Gamma-Ray Bursts in the Fermi Era Jonathan Granot Open University of Israel

On behalf of the Fermi LAT & GBM collaborations

Fifth International Fermi Symposium, Nagoya, Japan, Oct. 23, 2014

Outline of the Talk:

GRB theoretical framework; how *Fermi* fits in ■ GRB prompt emission: GBM + LAT @ high-energy ◆ Delayed HE onset, HE spectral component, BB component? $\diamond \Rightarrow$ emission region: Γ , R, geometry? emission mechanism? ◆ LAT GRB detection rate, short vs. long GRBs @ HE Long-lived HE emission ■ High-energy afterglow & GRB 130427A: Implications for relativistic collisionless shock physics non-GRB physics: EBL, Lorentz invariance violation Synergies with other instruments & Conclusions

GRB Theoretical Framework:

Progenitors:

Long: massive stars
Short: binary merger?
Jet Acceleration: fireball or magnetic?

γ-rays: internal shocks? emission mechanism?
 Deceleration: the outflow decelerates (by a reverse shock for σ ≤ 1) as it sweeps-up the external medium
 Afterglow: from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray → optical → radio

Fermi Gamma-ray Space Telescope (launched on June 11, 2008)

 Fermi GRB Monitor (GBM): 8 keV – 40 MeV (12×NaI 8 – 10³ keV, 2×BGO 0.15 – 40 MeV), full sky
 Comparable sensitivity + larger energy range than its predecessor - BATSE
 Large Area Telescope (LAT): 20 MeV – >300 GeV FoV ~ 2.4 sr; up to 40× EGRET sensitivity, « deadtime

Delayed onset of High-Energy Emission GRB080916C GRB090510

(Abdo et al. 2009, Science, 323, 1688)

The 1st LAT peak coincides with the 2nd GBM peak
 Delay in HE onset: ~ 4-5 s

(Abdo et al. 2009, Nature, 462, 331)

The first few GBM peaks are missing in LAT but later peaks coincide; the delay is 0.1-0.2s

Distinct High-Energy Spectral Component

Clearly (>5o) exists in several LAT GRBs, but very common in the brightest LAT GRBs
Suggests that it is common but good photon statistics is needed for clear evidence

Late onset/HE spectral component: Possible Origin **Leptonic**: inverse-Compton (or synchrotron self-Compton)? + Hard to produce a delayed onset longer than spike widths (the seed photon field builds-up on the dynamical time) \diamond A gradual increase in the HE photon index β (determined by the electron energy dist.) is not naturally expected • Hard to account for the different photon index values of the HE component & the Band spectrum at low energies ◆ Hard to produce a low-energy power-law (GRB090902B)

Late onset/HE spectral component: Possible Origin **Hadronic**: (pair cascades, proton synchrotron)? ◆ Late onset: time to accelerate protons+develop cascades? \diamond Does not naturally account the gradual increase in β • Hard to produce the observed sharp spikes that coincide with those at low energies (+ a longer delay in the onset) • GRB090510: large energy needed: $E_{total}/E_{v iso} \sim 10^2 - 10^3$ ◆ GRB090902B: synchrotron emission from secondary e[±] pairs can naturally explain the power-law at low energies

Thermal components in prompt spectrum? ■ Usually sub-dominant ⇒ degeneracy with the assumed (usually phenomenological Band) dominant component

Thermal components in prompt spectrum? \blacksquare Usually sub-dominant \Rightarrow degeneracy with the assumed (usually phenomenological Band) dominant component Photospheric emission is not a perfect black body (BB) Even for a local BB emission + a spherical flow, Doppler factor & R_{ph} variations with the angle to the line of sight smear/widen spectrum Temperature variations (with time/location) smear/widen spectrum • Non-thermal e^{-}/e^{+} from dissipation near $R_{ph} \Rightarrow$ power-law wings Many options (continuum of physically motivated spectra) + many degrees of freedom \Rightarrow non-uniqueness (many viable options) (see poster 9.03 by M. Burgess+)

Constraints on \Gamma for Fermi LAT GRBs F_{min}: no high-energy cutoff due to intrinsic pair production \Rightarrow lower limit on the Lorentz factor of the emitting region **Fermi**: more robust limits – don't assume photons >E_{obs max} For bright LAT GRBs (long/short): $\Gamma \ge 10^3$ for simple model (steady-state, uniform, isotropic) but $\Gamma \ge 10^{2.5}$ for more realistic time-dependent self-consistent thin shell model (JG et al. 2008) **GRB 090926A**: high-energy cutoff – if due to intrinsic pair production then $\Gamma \sim 200 - 700$

GBM/LAT GRB detection rate

GBM detects ~240 GRB/yr, ~45 (~19%) of them are short
 LAT: ~9.5 → 15 GRB/yr (~6% of GBM); ~7/79 ~ 9% short

GBM/LAT GRB detection rate

 LAT pre-launch prediction (based on Band extrapolation)
 9.3 GRB/yr with ≥10 photons
 ≥ 0.1 GeV vs. 6.3/yr detected

Likelihood detection (TS > 28): 12/yr expected, 9.5/yr detected

Overestimates of β + cutoffs at 10's MeV just win over HE PL
 Perhaps Band fails completely
 On average, the high-energy emission is energetically sub-dominant compared to ≤ MeV

Long vs. Short GRBs *(a)* High-Energies:

Trend: larger LAT/GBM fluence ratio in short (rel. to long) GRBs Short GRBs are harder (higher β & E_{peak} in time integrated spectrum) ■ Both show delayed onsets, but the delay scales with the GRB duration Both show HE hard PL component Both show long-lived HE emission Both include very bright LAT GRBs Both have very constraining Γ_{min} Both have some redshifts but long GRBs are usually easier to follow up

GBM GRB Durations: Jet Composition

Plateau observed in the dN_{GRB}/dT₉₀ distribution, naturally occurs in the collapsar model: jet break out time from star

- Clearer for soft GRBs + there in all major GRB missions
- ⇒ $t_{breakout} \sim 10$ s consistent with a hydrodynamic jet but not with a highly magnetized jet ($t_{breakout}(\sigma \gg 1) \sim 1$ s)
- The jet in hydrodynamic around $t_{breakout} \sim 10 \text{ s}$
- The initial magnetization σ_0 can increase over jet's lifetime (natural in newly born ms-magnetar or rapidly accreting BH)

GBM observations of GRB130427A 1st pulse (see Michael Burgess's talk) Detailed time-resolved study of a pulse • $E_{\text{peak}} \propto t^{-1}$, pulse width W(E) $\propto E^{-0.3}$ t-0.4 (Synchrotron consistent with internal shock synchrotron **3**¹⁰³ model) (Band function) ■ $L \propto (E_{peak})^{1.4}$ inconsistent with shock curvature effect (high-latitude; $L \propto E_p^3$) 10^{2} ■ No current model explains all details (Preece et al.¹⁰¹2014 Time [s] Science, 343, 51) 1.2 LE [10-100 MeV] time WIE 500 ^{0.3} Pulse Width W(E) [s] 1.0 400 s⁻¹] pin 0.8 Renormalized counts per . . **D** 10⁵² energy (MeV) 10 10 Photon (F [keV] Swift/BAT 0.4 10⁵¹ 1~10 0.2 102 10 1.0

Time since trigger (s)

Rest Frame Eneak [keV]

Long-Lived High-Energy emission

0.6

0.4

T₉₀ (100 MeV-10 GeV)

High-Energy Afterglow: GRB130427A (see Judy Racusin's talk)

- LAT detected emission up to ~ 20 hr after GRB
 >10 GeV γ's observed up to hours after GRB
- May arise at least partly from the prompt γ-ray emission up to few 10² s
- At later times there is no prompt emission, only a simple power-law decay: afterglow

High-Energy Afterglow: GRB130427A

- LAT detected emission up to ~ 20 hr after GRB
 >10 GeV γ's observed up to hours after GRB
 May arise at least partly
 - from the prompt γ -ray emission up to few 10² s
- At later times there is no prompt emission, only a simple power-law decay: afterglow

High-Energy Afterglow: GRB130427A

High-Energy Afterglow: GRB130427A

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: $t_{acc} \sim t_{syn}$
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely) fast) or $P_{\rm L} = 2\pi/\omega_{\rm L}$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated

■ $\Rightarrow E_{syn,max}$ appears to be truly violated $\Rightarrow \ge 1$ assumption must break Non-uniform magnetic field? $E_{syn,max}$ grows by a factor of B_1/B_2

acceleration region recilon

Testing for Lorentz Invariance Violation

(using GRB was first suggested by Amelino-Camelia et al. 1998)

> Why GRBs? Very bright & short transient events, at cosmological distances, emit high-energy γ-rays (D. Pile, Nature Photonics, 2010)

mmm

Testing for Lorentz Invariance Violation

- GRB 090510 is much better than the rest (short, hard, very fine time structure)
- Abdo+ 2009, Nature, 462, 331: 1st direct time-of-flight limit beyond Plank scale on linear (n = 1) energy dispersion:

$$v_{\rm ph} / c \approx 1 \pm \frac{1}{2} (1+n) \Big(E_{\rm ph} / E_{\rm QG,n} \Big)$$

(robust, conservative, 2 independent methods)

- Vasileiou+ 2013: 3 different methods, 4 GRBs (090510 is still the best by far), the limits improved by factors of a few
- Vasileiou+ 2014 (submitted): stochastic LIV – motivated by space-time foam (1st Planck-scale limit of its kind)

Synergies with other instruments & Conclusions

- Current: Swift, optical/radio telescopes, NuSTAR, Suzaku, TeV (HAWC, IACTs), ...
- Multi-messenger: neutrinos (Ice Cube), UHECRs, gravitational waves
- Future: CTA, SVOM, LSST, ZTF, SKA, aLIGO/VIRGO, Astro-H, X/γ-ray polarimetry, ISS-lobster, ...
- *Fermi* has greatly contributed to GRB science
- We got some answers, but more new questions
- *Fermi* GRBs also contributed to non-GRB science
 There is still a lot to look forward to...