Magnetic acceleration of GRB Jets

Jonathan Granot

Open University of Israel

The 1st Capitol Chat, on "GRBs and their prompt emission radiation mechanism", June 9, 2015, GWU, Washington DC, USA Ideal MHD acceleration: numerical + analytic results (Komissarov+ 09; Lyubarsky 09; Tchekhovskoy+10)
 Unconfined flows rapidly lose lateral causal contact, become radial & stop accelerating when Γ_∞ ~ σ₀^{1/3} & σ_∞ ~ σ₀^{2/3} > 1 (Goldreich & Julian 1970; Tomimatsu 1994; Beskin et al. 1998)

■ Weak confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha > 2 \Rightarrow$ lose lateral C.C. become conical & stop accelerating later; causal contact loss: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{jet}^{-2/3}, \sigma_{\infty} \sim (\sigma_0 \theta_{jet})^{2/3}$, efficient conversion: $\Gamma_{\infty} \theta_{jet} < 1$

Strong confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha < 2 \implies$ stay in causal contact $\Gamma \propto z^{\alpha/4}$ and reach $\Gamma_{\infty} \sim \sigma_0$, $\sigma_{\infty} \sim 1$, $\Gamma_{\infty} \theta_{iet} \le 1$

■ Hydromagnetic launching naturally helps avoid high baryon loading that limits the maximal possible asymptoticILF.

 Acceleration of steady, relativistic supersonic flows: Thermal: fast, robust, efficient
 Magnetic: slow, delicate, less efficient

The "σ-problem": for a "standard" steady ideal MHD axisymmetric flow $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^{2/4} \pi \rho_0 c^2$ • In PWN the solution is dissipation of the striped wind • However, this doesn't work in relativistic jet sources If **collimation** helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{\text{iet}}^{-2/3}$, $\sigma_{\infty} \sim (\sigma_0 \theta_{\text{iet}})^{2/3} \& \Gamma \theta_{\text{iet}} \leq \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\text{max}} \sim \sigma_0)$ Still $\sigma_{\infty} \ge 1 \Rightarrow$ inefficient internal shocks, $\Gamma_{\infty} \theta_{jet} \gg 1$ in GRBs Sudden drop in external pressure can give $\Gamma_{\infty} \theta_{iet} \gg 1$ but still $\sigma_{\infty} \ge 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

Alternatives to the "standard" model Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000) • If $\langle B_r^2 \rangle = \alpha \langle B_{\phi}^2 \rangle = \beta \langle B_z^2 \rangle$; $\alpha, \beta = \text{const}$ then the magnetic field behaves as an ultra-relativistic gas: $p_{max} \propto V^{-4/3}$ \Rightarrow magnetic acceleration as efficient as thermal **Ideal** MHD: a tangled magnetic field can reconnect (Drenkham & Spruit 2002; Lyubarsky 2010 - Kruskal-Schwarzschild instability (like R-T) in a "striped wind") magnetic energy \rightarrow heat (+radiation) \rightarrow kinetic energy Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

2. ⟨Γ⟩_E ∝ R^{1/3} between R₀~Δ₀ & R_c~σ₀²R₀ and then ⟨Γ⟩_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

1st Steady then Impulsive Acceleration

Our test case problem has no central engine: it may be, e.g., directly applicable for giant flares in SGRs; however:
 In most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale((t_v≈R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates (at R_s)
 Then the impulsive acceleration kicks in & leads to σ < 1 Log(Γ)_A

