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Outline of the Talk: 
n Brief motivation & parameterization 
n Test energy dependence of speed of light in vacuum 
n Why use GRBs & how we set limits on such LIV 
u 3 different types of limits from the short bright GRB 

090510 at z = 0.903 (Abdo et al. 2009, Nature, 462, 331)  
u Later analysis: 3 methods, 4 GRBs (Vasileiou et al. 2013) 

u Limits on stochastic LIV (Vasileiou+ 15’ Nat. Phys. 11, 344) 

n Conclusions 



Quantum Gravity: a physics holy grail 
n Motivation: to unify in a self-consistent theory Einstein’s 

General Relativity that dominates on large scales &     
Quantum Theory that dominates on small scales 

                         
n Quantum effects on space-time  

structure expected to become 
strong near the Planck scale:     

lPlanck = (ħG/c3)1/2 ≈ 1.62 × 10−33 cm   

Eplanck = (ħc5/G)1/2 ≈ 1.22 × 1019 GeV 
                         
n Many models / ideas out there:  
experimental constraints needed 

                         
n Astrophysics as a test bed:  
 large energies and distances; uncontrolled experimental setup 
                         



Vacuum energy dispersion: parameterization 
n   Some quantum-gravity (QG) models allow or even predict 

(e.g. Ellis et al. 2008) Lorentz Invariance Violation (LIV) 
n We directly constrain a simple form of LIV - dependence of 

speed of light in vacuum on the photon energy: vph(Eph) ≠ c 
n This may be parameterized through a Taylor expansion of 

the LIV terms in the dispersion relation: 
 

n  sk = −1, 0, 1 stresses the model dependent sign of the effect  
n The most natural scale for LIV is the Planck scale 
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  ,   where EQG,k ≤ EPlanck  is naturally expected



Vacuum energy dispersion: parameterization 
n The photon propagation speed is given by the group velocity: 

 

n Since Eph ≪ EQG,k ≲ EPlanck ~ 1019 GeV the lowest order 
non-zero term, of order n = min{k | sk ≠  0}, dominates 

n Usually n = 1 (linear) or 2 (quadratic) are considered 
n Here we focus on n = 1, since only in this case are our limits 

of the order of the Planck scale 
n We try to constrain both possible signs of the effect:  

u  sn = 1, vph < c: (sub-luminal) higher-E photons are slower 
u  sn = −1, vph > c: (super-luminal) higher-E photons are faster 

n Notice that here c = vph(Eph→  0) is the low energy limit of vph 
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Probing Vacuum dispersion Using GRBs  

(D. Pile, Nature Photonics, 2010) 

(first suggested by Amelino-Camelia et al. 1998) 

Why GRBs?  Very bright & short 
transient events, at cosmological 
distances, emit high-energy γ-rays 



GRB Theor etical Framework: 

n  γ-rays: dissipation: shocks/B? emission mechanism? 
n The jet decelerates by sweeping-up external medium 
⇒ afterglow emission from the long lived shock going     
     into the external medium: X-ray è optical è radio 
n Allows measuring the source’s cosmological redshift 

n Progenitors: 
u Short: binary merger?  
u Long: massive stars 

n  Jet Acceleration to 
Γ >100: Prad / B-field? 



Constraining LIV Using GRBs 
n  A high-energy photon Eh would arrive after (in the sub-luminal 

case: vph < c, sn = 1), or possibly before (in the super-luminal 
case, vph > c, sn = −1) a low-energy photon El emitted together 

n The time delay in the arrival of the high-energy photon is: 

n The photons Eh & El do not have to be emitted at exactly the 
same time & place in the source, but we must be able to limit 
the difference in their effective emission times (i.e. arrival 
times for vph = c) using our knowledge about GRB emission  

n  Our limits apply to any source of energy dispersion on the 
way from the source to us, and may constrain some (even 
more) exotic physics (ΔtLIV → ΔtLIV + Δtexotic)  
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Method 1 
n Limits only sn = 1 - the sub-luminal case: vph < c, & positive 

time delay, ΔtLIV = th − tem > 0 (here th is the actual measured 
arrival time, while tem would be the arrival time if vph = c) 

n We consider a single high-energy photon of energy Eh and 
assume that it was emitted after the onset time (tstart) of the 
relevant low-energy (El) emission episode: tem > tstart 

n è  ΔtLIV = th − tem < th − tstart  

n A conservative assumption: tstart = the onset of any observed 
emission from the GRB 
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Fermi Gamma-ray 
Space Telescope 
(launched on June 11, 2008) 

n  Fermi GRB Monitor (GBM): 8 keV – 40 MeV        
(12×NaI 8 – 103 keV, 2×BGO 0.15 –  40 MeV), full sky 

n  Comparable sensitivity + larger energy range than its 
predecessor - BATSE 

n  Large Area Telescope (LAT): 20 MeV –  >300 GeV FoV 
~ 2.4 sr; up to 40× EGRET sensitivity, ≪ deadtime 

LAT FoV

GBM FoV

(Band et al. 2009) 



GRB090510: L.I.V 
n  A short GRB (duration ~1 s) 
n  Redshift: z = 0.903 ± 0.001 

n  A ~ 31 GeV photon arrived at 
th = 0.829 s after the trigger 

n  We carefully verified it is a 
photon + from the GRB at >5σ 

n  Intrinsic spectral lags known 
on timescale of individual 
pulses: weak effect expected 

(Abdo et al. 2009  
  Nature, 462, 331) 



GRB090510: L.I.V 
n  Method 1: different choices of 
tstart from the most conservative 
to the least conservative 

n  tstart = −0.03 s precursor onset 
è  ξ1 = EQG,1/EPlanck > 1.19   

n  tstart = 0.53 s onset of main 
emission episode è ξ1 > 3.42   

n  For any reasonable emission 
spectrum a ~31 GeV photon is 
accompanied by many γ’s above 
0.1 or 1 GeV that “mark” its tem 
n  tstart = 0.63 s, 0.73 s onset of 

emission above 0.1, 1 GeV               
                è ξ1 > 5.12, ξ1 > 10.0 

(Abdo et al. 2009  
  Nature, 462, 331) 

n = 2 



GRB090510: L.I.V 
n  Method 2: least conservative 
n  Associating a high energy 
photon with a sharp spike in 
the low energy lightcurve, 
which it falls on top of  

n  Limits both signs: sn = ±1   
n  Non-negligible chance 
probability (~5-10%), but still 
provides useful information  

n  For a 0.75 GeV photon during 
precursor: |Δt| < 19 ms, ξ1 > 1.33  
n  For the 31 GeV photon (shaded 

vertical region) è |Δt| < 10 ms 
and ξ1 = EQG,1/EPlanck > 102  

(Abdo et al. 2009  
  Nature, 462, 331) 



Method 3: DisCan (Scargle et al. 2008)  
n Based on lack of smearing of the fine time structure (sharp 

narrow spikes in the lightcurve) due to energy dispersion 

n Constrains both possible signs of the effect: sn = ±1 
n Uses all LAT photons during the brightest emission episode 

(obs. range 35 MeV – 31 GeV); no binning in time or energy 

n Shifts the arrival time of photons according to a trail energy 
dispersion (linear in our case), finding the coefficient that 
maximizes a measure of the resulting lightcurve variability 

n We found a symmetric upper limit on a linear dispersion:          
|Δt/ΔE| < 30 ms/GeV (99% CL)  è  EQG,1 > 1.22 EPlanck  

n Remains unchanged when using only photons < 1 or 3 GeV 
(a very robust limit) 



Newer Analysis of brightest LAT GRBs 
(Vasileiou, Jacholkowska, Piron, Bolmont, Couturier, Granot, Stecker, 

Cohen-Tanugi & Longo 2013, PRD, 87, 122001)  

n Use 3 different analysis methods:  complimentary in 
sensitivity & improves reliability of results 

u  PairView (PV): distribution of spectral lags Δt/Δ(En) for 
all photon pairs used to estimate τn; CI from simulations 



Newer Analysis of brightest LAT GRBs 
(Vasileiou, Jacholkowska, Piron, Bolmont, Couturier, Granot, Stecker, 

Cohen-Tanugi & Longo 2013, PRD, 87, 122001)  

n Use 3 different analysis methods:  complimentary in 
sensitivity & improves reliability of results 

u  PairView (PV): distribution of spectral lags Δt/Δ(En) for 
all photon pairs used to estimate τn; CI from simulations 

u  Sharpness Maximization Method (SMM): improved DisCan 

u  Maximum Likelihood (ML): low-E data → lightcurve 
template for high-E data → maximize L for trial τn values 

n Use the 4 brightest Fermi/LAT GRBs with known redshifts 
n The new analysis methods improve the sensitivity/LIV limits 

n Conservatively account for Intrinsic Effects: τn = τGRB + τLIV 



All 3 Methods: Results (95% CL, n = 1) 
n ~2 times stricter than the best 

previous limits (horizontal lines)  
Sub-luminal 

Super-luminal (90%, 99% CL) 

n Horizontal bars: mean limits 
over the 3 methods, accounting 
for GRB intrinsic effects 

n Neglecting intrinsic effects can 
lead to unrealistically strict limits 



Very New: Limits on Stochastic LIV 
(Vasileiou, Granot, Piran & Amelino-Camelia 2015; Nat. Phys. 11, 344)  

n The concept of spacetime foam: 
suggests LIV may be stochastic 

n Photons of same energy emitted 
together arrive at different times 
according to some PDF 

n Differs from deterministic LIV 
where Eph uniquely determines 
vph & vph − c has the same sign: 

n We considered a Gaussian PDF: 
𝑣(𝐸) = 𝑐 + 𝛿𝑣(𝐸) ,  𝛿𝑣 = G(0, σv) 
σv(E) = (E/ξs,ns

EPlanck)nsc 



Data Analysis: Maximum Likelihood 
n We generalized this existing method to stochastic LIV 
n E < Eth used for emission template; E > Eth used for likelihood 
n We chose Eth = 300 MeV (negligible LIV < Eth + enough γ’s > Eth) 
n Time interval: 0.7-1.0 s (brightest, most variable, highest Eph & 

relatively stable emission spectrum; 316 γ’s < Eth, 37 γ’s > Eth) 
n Optimized lightcurve reconstruction method with simulations 

u  KDE with fixed 6 ms bandwidth 
 ⇒ Reconstructed L.C. template: f(t) 



Data Analysis: Maximum Likelihood 
n  σT(E) = Tcσv(E)/c = w E,    w(z) = σT(E)/E = Tc/ξs,1EPlanck                    

stochastic LIV parameter  
          (measured in s/GeV): 
n Likelihood: product of probabilities  
   for all high-energy photons (E > Eth):  
n For each photon, a convolution is done to account for all 

possible emission times with the appropriate probability 

 
n Altogether: 



Results & Confidence Intervals: 
n Our best estimate for w that maximizes L(w): wbest = 0 s/GeV 
n Confidence Interval: Feldman-Cousin method (computationally 

expensive, but provides proper coverage & is less sensitive to biases) 
u  Use artificial lightcurve close to detected one + inject a known w 
u  Many simulations (random realizations) for each trial value of w 
u  ML applied to each realization ⇒ wbest(w) ⇒ global confidence belt 
u  ⇒ derive Confidence Interval for w using wbest from the actual data  

n CI on w ⇒ CI on ξs,1= EQG,s,1/EPlanck 
n We obtain a Planck-scale limit   
(the 1st for stochastic or fuzzy LIV):  

 ξs,1 > 2.8 at 95% confidence 

 ξs,1 > 1.6 at 99% confidence 
UL on w 
(95% CL) 

  
confidence  
belt: 95% 

wbest 



Conclusions: 
n Astrophysical tests of QG can help – look for them 

n GRBs are very useful for constraining LIV 

n Bright short GRBs are more useful than long ones 

n EQG,1/EPlanck ≳ a few even when conservatively 
accounting for possible intrinsic source effects  

n New Planck scale limits on stochastic / fuzzy LIV  

n Quantum-Gravity Models with linear (n = 1) 
photon energy dispersion are disfavored 


