What we Know, Don't Know, or Would Like to Know about Gamma-Ray Bursts

Jonathan Granot

University of Hertfordshire (Royal Society Wolfson Research Merit Award Holder)

Review talk at the RAS "Explosive Transients" Meeting, Liverpool, England, June 18, 2010

Outline of the Talk:

GRBs: short historical overview (obs. driven field) Observational constraints \Rightarrow theoretical framework **Progenitors** of long and short GRBs **The Central Engine**: accreting BH vs. ms-magnetar **Outflow** acceleration and composition **Jets**, beaming, energy budget & true event rate **Prompt emission:** dissipation, emission mechanism Afterglow: model vs. observations Shock microphysics How can new observations help? Conclusions

GRBs: Brief Historical Overview ■ 1967: 1st detection of a GRB (published in 1973) **I**n the early years there were many theories, most of which invoked a Galactic (neutron star) origin ■ 1991: the launch of CGRO with BATSE lead to significant progress in our understanding of GRBs Isotropic dist. on sky: favors a cosmological origin. Bimodal duration distribution: short vs. long GRBs

BeppoSAX (1996–2002): led to afterglow discovery (1997) in X-rays, optical, radio (for long GRBs) • This led to redshift measurements: clear determination of **distance/energy** scale (long GRBs) $E_{v,iso} \sim 10^{52} - 10^{54}$ erg Afterglow observations provided information on beaming (narrow jets: $E_{\gamma} \sim 10^{51}$ erg), event rate, external density, supernova connection (\Rightarrow long GRB progenitors) Swift (2004-?): autonomously localizes GRBs, slews $(in \sim 1-2 min)$ and observed in X-ray + optical/UV Discovered unexpected behavior of early afterglow: rapid decay phase, plateaus, flares, chromatic breaks Led to the discovery of afterglow from short GRBs -> host galaxies, redshifts, energy, rate, clues for progenitors **Fermi** (2008-?): high-energy emission - delayed onset, long lived emission, distinct high-energy component, high Γ_{\min} , short GRBs show a smaller delay + harder spectrum

Some Basic Observational constraints Energy: $E_{\gamma,iso} \sim 10^{51} - 10^{55} \text{ erg (LSB)}, \sim 10^{49} - 10^{53} \text{ erg (SHB)}$ Short variability time \Rightarrow compact source +non-thermal spectrum with $E_{peak} \sim m_e c^2$, $L_{iso} \sim 10^{52\pm1} erg/s$: compactness problem \Rightarrow Relativistic motion $\Gamma \ge 100$ **Narrow jet**: analogy to AGN/ μ Q, $E_{\gamma,iso} \ge 10^{54}$ erg, jet break **Progenitors**: environment, event rate, SN associations Afterglow: broad-band spectrum, optical/NIR polarization, radio afterglow image size (GRBs 970508, 030329)

GRB Theoretical Framework: Progenitors:

Long: massive stars
Short: binary merger?
Acceleration: fireball or magnetic?
Prompt γ-rays: internal shocks? emission mechanism?

Deceleration: the outflow decelerates (by a reverse shock for σ ≤ 1) as it sweeps-up the external medium
 Afterglow: from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray → optical → radio

Progenitors: Long-Soft GRBs (LSB) Massive stars: host galaxy type & SFR, location within the host (Fruchter et al. 2006), SN associations Handful of spectroscopic associations to SNe Ic (mainly GRB030329) \Rightarrow at least some LSBs involve $(\pm 1 \text{ day})$ the core collapse of massive stars stripped of their hydrogen & helium \Rightarrow **BH** or **NS** formation Some Open Questions: role of progenito's rotation, mass, metallicity, binarity; LSBs without bright SN; local under-luminous LSBs; XRFs, shock breakout Relevant observations: GRB host studies, search for GRB-SN up to $z \sim 0.5-1$, afterglow spectroscopy, study of nearby SN Ib/c, discovery of unique events

Progenitors: Short-Hard GRBs (SHB) Different progenitors than long-soft GRBs: • found also in hosts with very small SFR \Rightarrow long delay from star formation; if a massive star is involved then it dies a long time before the GRB: ≥ 2 stage process no SN associations (which are found for some LSBs) ◆ location w.r.t host (large offsets – suggests "natal kicks") **Candidates**: binary mergers (NS-NS/BH), accretion induced collapse of NS, colliding compact objects in globular clusters, nearby SGR giant flares ($\leq 5\%$) Some Open Questions: progenitors, extended soft tails, subclasses, collimation (true energy + event rate) Relevant observations: hosts, offsets, gravitational waves, neutrinos, "mini-SN", late flaring, GeV/TeV

The Central Engine: Long-soft GRBs Collapsar: a massive star core collapses and a BH forms (directly/fallback) & accretes part of envelope ◆ LSB durations are similar to the free-fall time of the core, but it must rotate fast enough to form an accretion disk ▲ Launching a jet: magnetic (B-Z?), neutrino annihilation? Collimation: by the walls of the funnel in stellar envelope • Can provide up to $\sim 10^{54}$ erg (enough for GRB jet + SN) ◆ The disk wind can help energize the SN and make ⁵⁶Ni ■ Millisecond-magnetar: $t_{spin-down} \sim T_{GRB} \Rightarrow B \sim 10^{15.5} G$ • Powered by the NS rotational energy $\Rightarrow E \leq 10^{52.5} \text{ erg}$ (might not be enough to power very energetic GRB+SN) Jet launching: pulsar-type relativistic MHD wind Collimation: magnetic hoop stress + stellar envelope ♦ Might be hard to generate enough ⁵⁶Ni for a bright SN

The Central Engine: Short-hard GRBs ms-magnetar? $T_{spin-down} \sim T_{GRB} \Rightarrow B > 10^{16.5} G$ Usual magnetar formation requires: suppression of SN emission, located in massive star forming regions \Rightarrow unconventional formation: AIC of WD, NS-NS merger accreting **BH** (possibly from a binary merger): ◆ T_{GRB} ~ viscous time (variability: accretion instabilities) ◆ Jet launching: magnetic (B-Z?), neutrino annihilation ◆ Collimation: disk wind (?) ◆ Late flares from fallback of tidal tails? Some Open Questions (LSB+SHB): BH/magnetar, jet launching & collimation, source of variability,... Relevant observations: GWs, neutrinos, afterglow energy/calorimetry, SN energy, late flares (SHB)

Outflow Acceleration & Composition: Fireball: thermal (radiation pressure) acceleration • Fast ($\Gamma \propto R$), robust, allows efficient internal dissipation ◆ Baryon kinetic energy eventually dominates ◆ Requires a small baryon loading (~10⁻⁵ M_☉) **Magnetic** acceleration: Poynting flux dominated jets Standard steady-state axisymmetric magnetic acceleration is slow & not robust or very efficient (but see next slide) **Composition**: baryons (neutron rich?), e^{\pm} pairs magnetic field, in different ratios; hard to tell apart **Open Questions:** thermal vs. magnetic acceleration, baryonic vs. Poynting flux dominated jets, Γ_0,\ldots Relevant observations: afterglow onset, polarimetry (prompt, early afterglow, flares), HE v' s, thermal comp.,

Recent Progress: Impulsive Acceleration of Strongly Magnetized Relativistic Flows (JG, Komissarov & Spitkovsky 2010; arXiv:1004.0959)
⟨Γ⟩(t₀) ≈ σ₀^{1/3}, <⟨Γ⟩(t₀<t <t_c) ∝ t^{1/3} ∝ R^{1/3}, t_c ~t₀σ₀²
For σ₀ < η_{cr}: ⟨Γ⟩ ≈ σ₀, ⟨σ⟩ ≈ t_c/t <1 at t > t_c ⇒ full conversion of magnetic to kinetic energy: allows efficient internal shocks
Acceleration & deceleration by ext. medium: tightly coupled

Jets, beaming, true energy & event rate Evidence of Jets: analogy to AGN/ μ Q, $E_{\gamma,iso} \gtrsim 10^{54}$ erg jet break, LSB: spherical explosion can't produce $E \ge 10^{51}$ erg in ejecta with $\Gamma \ge 100$ (no "smoking gun") Jet structure: unclear (uniform, structured, hollow cone,...) • Affects $E_{\gamma,iso} \rightarrow E_{\gamma}$ & observed GRB rate \rightarrow true rate ◆ Viewing-angle effects (afterglow & prompt - XRF) ◆ Can also affect late time radio calorimetry Some Open Questions: the jet angular structure, role of viewing effects in the observed properties, true energy budget and GRB event rate,... Relevant observations: orphan afterglow surveys, polarization L.C., good multi-wavelength afterglow L.C., radio calorimetry, nearby GRB/radio SN Ib/c

Prompt emission maechanism, dissipation Dissipation: internal shocks ◆ Well explored, account for variability + some correlations Limited efficiency, don't explain some observations Relativistic turbulence / mag. reconnection / mini-jets • High efficiency may naturally be obtained Not worked out yet, predicts unobserved overall evolution **Emission Mechanism:** ? (leptonic: synchrotron, SSC, Compt., photospheric; hadronic: p-syn, π -decay, e[±] cascades) Some **Open Questions**: the dominant dissipation & emission mechanisms, identity of distinct spectral components at high/low energies, Γ_0, \ldots Relevant observations: prompt optical, x-ray, MeV, GeV, TeV; x/γ -ray polarimetry; HE v's, UHECRs

Recent Progress: Fermi Observations

Γ_{min}: no high-energy cutoff due to intrinsic pair production
 ⇒ strict lower limits on Lorentz factor of the emitting region
 For bright LAT GRBs (long/short): Γ ≥ 10³ for simple model (steady-state, uniform, isotropic) but Γ ≥ 10^{2.5} for more realistic time-dependent self-consistent thin shell model (JG et al. 2008)

 GRB 090926A: high-energy cutoff – if due to intrinsic pair production then Γ ~ 200-700

Distinct spectral component at high (+sometimes also low) energies in 3/4 brightest LAT GRBs ⇒ intrinsically common
 Delayed onset of HE emission (LSB: ~4-10 s; SHB: ~0.1-0.2 s)
 Long lived HE emission (≤ 10²-10⁴ s; HE afterglow onset?)
 The prompt emission mechanism is still unclear
 Photons >30 GeV in GRBs 090510 (SHB), 090902B (LSB) (up to 94 GeV at GRB redshift) ⇒ great prospects for CTA

Linear polarization (~few %) ⇒ mainly synchrotron
 Forward external shock: simple, hard to avoid, successful in explaining gross properties over wide frequency/time range
 Challenges: does not naturally explain some features or detailed observations, requires extensions, shock microphysics

Rapid decay phase: tail of prompt emission (smooth temporal/spectral transition) HLE? late residual emission? **Plateau**: energy injection? time varying microphysics? viewing angle effects? deceleration of slow wide 2nd jet? **Flares:** similar properties to prompt \Rightarrow likely similar origin Chromatic breaks + dim early optical, few jet breaks, α - β closure **Canonical afterglow: Chromatic breaks:** Post "usual" plateau decay 1et oun apic $t^{0}-t^{-1}$ deca ∆ ∧ ∧ α 1000 100 Vaughan et al. T2006) ce trigger (s) time (hours time (hours

Relevant observations Rapid decay phase: early $x+\gamma$ -ray obs. + global fits **Plateau:** good multi-wavelengths lightcurves/spectra add to x-ray: optical/UV, NIR/mm, radio, GeV, TeV Flares: multi-wavelength coverage + polarimetry Chromatic breaks, etc.: multi-wavelength + theory... Unique events like GRB 030329 (be ready for them) **Shock Microphysics** Afterglow model-ignorance parameters: $\varepsilon_e, \varepsilon_B, \xi_e, p, ...$ State of the art – PIC simulations: $\varepsilon_e \ge 0.1, \varepsilon_B \ge 0.01$, $\xi_e \sim 0.01$, p $\sim 2.4 \pm 0.1$; dynamical scale still not realistic Relevant observations: detailed optical+x-ray+GeV More theoretical (analytic/numerical) work is needed

Prospects for Future Observations

Relevant transients: GRBs, XRFs, orphan afterglows (radio/optical/x-ray), shock breakout, nearby SN Ib/c Host galaxies (SFR, type, z, Z, GRB location; Progenitors) Polarimetry (radio, optical, x/γ -ray; outflow acceleration and composition, prompt emission mechanism, jet structure) Multi-wavelength: (radio, optical, x-ray, MeV, GeV, TeV) composition, collimation, emission mech., afterglow, μ -phys) Multi-messenger: (GW, HE v's, UHECR; progenitors, central engine, outflow composition, emission mechanism) **Early obs.:** (prompt, afterglow onset; composition/acc., Γ_0) **Calorimetry:** (radio, γ-ray, SN; central engine, beaming) Also: late flares, mini-SN, GRB-SN, spectroscopy

Conclusions:

- GRBs is an observationally driven field: progress is usually the result of important new observations
- After >40 years from the discovery of GRBs, we still don't understand many basic aspects of this phenomena
- In particular: additional GRB classes, SHB progenitors, GRB/SN explosion, acceleration, composition, angular structure, prompt emission/dis., afterglow, microphysics
- New observations can help improve our understanding
- E.G.: transient searches, rapid follow-ups, polarimetry, multi-wavelength, multi-messenger, hosts, calorimetry
- New observations can always provide new surprises that help drive progress in unexpected ways