Magnetic Field Decay in Magnetars & implications for evolutionary links Jonathan Granot

Open University of Israel, Hebrew University Collaborators: Simone Dall' Osso, Tsvi Piran

39th COSPAR Scientific Assembly, Mysore, India, July 19, 2012

Outline of the talk:

Motivation & brief introduction

- Observational evidence for magnetar B-field decay
- Field decay: main properties (true vs. spin-down age) & observational constraints on dipole field decay
- $L_X > |\dot{E}_{B,dipole}| \rightarrow$ another energy source is required
- → Internal field decay? requires $B_{internal,i} \gtrsim 10^{16} G$
- Implications for evolutionary links
- Conclusion

Motivation

X-ray emission of magnetars is powered by the decay of their super-strong magnetic field:

- a) eventually test this hypothesis;
- b) best objects to study B-field decay

"Magnetar-like" emission from unsuspected magnetars: Additional degree of freedom besides dipole field?

Link between different classes of high-B NSs (SGRs, AXPs, "transient" AXP/SGRs, XDINs,...)

Dall'Osso, JG & Piran 2012, MNRAS, 422, 2878

Source Classes

<u>AXPs/SGRs</u>:

Persistent X-ray emission $\gg dE_{rot}/dt$ Thermal $\rightarrow kT = (0.5-0.7) keV$ Hard-X spectral tails (up to 150 keV)

Source Classes

<u>AXPs/SGRs</u>:

Persistent X-ray emission $\gg dE_{rot}/dt$ Thermal $\rightarrow kT = (0.5-0.7) keV$ Hard-X spectral tails (up to 150 keV)

<u>Transients</u>:Quiescent X-ray emission $\leq dE_{rot}/dt$ Thermal $\rightarrow kT = (0.4-0.5) keV + A \ll A_{NS}$ In outburst:X-ray emission $\gg dE_{rot}/dt$ & decays over years

X-ray Dim Isolated Neutron stars (XDINs):

Prototypical Isolated Neutron Stars, Nearly perfect thermal spectra and Stable X-rays kT = (0.04-0.1) keV

PULSARS: BACK TO BASICS

Magnetic dipole spindown: $\dot{\Omega} = K B_d^2 \Omega^3$ $K_{vacuum} = 2R^6 sin^2 \theta_B / 3Ic^3$ $K_{\text{plasma}} = R^6 (1 + \sin^2 \theta_B) / Ic^3$ **Characteristic (spindown) Age** $\tau_{c} = -\Omega/2\dot{\Omega} = P/2\dot{P}$ $B_d = 3.2 \times 10^{19} (P[s] \dot{P})^{1/2} G$

 $= 3.2 \times 10^{19} P[s] (2\tau_c[s])^{-1/2} G$

An observational perspective:

P-P diagram for 1704 objects, including 1674 RPPs (small black dots).

Magnetars have some of the lowest spins, despite being the most luminous. A lower-B NS would be over the death line & thus no longer a RPP.

RPP = roation powered pulsar CCO = central compact object INS = XDIN RRAT = rotating radio transient

(Kaspi 2010)

An observational perspective:

SGR0418+5729: discovered by Fermi/GBM on 9 June 2009 through 2 weak bursts (Van der Horst et al. 2010)

It displayed long-lasting enhanced X-ray emission & a spin period of P ≈ 9.1 s (Esposito et al. 2010)

By 23 Sep. 2010 its F_X decreased by ×10³ to 6×10³¹ erg/s. Hot thermal emission (kT ≈ 0.67 keV) & very small emission region (R ≈ 0.1 km) (Rea et al. 2010)

No period derivative measured: $P < 6 \times 10^{-15}$ s/s $\Rightarrow B_{dipole} < 7.5 \times 10^{12}$ G & $\tau_c > 2.4 \times 10^7$ yrs (Rea et al. 2010)

An observational perspective:

A physical perspective:

No high- B_d objects With an old τ_c (B_d = dipole B-field τ_c = spin-down age)

There is a limiting spin period: $P \leq 10$ s

It is expected if B_d decays fast enough: $\dot{B}_d \propto B_d / \tau_d$ $\tau_d \propto B^{-\alpha}$ with $\alpha < 2$ (Colpi et al. 2000)

(7 SGRs, 11 AXPs, 6/7 XDINs)

Could this be a selection effect? Unlikely!

For $\tau_c = \text{const}$, larger \mathbf{B}_d is easier to detect

SGRs are detected through their bursts: Before B_d decays a lot, $\tau_c \sim t \rightarrow$ more sources at larger τ_c

If bursts follow B_d \rightarrow SGRs should be detected mostly with $P \gg 10 s$

If bursts follow B_d how do they "know" to stop at P > 10 s ?

Could this be a selection effect? Unlikely!

For $\tau_c = const$, larger B_d is easier to detect

SGRs are detected through their bursts: Before B_d decays a lot, $\tau_c \sim t \rightarrow$ more sources at larger τ_c

If bursts follow B_d \rightarrow SGRs should be detected mostly with $P \gg 10 s$

If bursts follow B_d how do they "know" to stop at P > 10 s ?

Dipole field decay: parameterized model

Dipole field decay: parameterized model

Once B_{dip} decays significantly, true age t \ll spin-down age τ_{e}

 $\mathbf{B}_{\mathrm{d}} \propto \mathbf{P} \, \tau_{\mathrm{c}}^{-1/2}$

For $t \gg \tau_{d,i}$, $\alpha < 2$: $B_d \propto t^{-1/\alpha} \propto \tau_c^{-1/2}$ $t/\tau_c \propto \tau_c^{(\alpha-2)/2}$

Dipole decay modes vs. Observations

Dipole decay modes vs. Observations

Dipole decay modes vs. Observations

Age constraints on the field decay

(Kaplan 2004)

Age constraints on the field decay

 $L_X(0.5-10 \text{ keV}) < 6 \times 10^{31} \text{ erg/s} \Rightarrow t > 10^5 \text{ yr}$

Age constraints on α from XDINs

Dominant Blackbody Temperature (eV)

L_x ≈ few × 10³¹ erg/s kT < 0.1 keV ≈ 10⁶ K → ages t ≤ 10⁵ yrs (t/ $\tau_c \le 0.1$) → $\alpha \ge 1.5$

Age constraints on a from XDINs

Dipole field decay: physical models

Hall Decay of the magnetic field in the NS crust is expected to operate fast enough at large B $\tau_d \sim 10^4 \text{ yrs} / B_{15}$ ($\alpha = 1$)

(Goldreich & Reisenegger 1992; Cumming et al. 2004)

Dipole field decay: physical models

Hall Decay of the magnetic field in the NS crust is expected to operate fast enough at large B $\tau_d \sim 10^4 \text{ yrs} / B_{15}$ ($\alpha = 1$)

(Goldreich & Reisenegger 1992; Cumming et al. 2004)

Dipole field decay: physical models

Hall Decay of the magnetic field in the NS crust is expected to operate fast enough at large B $\tau_d \sim 10^4 \text{ yrs} / B_{15}$ ($\alpha = 1$)

(Goldreich & Reisenegger 1992; Cumming et al. 2004)

<u>B-independent</u> Ohmic decay + diffusion in deep crust gives a power-law decay, $\mathbf{B} \propto t^{-1/\alpha}$ with $1.5 \leq \alpha \leq 1.8$ and $\tau_{d,i} \approx 10^4 \rho_{i,12}$ yrs $\Leftrightarrow \mathbf{B}_i^{-\alpha} \Rightarrow \alpha_{eff} = 0, \Delta_{\mathbf{B}} = \Delta_{\mathbf{P}} \Rightarrow$ problematic!

(Urpin, Changmugam & Sang 1994 [...]→ Urpin & Yakovlev 2008)

Luminosity Evolution vs. Dipole Decay

New observable: L_x(2-10 keV)

 $|\mathbf{E}_{B,d} \sim \mathbf{R}^3 \mathbf{B}_d^2$ $|\mathbf{E}_{B,d}| = \mathbf{L}_B \sim \mathbf{R}^3 \mathbf{B}_d^{2+\alpha} / \mathbf{A}$

Luminosity Evolution vs. Dipole Decay

Luminosity Evolution vs. Dipole Decay

We use L_x(2-10 keV) ~ (0.3-0.5) L_{x,bol} → bolometric + GR corrections imply L_{x,intrinsic} ~ several × L_x(2+10 keV)
 L_B also goes to other channels (bursts, v's) → conservative Decay of the Dipole Field does not match L_x evolution In particular it cannot power sources @ τ_c ≥ 10⁵ yrs

Interior Field

1. Decay of the interior field releases heat in the core, which is conducted to the surface, producing a quasi-thermal emission

2. Interior field is confined to the crust, and/or core field does not decay (condensed phase?)

Ambipolar diffusion in the NS core

$$L_{\rm B,int} = (R_*^3/3) B_{\rm int}^2 / \tau_{\rm d,int} \approx 10^{38} B_{\rm int,16}^{16/5} R_{*,6}^3 {\rm erg \ s^{-1}} \qquad \frac{dU^-}{dt} \simeq 9.6 \times 10^{20} \ T_9^8 \ \rho_{15}^{\frac{2}{3}} \ {\rm erg \ cm^{-3} s^{-1}}$$

$$T_{8,\text{eq}}^{(\text{s})} \simeq 2.7 B_{15}^{2/5} \left(\frac{\rho_{15}}{0.7}\right)^{-2/3}$$

$$T_{\rm s} \simeq 1.17 \times 10^6 \; {\rm K} \; \left[(7\zeta)^{9/4} + \left(\frac{\zeta}{3} \right)^{5/4} \right]^{1/4} \label{eq:Ts}$$

where $\zeta \equiv T_{\rm c,9} - 0.001~g_{14}^{1/4} (7~T_{\rm c,9})^{1/2}$ and $g_{14} \approx 1.87$ is the surface gravity.

$$L_{\rm X,\infty} = \left(1 - \frac{2GM_*}{R_*c^2}\right) L_{\rm X} \approx 10^{33} \, {\rm erg \ s}^{-1} \, \left[(7\zeta)^{9/4} + \left(\frac{\zeta}{3}\right)^{5/4} \right]$$

Ambipolar diffusion in the NS core

$$L_{\rm B,int} = (R_*^3/3) B_{\rm int}^2 / \tau_{\rm d,int} \approx 10^{38} B_{\rm int,16}^{16/5} R_{*,6}^3 \text{erg s}^{-1} \qquad \frac{dU^-}{dt} \simeq 9.6 \times 10^{20} \ T_9^8 \ \rho_{15}^{\frac{2}{3}} \ {\rm erg \ cm}^{-3} {\rm s}^{-1}$$

Hall decay of internal field in the deep crust

$$L_{\rm B,int}^{(I)} \approx 2 \times 10^{36} B_{16}^3 R_{*,6} \ {\rm erg \ s^{-1}}$$

(Arras, Cumming & Thompson 2004)

Hall decay of internal field in the deep crust

$$L_{\rm B,int}^{(I)}\approx 2\times 10^{36}B_{16}^3R_{*,6}\ {\rm erg\ s^{-1}}$$

(Arras, Cumming & Thompson 2004)

Adding Sources

Evolutionary Links:

 SGR/AXP branch (Kouveliotou et al. 1998): SGR → AXP → XDIN? B_{d,i} ~ 10¹⁵ G, B_{int,i} ≥ 10¹⁶ G; early L_X ~ 10³⁵ erg/s ≪ L_{B,int} (v-limited)

 Transient branch: Trnasient SGR/AXP → ???
 B_{d,i} ~ 2×10¹⁴ G, L_{X,quiescent} ≪ L_{B,dip} → B_{int,i} ~ ?, L_{X,outburst} ~ L_{X,SGR/AXP}

 ordered B_{int,i} ≥ 10¹⁶ G suppresses quiescent heat conduction to surface
 b_{int,SGR/AXP} → α-Ω dynamo, B_{int,transient} → ??? (remnant field?)

Evolutionary Links:

 SGR/AXP branch (Kouveliotou et al. 1998): SGR → AXP → XDIN?
 B_{d,i} ~ 10¹⁵ G, B_{int,i} ≥ 10¹⁶ G; early L_X ~ 10³⁵ erg/s ≪ L_{B,int} (v-limited)

 Transient branch: Trnasient SGR/AXP → ???
 B_{d,i} ~ 2×10¹⁴ G, L_{X,quiescent} ≪ L_{B,dip} → B_{int,i}~?, L_{X,outburst} ~ L_{X,SGR/AXP}
 → ? ordered B_{int,i} ≥ 10¹⁶ G suppresses quiescent heat conduction to surface
 High-B RPP → XDIN?

Sources of interest:

SGR J0418+5729: $B_{d,i} \sim (3-5) \times 10^{14}$ G, while currently $t_{age} \sim 1-2$ Myr, $B_d \sim (4-7) \times 10^{12}$ G, $B_{int} \sim (1-2) \times 10^{14}$ G (for $B_{int,i} \gtrsim 10^{16}$ G) & $L_{B,int} \sim L_X \sim (4-10) \times 10^{30}$ erg/s

XDINs: t_{age} ~ 0.1-0.6 Myr, B_{d,i} ~ (0.3-20)×10¹⁴ G, L_X likely remnant heat (L_{B,int} might contribute a little); no evidence for B_{int} →? related to other high-B NSs without bursting activity (RPP, CCO?)

Conclusions:

We find strong observational evidence of dipole field decay on ~10³ yr timescale for strongest magnetars, $B_{dip,i} \sim 10^{15} G$ Dipole field decay index α , defined by $\mathbf{B}_{d} \propto \mathbf{B}_{d}^{1+\alpha}$, is in the range $1 \le \alpha \le 2$, and more likely $1.5 \le \alpha \le 1.8$ \square Once \mathbb{B}_{dip} decays significantly, true age \ll spin-down age ■ $L_{X,persistent} > |E_{B,dipole}| \Rightarrow$ another energy source is required ⇒ likely internal field decay: requires $B_{internal,i} \gtrsim 10^{16} \text{ G}$ Evolutionary tracks: ◆ SGR/AXP branch ♦ Transient branch ♦ High-B RPP → XDIN branch?