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Outline of the Talk: 
n GRBs: short historical overview (obs. driven field) 
n Observational constraints ⇒ theoretical framework 
n Progenitors of long and short GRBs 
n The Central Engine: accreting BH vs. ms-magnetar 
n Outflow acceleration and composition 
n  Jets, beaming, energy budget & true event rate  
n Prompt emission: dissipation, emission mechanism 
n Afterglow: model vs. observations 
n  Shock microphysics  
n  How can new observations help?  
n Conclusions 



GRBs: Brief Historical Overview 

~2 s 

Our Galaxy 

n  1967: 1st detection of a GRB (published in 1973) 
n  In the early years there were many theories, most of 

which invoked a Galactic (neutron star) origin 
n  1991: the launch of CGRO with BATSE lead to 

significant progress in our understanding of GRBs 
u  Isotropic dist. on sky: favors a cosmological origin 
u Bimodal duration distribution: short vs. long GRBs 

n  BeppoSAX (1996–2002): led to afterglow discovery 
(1997) in X-rays, optical, radio (for long GRBs) 



u This led to redshift measurements: clear determination of 
distance/energy scale (long GRBs) Eγ,iso ~ 1052 -1054 erg 

u Afterglow observations provided information on beaming 
(narrow jets: Eγ ~ 1051 erg), event rate, external density, 
supernova connection (⇒ long GRB progenitors) 

n  Swift (2004 - ?): autonomously localizes GRBs, slews       
(in ~1-2 min) and observed in X-ray + optical/UV  

u Discovered unexpected behavior of early afterglow: rapid 
decay phase, plateaus, flares, chromatic breaks 

u Led to the discovery of afterglow from short GRBs è  
host galaxies, redshifts, energy, rate, clues for progenitors 

n Fermi (2008 - ?): high-energy emission - delayed onset, 
long lived emission, distinct high-energy component, high 
Γmin, short GRBs show a smaller delay + harder spectrum 



Some Basic Observational constraints 
n  Energy: Eγ,iso ~ 1051

 - 1055 erg (LSB),  ~ 1049- 1053 erg (SHB) 

n  Short variability time ⇒ compact source 

n  + non-thermal spectrum with Epeak ~  mec2
 , Liso ~ 1052±1

 erg/s: 
compactness problem ⇒ Relativistic motion Γ ≳ 100 

n  Narrow jet: analogy to AGN/µQ, Eγ,iso ≳ 1054 erg , jet break 

n  Progenitors: environment, event rate, SN associations 

n  Afterglow: broad-band spectrum, optical/NIR polarization, 
radio afterglow image size (GRBs 970508, 030329) 



GRB Theoretical Framework: 

n Deceleration: the outflow decelerates (by a reverse 
shock for σ ≲ 1) as it sweeps-up the external medium 

n Afterglow: from the long lived forward shock going 
into the external medium; as the shock decelerates the 
typical frequency decreases: X-ray è optical è radio 

n Progenitors: 
u Long: massive stars 
u Short: binary merger?  

n Acceleration: 
fireball or magnetic? 

n Prompt γ-rays: 
internal shocks? 
emission mechanism? 



Progenitors: Long-Soft GRBs (LSB) 
n Massive stars: host galaxy type & SFR, location 

within the host (Fruchter et al. 2006), SN associations 
n Handful of spectroscopic associations to SNe Ic 

(mainly GRB030329) ⇒ at least some LSBs involve 
(±1 day) the core collapse of massive stars stripped 
of their hydrogen & helium ⇒ BH or NS formation 

n  Some Open Questions: role of progenito’s rotation, 
mass, metallicity, binarity; LSBs without bright SN; 
local under-luminous LSBs; XRFs, shock breakout 

n Relevant observations: GRB host studies, search for 
GRB-SN up to z ~0.5-1, afterglow spectroscopy, 
study of nearby SN Ib/c, discovery of unique events 



Progenitors: Short-Hard GRBs (SHB)   
n Different progenitors than long-soft GRBs:  

u  found also in hosts with very small SFR ⇒ long delay 
from star formation; if a massive star is involved then it 
dies a long time before the GRB: ≥ 2 stage process 

u no SN associations (which are found for some LSBs) 
u  location w.r.t host (large offsets – suggests “natal kicks”) 

n Candidates: binary mergers (NS-NS/BH), accretion 
induced collapse of NS, colliding compact objects in 
globular clusters, nearby SGR giant flares (≲ 5%) 

n  Some Open Questions: progenitors, extended soft 
tails, subclasses, collimation (true energy + event rate) 

n Relevant observations: hosts, offsets, gravitational 
waves, neutrinos, “mini-SN”, late flaring, GeV/TeV 



The Central Engine: Long-soft GRBs 
n Collapsar: a massive star core collapses and a BH 

forms (directly/fallback) & accretes part of envelope 
u  LSB durations are similar to the free-fall time of the core, 

but it must rotate fast enough to form an accretion disk 
u  Launching a jet: magnetic (B-Z?), neutrino annihilation? 
u  Collimation: by the walls of the funnel in stellar envelope 
u  Can provide up to ~ 1054 erg (enough for GRB jet + SN) 
u  The disk wind can help energize the SN and make 56Ni 
n Millisecond-magnetar: tspin-down ~ TGRB ⇒ B ~ 1015.5 G 
u  Powered by the NS rotational energy ⇒ E ≲ 1052.5 erg 

(might not be enough to power very energetic GRB + SN) 
u  Jet launching: pulsar-type relativistic MHD wind 
u  Collimation: magnetic hoop stress + stellar envelope 
u  Might be hard to generate enough 56Ni for a bright SN 



The Central Engine: Short-hard GRBs 
n ms-magnetar? Tspin-down ~ TGRB ⇒ B > 1016.5 G 

u Usual magnetar formation requires: suppression of SN 
emission, located in massive star forming regions ⇒ 
unconventional formation: AIC of WD, NS-NS merger 

n  accreting BH (possibly from a binary merger):  
u TGRB ~ viscous time (variability: accretion instabilities) 
u  Jet launching: magnetic (B-Z?), neutrino annihilation  
u Collimation: disk wind (?) 
u Late flares from fallback of tidal tails? 

n  Some Open Questions (LSB+SHB): BH/magnetar, 
jet launching & collimation, source of variability,… 

n Relevant observations: GWs, neutrinos, afterglow 
energy/calorimetry, SN energy, late flares (SHB) 



Outflow Acceleration & Composition: 
n Fireball: thermal (radiation pressure) acceleration 

u Fast (Γ ∝ R), robust, allows efficient internal dissipation 
u Baryon kinetic energy eventually dominates 
u Requires a small baryon loading (~10−5 M¤) 

n Magnetic acceleration: Poynting flux dominated jets 
u Standard steady-state axisymmetric magnetic acceleration 

is slow & not robust or very efficient (but see next slide) 
n Composition: baryons (neutron rich?), e± pairs 

magnetic field, in different ratios; hard to tell apart 
n Open Questions: thermal vs. magnetic acceleration, 

baryonic vs. Poynting flux dominated jets, Γ0,… 
n Relevant observations: afterglow onset, polarimetry 

(prompt, early afterglow, flares), HE ν’s, thermal comp.,
… 



Recent Progress: Impulsive Acceleration 
of Strongly Magnetized Relativistic Flows  

(JG, Komissarov & Spitkovsky 2010; arXiv:1004.0959) 

n  ⟨Γ⟩(t0) ≈ σ0
1/3, < ⟨Γ⟩(t0 < t < tc) ∝ t1/3 ∝ R1/3, tc ~ t0σ0

2 

n  For σ0 < ηcr: ⟨Γ⟩ ≈ σ0, ⟨σ⟩ ≈ tc/t < 1 at t > tc ⇒ full conversion 
of magnetic to kinetic energy: allows efficient internal shocks  

n  Acceleration & deceleration by ext. medium: tightly coupled 
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Jets, beaming, true energy & event rate 
n Evidence of Jets: analogy to AGN/µQ, Eγ,iso ≳ 1054 erg  

jet break, LSB: spherical explosion can’t produce       
E ≳ 1051 erg in ejecta with Γ ≳ 100  (no “smoking gun”)  

n  Jet structure: unclear (uniform, structured, hollow cone,…)  
u Affects Eγ,iso → Eγ & observed GRB rate → true rate 
u Viewing-angle effects (afterglow & prompt - XRF)  
u Can also affect late time radio calorimetry 

n  Some Open Questions: the jet angular structure, 
role of viewing effects in the observed properties, 
true energy budget and GRB event rate,… 

n Relevant observations: orphan afterglow surveys, 
polarization L.C., good multi-wavelength afterglow 
L.C., radio calorimetry, nearby GRB / radio SN Ib/c 



Prompt emission maechanism, dissipation 
n Dissipation: internal shocks 

u Well explored, account for variability + some correlations 
u Limited efficiency, don’t explain some observations 

n Relativistic turbulence / mag. reconnection / mini-jets 
u High efficiency may naturally be obtained 
u Not worked out yet, predicts unobserved overall evolution 

n Emission Mechanism: ? (leptonic: synchrotron, SSC, 
Compt., photospheric; hadronic: p-syn, π-decay, e± cascades) 

n  Some Open Questions: the dominant dissipation & 
emission mechanisms, identity of distinct spectral 
components at high/low energies, Γ0, … 

n Relevant observations: prompt optical, x-ray, MeV, 
GeV, TeV; x/γ-ray polarimetry; HE ν’s, UHECRs 



Recent Progress: Fermi Observations  

GRB 090926A 

preliminary 

n  Γmin: no high-energy cutoff due to intrinsic pair production 
⇒ strict lower limits on Lorentz factor of the emitting region 

n  For bright LAT GRBs (long/short): Γ ≳ 103 for simple model 
(steady-state, uniform, isotropic) but Γ ≳ 102.5 for more realistic 
time-dependent self-consistent thin shell model (JG et al. 2008) 
n  GRB 090926A: high-energy cutoff – if due to intrinsic pair 

production then Γ ~ 200-700  



n  Distinct spectral component at high (+ sometimes also low) 
energies in 3 / 4 brightest LAT GRBs ⇒ intrinsically common 

n  Delayed onset of HE emission (LSB: ~4-10 s; SHB: ~0.1-0.2 s) 
n  Long lived HE emission (≲ 102-104 s; HE afterglow onset?) 
n  The prompt emission mechanism is still unclear 
n  Photons >30 GeV in GRBs 090510 (SHB), 090902B (LSB) 

(up to 94 GeV at GRB redshift) ⇒ great prospects for CTA 

(Abdo et al. 2009,   
 Nature, 462, 331) 

GRB090510  

8 keV – 260 keV 

260 keV – 5 MeV 

LAT  raw 

LAT > 100 MeV 

LAT > 1 GeV 

preliminary 



Afterglow: what we know or don’t know 
n  decelerated expansion GRB 030329 afterglow image  
⇒ caused by interaction with the external medium 

n Linear polarization (~few %) ⇒ mainly synchrotron 
n  Forward external shock: simple, hard to avoid, successful 

in explaining gross properties over wide frequency/time range 
n Challenges: does not naturally explain some features or 
detailed observations, requires extensions, shock microphysics 

(Pihlström et al. 2007) 



n Rapid decay phase: tail of prompt emission (smooth 
temporal/spectral transition) HLE? late residual emission? 
n Plateau: energy injection? time varying microphysics?  
viewing angle effects? deceleration of slow wide 2nd jet? 
n Flares: similar properties to prompt ⇒ likely similar origin 
n Chromatic breaks + dim early optical, few jet breaks, α-β closure 

(Panaitescu et al.  2006) 

X-ray 

optical 

Chromatic breaks: 

(Vaughan et al. 2006) 
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Relevant observations 
n Rapid decay phase: early x+γ-ray obs. + global fits 
n Plateau: good multi-wavelengths lightcurves/spectra 
add to x-ray: optical/UV, NIR/mm, radio, GeV, TeV 
n Flares: multi-wavelength coverage + polarimetry 
n Chromatic breaks, etc.: multi-wavelength + theory… 
n Unique events like GRB 030329 (be ready for them)  

Shock Microphysics 
n Afterglow model - ignorance parameters: εe, εB, ξe, p,… 
n  State of the art – PIC simulations: εe ≳ 0.1, εB ≳ 0.01, 

ξe ~ 0.01, p ~ 2.4±0.1; dynamical scale still not realistic 
n Relevant observations: detailed optical + x-ray + GeV 
n More theoretical (analytic/numerical) work is needed 



Prospects for Future Observations 
n Relevant transients: GRBs, XRFs, orphan afterglows 

(radio/optical/x-ray), shock breakout, nearby SN Ib/c 
n Host galaxies (SFR, type, z, Z, GRB location; Progenitors) 
n  Polarimetry (radio, optical, x/γ-ray; outflow acceleration 

and composition, prompt emission mechanism, jet structure) 
n Multi-wavelength: (radio, optical, x-ray, MeV, GeV, TeV 

composition, collimation, emission mech., afterglow, µ-phys) 
n Multi-messenger: (GW, HE ν’s, UHECR; progenitors, 

central engine, outflow composition, emission mechanism) 
n Early obs.: (prompt, afterglow onset; composition/acc., Γ0) 
n Calorimetry: (radio, γ-ray, SN; central engine, beaming) 
n Also: late flares, mini-SN, GRB-SN, spectroscopy 



Conclusions: 
n GRBs is an observationally driven field: progress is 

usually the result of important new observations 
n After >40 years from the discovery of GRBs, we still 

don’t understand many basic aspects of this phenomena 

n In particular: additional GRB classes, SHB progenitors, 
GRB/SN explosion, acceleration, composition, angular 
structure, prompt emission/dis., afterglow, microphysics 

n New observations can help improve our understanding 

n E.G.: transient searches, rapid follow-ups, polarimetry, 
multi-wavelength, multi-messenger, hosts, calorimetry 

n New observations can always provide new surprises 
that help drive progress in unexpected ways 
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