEATURES OF THE LIGHT CURVE AND SPECTRA FOR DIFFERENT

MAGNETIC FIELD MODELS

PHYSICAL MODEL

Magnetic Field p /peak tpeak /extr textr
B 2 2.34 0.183 4.11 0.260
B 2.5 1.88 0.205 4.66 0.313
B 3 1.65 0.218 5.33 0.355
B

M
2.5 1.67 0.178 4.12 0.273

Brad 2.5 2.86 0.284 7.30 0.454

and are deÐned in the text.NOTE.È/peak , tpeak , /extr, textr /peakand are numerical coefficients relating the peak frequency andtpeakthe peak Ñux, respectively, to those obtained from simpler analytical
models. They are given for di†erent magnetic Ðeld models and di†er-
ent values of the electron power law p.

just behind the shock on the LOS:cmin
l
T

4 lmin(y \ s \ 1)

\1.71] 1014J1 ] z
f (p)

f (2.5)
v
B
1@2v

e
2E521@2T days~3@2 Hz , (22)

where f (p) 4 [(p [ 2)/(p [ 1)]2. Our results can therefore be
looked upon, with the proper scaling of the logarithmic
x-axis, either as the spectra at a given observed time or as
the light curve at a Ðxed observed frequency.

Similarly, we express the observed Ñux density in terms of
a ““ standard ÏÏ Ñux density deÐned byF0

F0 4
N(R

l
)Pl,peak(1] z)

4nd
L
2 ,

Pl,peak 4 0.88
P

e,av(Rl
)

lsyn(cl)
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P
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l
)c

l
lsyn@ (c

l
)

, (23)

where and are the total power and synchro-P
e,av@ (R

l
) lsyn@ (c

l
)

tron frequency of an average electron at y \ s \ 1, respec-
tively, is an estimate of the peak spectral power of anPl,peakaverage electron, and is the total numberN(R

l
) 4 4nR

l
3 n0/3of electrons behind the shock at the time t in the observer

frame for which Allowing for cosmological cor-R(t) \R
l
.

rections, is given byF0
F0\ 82.4(1] z)v

B
1@2 E52 n11@2 d

L28~2 mJy , (24)

where is the luminosity distance to the GRB in unitsd
L28 d

Lof 1028 cm.

4. THE LIGHT CURVES AND SPECTRA

The results for the observed Ñux density are presented in
Figure 5. The Ñux density arriving from the LOS (dashed
curve) peaks at and is only slightly rounded/peak+ 0.98,
near the peak. The Ñux density arriving from an inÐnitely
thin shell (dotted curve) peaks at and is quite/peak + 1.92
rounded and Ñat near the peak. The Ñux density arriving
from the whole volume behind the shock front (solid curve)
peaks at and is Ñat and rounded near the peak,/peak+ 1.88
quite resembling the Ñux density from an inÐnitely thin
shell.

FIG. 5.ÈObserved Ñux from synchrotron emission of a power-law elec-
tron distribution for the BM solution. The di†erent curves stand for emis-
sion only along the LOS, emission from an inÐnitely thin shell, and
emission from the whole volume behind the shock. The emission from the
whole volume is very similar to that obtained for an inÐnitely thin shell,
due to a coincidence that arises from our choice for the magnetic Ðeld
model (see ° 5).
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Our best prediction for the Ñux density measured by a
distant detector is obtained when we assume a realistic
hydrodynamical solution (the BM solution) and a realistic
radiation emission and use the general formula (see the
solid curve in Fig. 5). We would now like to examine it more
closely. The curve looks quite Ñat near the peak, and we
attempt to demonstrate this feature in a quantitative
manner. If one compares the peak Ñux obtained by extrapo-
lation of the power laws, obtained at low and high fre-
quencies, to the ““ actual ÏÏ peak Ñux, one obtains that it is
larger by a factor of 1.53 : In order toFextr\ 1.53Fl,max.further estimate the Ñatness of the curve near the peak, we
deÐne and by where/

`
/~ Fl(/`

)\Fl(/~)\ 0.5Fl,max,We obtain that and/
`

[ /peak [ /~. /~ B 0.1/peakso that In a similar manner,/
`

B 10/peak, /
`
//~ D 100.

we deÐne and for a given observed frequency, byT
`

T~ where OneFl(T`
)\Fl(T~)\ 0.5Fl,max, T

`
[Tpeak [ T~.

obtains : (note that is fre-T
`
/T~\ (/

`
//~)2@3 D 20 T

`
/T~quency independent).

GRB 970508 displayed a sharp rise in the optical Ñux just
prior to its peak, followed by a power-law decay
(Sokolov et al. 1997), showing This rise is incon-T

`
/T~ \ 3.

sistent with the Ñat peak of the light curve found here, as
can be seen in Figure 6. The power-law decay following the
peak was proportional to T ~1.18 (Sokolov et al. 1997). For
slow cooling of the electrons this implies 3(p [ 1)/4 \ 1.18,
i.e., p \ 2.57, which is the value we used for the Ðt in Figure
6. To complete the Ðt, one needs to determine the time and
the value of the peak Ñux. The power-law decay imposes
one constraint on these two parameters. We show in Figure
6 three options for the arbitrary choice that is essential
in this stage. The values chosen for the peak Ñux and the
time of the peak in the curves depicted in Figure 6 were

andR
c
\ 18.9 ; T days\ 0.40, R

c
\ 19.6 ; T days \ 0.68, R

c
\

respectively, from top to bottom. These20.4 ; T days \ 1.19,
values imply constraints on the parameters of the burst, but
do not determine them uniquely.

Relaxing the adiabatic assumption, i.e., assuming the
hydrodynamic evolution had been radiative at the time of

FIG. 6.ÈCircles and triangles represent optical observations of the
afterglow of GRB 970508 (made by Sokolov et al. 1997 and Metzger et al.
1997, respectively). The three curves are possible Ðts of the light curve we
calculated for p \ 2.57, which Ðts the power-law decay of the observed Ñux
density from these data. Although the power-law decay Ðts relatively well,
the shape of the observed peak is clearly very di†erent from the Ñat peak
predicted by our calculations.

the optical peak, results in an even Ñatter peak to the light
curve (Sari et al. 1998), making it even harder to reconcile it
with the observed optical data. Thus, the optical peak of
GRB 970508 cannot be associated with the typical fre-
quency crossing the observed band, and other possible
explanations for its appearance should be considered. This
association is further undermined by the similarity between
the features of the optical and X-ray afterglow of GRB
970508 which can be seen in the Ðrst day or so (Piro et al.
1998). This similarity might suggest an X-ray peak close in
time to the optical peak. Unfortunately, this cannot be
tested, because of gaps in the data. It is possible that during
the early phase of the afterglow of GRB 970508 there was a
continuous emission from the source (Katz, Sari, & Piran
1998). A simultaneous peak in the optical and X-ray after-
glow would be quite natural under this interpretation.

At a given observed time T , the observed Ñux peaks at

lpeak4 /peak l
T

\ 3.22] 1014J1 ] z

]
/peak(p)

/peak(2.5)
f (p)

f (2.5)
v
B
1@2v

e
2E521@2T days~3@2 Hz , (25)

where is a slowly decreasing function of p, and the/peakmain dependence on p is through f (p). The maximal Ñux
density is given by

Fl,max4tpeak F0

\16.9(1]z)
tpeak(p)

tpeak(2.5)
v
B
1@2E52 n11@2dL28~2 mJy , (26)

where is a slowly increasing function of p.tpeakTwo other useful quantities are the frequency wherelextr,the extrapolations of the asymptotic power laws above and
below meet, and the extrapolated Ñux densitylpeak Fextr,there. The Ñux density at (where is thelpeak > l> l

c
l
ccooling frequency) can be approximated by Fl +

For (where is the self-Fextr(l/lpeak)~(p~1)@2. l
a
> l> lpeak l

aabsorption frequency), it can be approximated by Fl +
Fextr(l/lpeak)1@3 :

lextr 4 /extr lT \ 7.98] 1014J1 ] z

]
/extr(p)

/extr(2.5)
f (p)

f (2.5)
v
B
1@2v

e
2E521@2T days~3@2 Hz , (27)

Fextr 4 textrF0

\25.8(1] z)
textr(p)

textr(2.5)
v
B
1@2E52 n11@2dL28~2 mJy , (28)

where and are both slowly increasing functions of/extr textrp. The values for representative/peak, tpeak, /extr, textrvalues of p are given in Table 1.
These results can be best understood by looking at the

““ egg ÏÏ that constitutes the locus of points from which
photons reach the detector simultaneously, and mapping
upon it the typical emitted frequency in the observer frame.
Figure 7 depicts the lines of equal From thelmin\ lsyn(cmin).electron distribution we obtain that Sc

e
T \ cmin/[ f (p)]1@2

and therefore : For this reason, the fre-lmin\ f (P)lsyn(Sc
e
T).

quency contour lines that are depicted in Figure 7 also
represent lines of equal typical synchrotron frequency
lsyn(Sc

e
T).
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FIG. 7.ÈEqual observed synchrotron frequency contour lines, at a
given observed time, for the BM solution. Each line represents a di†erent
value of /. The bold contour line is /\ 1. The lines are separated by a
constant logarithmic interval in / : * /\ 0.05 (inner contour lines,log10which cross the LOS, represent /\ 1). The shaded region represents a
Ðnite shell of thickness *\ R/4c2 in the observer frame.

There are two opposing factors that determine the shape
of the observed synchrotron frequency contour lines that
are depicted in Figure 7. The shift from the local frame to
the observer frame, l@\ lc(1[ bl), causes the frequency to
decrease as one moves away from the LOS. However, at
earlier emission times, and at locations closer to the shock
front, the typical synchrotron frequencies in the local frame
are higher, and so is the Lorentz factor of the matter. This
tends to increase the observed frequencies of photons that
were emitted earlier (i.e., from the back of the egg) and
closer to the shock (i.e., closer to the surface of the egg).

The result of these two opposing e†ects, for the BM solu-
tion is that, as one goes backward along the LOS to earlier
emission times, the observed synchrotron frequency for a
constant observed time is almost independent of s :

This explains the result for the Ñuxlsyn(LOS)P s~1@24.
density arriving from the LOS (Fig. 5, dashed curve),
namely, that the peak Ñux is obtained at a frequency just
slightly lower than and the light curve isl

T
: /peak + 0.98,

only slightly rounded near the peak. The fact that lmin\l
Talong the LOS accounts for the fact that the peak Ñux is

obtained at The fact that the decrease in as/peak \ 1. lminone goes back along the LOS is very moderate means that
in order for the emitted radiation to be concentrated
around a frequency substantially lower than one has tol

T
,

go very deep in the radial proÐle along the LOS to r > R
l
.

This implies that one gets far from the shock front (to
s ? 1), and therefore the contribution obtained to the total
Ñux density is small. For this reason is very close to 1./peakThe observed Ñux density from an inÐnitely thin shell
peaks at and the light curve (or spectrum) is/peak + 1.92,
quite rounded and Ñat near the peak (see Fig. 5, dotted line).
This result can be understood by following the surface of
the ““ egg ÏÏ (see Fig. 7) ; increases as one goes to the backlminof the egg (i.e., to earlier emission times) along its surface,
and it does so much faster than it decreases when one goes
back along the LOS. Therefore, one gets a substantial con-
tribution to the Ñux density at /[ 1, before one gets too far
back in the shell, where the total contribution to the Ñux
density drops considerably. This explains why the peak Ñux
for an inÐnitely thin shell is obtained at a frequency signiÐ-
cantly higher than whereas for the LOS it is obtained atl

T
,

a frequency only slightly lower than l
T
.

In order to demonstrate the importance of accounting for
synchrotron emission from the full Ðreball, we consider a
simpler model of a monochromatic emission from a

uniform shell. The emission frequency at every point is set
to be the synchrotron frequency of an electron with the
average Lorentz factor at that point : wherelsyn(Sc

e
T), Sc

e
T

and are taken from equations (16) and (17), respectively.lsynThe emitted power per unit volume per unit frequency in
the local frame is given by

Pl{@ \ n@P
e,av@ d(l@ [ lsyn@ ) , (29)

where is given by equation (16).P
e,av@

We calculate the observed Ñux density due to this emis-
sion within a thin shell of matter, of Ðnite thickness * in the
observer frame. This case was calculated numerically by
Waxman (1997c). He took *\ fR/c2, which corresponds in
our notation to We use equation (13),smax(f) \ 1 ] 16f.
and integrate only up to Substituting g(s)\ 1 insmax(f).equation (13), we obtained an analytic solution which is
shown in Figure 8. The results are expressed by the simi-
larity variable where in this case is obtained by/4 l/l

T
, l

Tdropping f (p) from equation (22).
Figure 8 depicts the observed Ñux density for a few values

of f, including f] 0. It is very di†erent from Figure 5. This
di†erence can be intuitively understood by looking at
Figure 9, which depicts the frequency contour lines for a
uniform shell. In contrast to Figure 7, the frequency contour
lines are nearly perpendicular to the LOS and higher fre-
quencies come from the back of the ““ egg ÏÏ (i.e., from smaller
radii). For this reason the Ñux density vanishes for /\ 1
(see Fig. 8). For every value of f there exists a critical fre-
quency for which the frequency contour line touches/

c
(f)

the back of the shell, exactly on the LOS. This is demon-
strated by the bold frequency contour line in Figure 9,
which represents for and touches the back of the/

c
f\ 14,

shell exactly on the LOS at point C. The Ñux density peaks
exactly at From our analytical solution for a uniform/

c
(f).

thin shell we obtained a simple analytical expression for the
time (or frequency) of the peak Ñux as a function of f :

/peak(f) \ /
c
(f) \ (1] 16f)3@2 . (30)

The resulting spectra and light curve for a uniform shell
are qualitatively di†erent from those obtained when full
hydrodynamical radial proÐle and synchrotron emission
are considered. For a uniform shell, the rather arbitrary
choice of f determines the time of the peak Ñux for a given

FIG. 8.ÈObserved Ñux density from a uniform shell, for di†erent values
of the shell thickness in the observer frame : *4 fR/c2. The value of / at
the peak is a function of the shell thickness (see eq. [30]).
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FIG. 9.ÈEqual observed synchrotron frequency contour lines, at a
given observed time, for a uniform shell. The lines (right to left) represent
/\ 51@4, 52@4, 53@4, . . .. The typical synchrotron frequency is larger than l

Teverywhere (everywhere /[ 1), and / increases as one goes to the back
(i.e., to the left) of the ““ egg ÏÏ along the LOS, to smaller radii. The shaded
region represents a Ðnite shell of thickness *\ R/4c2 in the observer
frame. The bold frequency contour line that touches the back of the shell
on the LOS at point C represents the frequency for which the Ñux density
from a uniform shell, considered in this section, peaks.

observed frequency, and the peak is substantially sharper,
with a smaller width at half-maximum. This illustrates the
need of using a realistic hydrodynamic solution and a realis-
tic emission.

5. ALTERNATIVE MAGNETIC FIELD MODELS

Although the hydrodynamic proÐle is given by the BM
solution, the structure and proÐle of the magnetic Ðeld are
less clear. So far we have assumed that everywhere the mag-
netic Ðeld energy is a Ðxed fraction of the internal energy :

e
B
@ 4

B2
8n

\ v
B
e@ . (31)

Since not much is known about the origin or spatial depen-
dence of the magnetic Ðeld, we consider now two alternative
models for the magnetic Ðeld. There is no compelling reason
to prefer one of these models over the others. The consider-
ation of alternative models serves just to explore the e†ect
that a variation of the magnetic Ðeld has on our results.
Although quantitative di†erences exist between the models,
they are small. This also serves, in a way, as a test for the
generality of our results.

We assume that each matter element acquires a magnetic
Ðeld according to equation (31) when it passes the shock.
The two alternative models are obtained by assuming that

FIG. 10.ÈObserved Ñux density for three di†erent magnetic Ðeld
models. on the shock front, while behind the shock frontBrad \B\ B

MBrad [B[ B
M
.

the magnetic Ðeld is either radial or tangential, and evolves
according to the ““ frozen Ðeld ÏÏ approximation.

Consider a small matter element, which passes the shock
at a time in the observer frame. Just after it passes thet0shock it possesses a magnetic Ðeld (in the local frame)B0given by equation (31). We consider a cubic volume V0\ L3
(in the local frame) with one face perpendicular to the radial
direction. According to the BM solution, at a later time t
this matter element will be at and it wills \ [R(t)/R(t0)]4,occupy a box of a size in the radial direction,L rad\ s9@8L
and a size in the two tangential directionsL

M
\ s1@4L (/ü

and One also obtains that where is thehü ). B0\ B
f
s3@8, B

fmagnetic Ðeld at the front of the radial proÐle, just behind
the shock, at the time t. We consider two possibilities for the
direction of the magnetic Ðeld at a radial and a tangen-t0 :
tial magnetic Ðeld, and Our previousBrad B

M
.

““ equipartition ÏÏ model will be denoted simply by B. In both
new cases the ““ frozen Ðeld ÏÏ approximation implies that the
magnetic Ðeld will remain in the same direction, while its
magnitude changes in the following way :

Brad \ B
f
s~1@8 , B\ B

f
s~17@24 , B

M
\ B

f
s~1 . (32)

Using the general formula (eq. [13]), we obtain now the
observed Ñux density for and (see Fig. 10). Some ofBrad B

Mthe features are summarized in Table 1. Since the emission
from the shock front (s \ 1) is identical in all three cases,
the results obtained for an inÐnitely thin shell in the pre-
vious section, including the dotted curve in Figure 5, are
still valid here. This implies that the di†erence between the
various curves in Figure 10 arises from the radial integra-
tion. Our previous model for the magnetic Ðeld led to an
almost negligible e†ect of the radial proÐle (see Fig. 5). Now
we Ðnd that, generally, the e†ect of the radial integration is
comparable to that of the angular integration, as the Ñux
density for and are substantially di†erent than forBrad B

Man inÐnitely thin shell.
From equation (32) we can see that implies a largerBradmagnetic Ðeld than B, and therefore a larger total emission

and higher emission frequencies, while implies a smallerB
Mmagnetic Ðeld than B, and therefore a smaller total emission

and lower emission frequencies. This is consistent with
the results in Table 1, namely, /peak(Brad) [/peak(B)[

and An impor-/peak(BM
) textr(Brad) [textr(B) [ textr(BM

).
tant feature that appears in all the magnetic Ðeld models we
considered is the Ñatness of the peak : /

`
//~D 100È120

and T
`
/T~D 21È24.

6. THE OBSERVED IMAGE

We turn now to calculate the observed image, as seen by
a distant observer. We consider the BM hydrodynamic
solution. Substituting g(s) \ s~1 in equation (13), we obtain

dFl \ 8R
l
3(1] z)
d
L
2

P@y10s
(1] 7sy4)2 dy ds . (33)

We calculate the surface brightness (energy per unit time
per unit frequency per unit area perpendicular to the LOS)
at a given arrival time T . The distance of a point from the
LOS is given by

R
M

4 r sin h + R
l
yJ1 [ k2+

J2R
l

4c
l

Jy [ sy5 . (34)

The maximal value of is obtained on the surface of theR
M““ egg ÏÏ (where s \ 1), implying y \ 5~1@4. The observed
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FIG. 11.ÈObserved image of a GRB afterglow, for di†erent values of /.
The di†erent images can represent either the image at di†erent frequencies
at the same observed time or the image at the same frequency at di†erent
observed times. In the latter case, one should also remember that the size of
the observed image increases with the observed time as AR

M,max PT 5@8.
larger value of / represents a higher observed frequency or a later observed
time. The image is brighter near the edge and dimmer near the center, and
the contrast is higher at large values of /.

image at a given observed time T is restricted to a disk of
radius around the LOS. Using equationR

M,max + 4.14c
l
cT

(12), we obtain an explicit expression for the BM solution :

R
M,max\ 3.91] 1016

AE52
n1

B1@8A Tdays
1 ] z

B5@8
cm . (35)

We calculate the surface brightness within this disk, and
Ðnd it useful to work with the variable : Thex 4 R

M
/R

M,max.di†erential of the area on this disk is given by

dS
M

\ 2nR
M

dR
M

4 2nR
M,max2 x dx . (36)

Using equation (34), we obtain from equation (33)

dFl
dS

M

\ 4
n
AR

l
d
L

B2 (1] z)2
cT

P@y5s
(1] 7sy4)2 dy , (37)

from which we obtain, after integration, the surface bright-
ness as a function of In this expression, s should beR

M
.

taken as a function of y for a given x, according to equation
(34). The limits of the integration over y are determined
from the condition s [ 1.

We calculated the surface brightness for several values of
/, and, as before, the di†erent images can be viewed either
as the observed images at a given observed time at di†erent
observed frequencies or as the observed images at a given
frequency at di†erent observed times. The observed images
are quite similar for the di†erent magnetic Ðeld models we
considered, and therefore we present detailed results only
for B (Figs. 11 and 12), and summarize in Table 2 the fea-
tures of the images obtained for B, andBrad, B

M
.

FIG. 12.ÈObserved surface brightness as a function of x 4 R
M
/R

M,max,for di†erent values of /. The surface brightness peaks near the outer edge
of the image, drops sharply towards the edge (x \ 1), and decreases more
gradually toward the center. The normalization preserves the correct ratio
between the absolute surface brightness, for the di†erent values of /, which
decreases both for low and for high values of /.

The observed image is bright near the edge and dimmer
at the center. At high values of / (high frequencies or late
observed times) the surface brightness at the center is only a
few percent of the maximal surface brightness, which is
obtained near the edge (x D 0.93È0.95), and a bright ring is
clearly seen with a sharp edge on the outer side and a more
gradual decrease in the surface brightness toward the
center. At /\ 1 (low frequencies or early observed times)
the surface brightness at the center is around 0.32È0.39 of
the maximal surface brightness, and, though the image is
brighter near the edge, the center should be visible as well
(see the left image in Fig. 11).

The observed image calculated considering emission only
from the surface of the shock front (Sari 1998) yielded a
surface brightness diverging at This divergence is anR

M,max.artifact of the assumption that the radiation is emitted from
a two-dimensional surface. Other features of the image,
such as the di†erence between high and low frequencies, are
quite similar to those found here.

The transition in the distribution of the relative surface
brightness along the observed image, between the limiting
cases of small and large /, occurs over 1 order of magnitude
in / : 1 \ /\ 10. The relative surface brightness hardly
changes beyond this region (although the absolute surface

TABLE 2

FEATURES OF THE OBSERVED IMAGE

SB(x \ 0)/SBmax /\ 1 /? 1

MAGNETIC FIELD MODEL /\ 1 /? 1 xpeak *x xpeak *x

B
M

. . . . . . . . . . . . . . . . . . . . . . . . . 0.32 0.034 0.95 0.263 0.96 0.151
B . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.34 0.039 0.94 0.296 0.95 0.178
Brad . . . . . . . . . . . . . . . . . . . . . . . . 0.39 0.065 0.93 0.403 0.90 0.290

NOTE.ÈWe deÐne where are the values of at*x 4 x
`

[ x~, x
`

[ x~ x 4 R
M
/R

M,maxwhich the surface brightness (SB) drops to half of its maximal value. *x is an estimate for
the width of the bright ring that appears on the outer edge of the image ; is the valuexpeakof x for which the maximal SB is obtained, and its values indicate that the SB peaks near
the outer edge of the image. It is evident that the contrast between the center and the edge
of the image is considerably larger for high frequencies (or late times) than for low fre-
quencies (or early times).
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FIG. 13.ÈFlux-averaged value of as a function of / ;x 4 R
M
/R

M,maxSxT B 0.74 for /\ 1, and SxT B 0.85 for /? 1.

brightness drops both for low and for high values of /, due
to the drop in the observed Ñux density).

The fact that at a given observed time the relative surface
brightness at the center of the image is smaller for high
frequencies than it is for low frequencies may be intuitively
understood : for high frequencies the emittance decays in
time, and is therefore lower at large radii, which correspond
to small values of which are located at the center ofx P R

M
,

the image.
To calculate the e†ects of scintillation or microlensing,

one needs a good estimate of the e†ective size of the
observed image. We therefore calculate the Ñux-averaged
value of x :

SxT \ / x dFl
/ dFl

. (38)

A plot of SxT as a function of / is shown in Figure 13. For
/\ 1 one obtains that SxT is constant : SxT + 0.74. As /
increases above unity, SxT increases, until it reaches its
maximal value of SxT + 0.86 at /B 17. Above this value of
/ there is a slight decrease in SxT as / increases, until for
/? 1 it reaches the limiting value : SxT + 0.85. These
values are slightly lower than those obtained for an inÐ-
nitely thin shell : SxT + 0.79 for /> 1 and SxT + 0.91 for
/? 1. (Note that Panaitescu & 1998 and SariMe� sza� ros
1998, who also considered the inÐnitely thin shell approx-
imation, obtained slightly di†erent erroneous results.)

7. DISCUSSION

We have calculated the observed Ñux density from a
spherical adiabatic relativistic blast wave described by the
self-similar Blandford & McKee (1976) solution. We have
considered synchrotron emission from a power-law dis-
tribution of electrons, using a realistic local emissivity,
which depends on the local hydrodynamic parameters.

We have calculated the peak frequency and the peak Ñux
(eqs. [25] and [26]) as a function of the observed time. The
value we obtained for the peak frequency is a factor of D1.8
smaller than the value obtained by Sari et al. (1998), a factor
of D2.5 (for p \ 2.5) smaller than the value obtained by
Wijers & Galama (1998), and a factor of D35 (for p \ 2.5)
smaller than the value obtained by Waxman (1997b). This

large di†erence from the last result is partly due to the fact
that Waxman (1997b) assumes that the peak frequency is
the synchrotron frequency of an average electron lsyn(Sc

e
T),

while the peak frequency is actually much closer to
synchrotron frequency of an electron withlsyn(cmin)Èthe

the minimal Lorentz factor. The value we obtained for the
peak Ñux is a factor of D1.9 (for p \ 2.5) smaller than the
value obtained by Wijers & Galama (1998), a factor of D5.1
larger than the value obtained by Waxman (1997b), and a
factor of D6.5 smaller than the value obtained by Sari et al.
(1998).

We have also calculated the frequency and the Ñux
density at the point where the asymptotic high- and low-
frequency power laws intersect (eqs. [27] and [28]). Like the
expressions for the peak frequency and the peak Ñux (eqs.
[25] and [26]), these expressions are given in terms of
numerical corrections to the results/peak, /extr, tpeak, textrof a simpler analytic model. Thus, using these values (given
in Table 1 and below the equations mentioned above), one
can modify the results of such an analytic calculation. This
might be particularly important when one is trying to Ðt the
observed light curve or spectrum to a theoretical model.

Both the light curve and the spectra are Ñat near the
peak. The Ñux density at a given observed time drops to half
its maximal value at around 1 order of magnitude from the
peak frequency, on either side. The Ñux density at a given
observed frequency drops to half its maximal value at a
factor of D5 before and after the time of the peak Ñux. This
result was obtained for all the magnetic Ðeld models we
considered, and it therefore seems to be of quite a general
nature. We have used an approximate form for the local
synchrotron emissivity. We expect that without this
approximation the values of the peak Ñux and the peak
frequency would be slightly lower, and the light curve and
the spectrum would be even more rounded and Ñat near the
peak.

In contrast to the Ñatness of the peak, discussed above,
GRB 970508 displayed a sharp rise in the optical Ñux
density, immediately followed by a power-law decay
(Sokolov et al. 1997). Sari et al. (1998) considered both radi-
ative and adiabatic evolution of the blast wave, and found
that the steepest rise in the Ñux density occurs before the
peak, for an adiabatic evolution and slow cooling of the
electrons, which is the case discussed in this paper. This
steepest rise is T 1@2, and, as we have shown in this paper, the
rise in the Ñux decreases as the peak is approached, and the
peak itself is quite Ñat. We obtained whichT

`
/T~D 21È24,

indicates a Ñat peak, while GRB 970508 displayed
This rules out the interpretation of the opticalT

`
/T~\ 3.

peak of GRB 970508 as the peak of the light curve, predict-
ed by the existing Ðreball models. It therefore appears that
another explanation is needed. The peak in the light curve
might be a result of continuous emission from the source
(Katz, Sari, & Piran 1998).

In order to demonstrate the importance of accounting for
synchrotron emission from the full Ðreball, we also con-
sidered monochromatic emission from a uniform shell
(Waxman 1997c), for which the results change drastically.
In particular the location of the peak Ñux depends critically
on the width of the shell f (see eq. [30]), which is chosen
quite arbitrarily.

The image of a GRB afterglow looks like a ring, even
when emission is considered from the whole volume behind
the shock front. Similar results were obtained for simpler
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models (Waxman 1997c ; Sari 1998 ; Panaitescu & Me� sza� ros
1998). The image is bright near the edge and dimmer at the
center. The contrast in the surface brightness between the
center and the edge of the image increases and the ring is
narrower at higher frequencies (optical and X-ray). For low
frequencies (as long as self-absorption is not signiÐcant) the
contrast is smaller and the ring is wider. The best available
resolution is obtained in radio frequencies, which can be
considered as ““ low frequencies ÏÏ for the Ðrst few months.
Thus, the afterglow of a future nearby GRB (zD 0.2) might

be resolved in radio. This model predicts that in early times,
when the image should appear as a relativelylradio\ lpeak,wide ring with a relatively small contrast, while for later
times, where (as long as the relativistic regimelradio[ lpeakis not exceeded), the image should appear as a narrow ring
and possess a large contrast.
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