Jet in star: jet composition in the collapsar model & GRB duration distribution Jonathan Granot

The 1st Capitol Chat, on "GRBs and their prompt emission radiation mechanism", June 8, 2015, GWU, Washington DC, USA

Hydrodynamic GRB Jet in its parent star

(Bromberg & Levinson 2007

Collimation

Shock

- The Jet develops a slow-moving 'head', were there is a pressure balance between the shocked jet material & external medium
- At the head jet matter decelerates by a reverse shock, flows sideways & forms a high-pressure cocoon that collimates the jet
- To propagate the head must be fed by jet material & the jet would fail if engine stops before $z_h \cong R(1 - \beta)$

Breakout time (Bromberg et al. 2011)

 $t_b \cong 15 \text{ sec} = \frac{1}{10}$

 $\left(\frac{\theta_0}{10^\circ}\right)^{2/3} \left(\frac{R}{5R_{\odot}}\right)$

GRB Jet propagation in its parent star: highly magnetized vs. hydrodynamic jets The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout Relativistic head \Rightarrow less energy into cocoon & supernova The head velocity is independent of the detailed jet structure \Rightarrow simplifies the model & allows (semi-) analytic solutions

GRB Jet propagation in its parent star: highly magnetized vs. hydrodynamic jets The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout Relativistic head \Rightarrow less energy into cocoon & supernova The head velocity is independent of the detailed jet structure \Rightarrow simplifies the model & allows (semi-) analytic solutions

$$t_b \cong \left(\frac{R}{\beta c}\right)(1-\beta) \cong \frac{R}{2\Gamma_h^2 c} \qquad t_b \cong 1.8 \sec\left(\frac{L_{\rm iso}}{10^{51} {\rm erg/s}}\right)^{-1/3} \left(\frac{r_{\rm L}}{5 \times 10^7 {\rm cm}}\right)^{2/3} \left(\frac{M}{15M_{\odot}}\right)^{1/3}$$

Levinson & Begelman (2013): current-driven instabilities dissipate most of the magnetic field → a hydrodynamic jet
 This is still unclear & strongly affects the jet dynamics

Jet breakout time from its parent star:

$$t_{\gamma} = t_e - t_b$$

Prompt GRB duration

Jet breakout time

distribution

Engine activity time

- Outflow from the central source that reaches the jet's head while it is in the star deposits its energy there: helps the jet bore its way out $t < t_h$
- Only outflow that doesn't reach the jet's head inside the star can contribute to powering the GRB prompt emission: $t > t_{h}$
- $t_e > t_b \Rightarrow \text{normal GRB};$ $t_e < t_b \Rightarrow \text{a failed (low-luminosity?) GRB}$

The resulting prompt GRB duration distribution has two limits:

$$p_{\gamma}(t_{\gamma}) = p_{e}(t_{e} = t_{\gamma} + t_{b}) \approx \begin{cases} p_{e}(t_{b}) & t_{\gamma} << t_{b} \\ p_{e}(t_{\gamma}) & t_{\gamma} >> t_{b} \end{cases} \text{ a constant value} \\ \text{reflects the engine} \\ \text{duration distribution} \end{cases}$$

The GRB Duration Distribution:

The plateau is larger & clearer for soft GRBs – without most short GRBs
 Observed plateaus reach up to ~20-30 s ⇒ turnover at to ~40-50 s ⇒ t_b ~10-15 s

Implications & Conclusions:

- The observed GRB duration distribution suggests t_b~10-15 s ⇒ favor a hydrodynamic over magnetic jet before breakout
 Non-magnetic jet launching? maybe but vv → e⁺e⁻ ⇒ M_{acc} ≥0.1 M₀/s
 - Hydromagnetic jet launching is most likely but the jet must somehow disrupt and dissipate most of its magnetic energy (become hydrodynamic) deep in the star (not via kink inst.)
- The initial jet magnetization σ_0 can increase over its lifetime
 - Occurs naturally in millisecond magnetar after its formation (Metzger+ 2007, 2011)

Can also occur in BH for high accretion rates (Kawanaka+ 2013).