Bounds on

Lorentz Invariance Violation from Fermi Gamma-Ray Bursts

Jonathan Granot

Open University of Israel

on behalf of the Fermi LAT & GBM Collaborations

17th Lomonosov Conference on Elementary Particle Physics Moscow State University, Moscow, Russia, August 22, 2015

Outline of the Talk:

- Brief motivation & parameterization
- Test energy dependence of speed of light in vacuum
- Why use GRBs & how we set limits on such LIV
- ♦ 3 different types of limits from the short bright GRB 090510 at z = 0.903 (Abdo et al. 2009, Nature, 462, 331)
- ♦ Later analysis: 3 methods, 4 GRBs (Vasileiou et al. 2013)
- ◆ Limits on stochastic LIV (Vasileiou+15' Nat. Phys. 11, 344)
- Conclusions

Quantum Gravity: a physics holy grail

- Motivation: to unify in a self-consistent theory Einstein's General Relativity that dominates on large scales & Quantum Theory that dominates on small scales
- Quantum effects on space-time structure expected to become strong near the Planck scale:
 *l*_{Planck} = (ħG/c³)^{1/2} ≈ 1.62×10⁻³³ cm
 E_{planck} = (ħc⁵/G)^{1/2} ≈ 1.22×10¹⁹ GeV
- Many models / ideas out there: experimental constraints needed

Vacuum energy dispersion: parameterization
Some quantum-gravity (QG) models allow or even predict (e.g. Ellis et al. 2008) Lorentz Invariance Violation (LIV)
We directly constrain a simple form of LIV - dependence of speed of light in vacuum on the photon energy: v_{ph}(E_{ph}) ≠ c
This may be parameterized through a Taylor expansion of the LIV terms in the dispersion relation:

$$c^2 p_{ph}^2 = E_{ph}^2 \left[1 + \sum_{k=1}^{\infty} S_k \left(\frac{E_{ph}}{E_{QG,k}} \right)^k \right]$$
, where $E_{QG,k} \le E_{Planck}$ is naturally expected

s_k = -1, 0, 1 stresses the model dependent sign of the effect
 The most natural scale for LIV is the **Planck scale**

Vacuum energy dispersion: parameterization
The photon propagation speed is given by the group velocity:

$$e^{2}p_{ph}^{2} = E_{ph}^{2} \left[1 + \sum_{k=1}^{\infty} S_{k} \left(\frac{E_{ph}}{E_{QG,k}} \right)^{k} \right] \quad , \quad v_{ph} = \frac{\partial E_{ph}}{\partial p_{ph}} \approx c \left[1 - S_{n} \frac{(1+n)}{2} \left(\frac{E_{ph}}{E_{QG,n}} \right)^{n} \right]$$

Since E_{ph} ≪ E_{QG,k} ≤ E_{Planck} ~ 10¹⁹ GeV the lowest order non-zero term, of order n = min{k | s_k ≠ 0}, dominates
Usually n = 1 (linear) or 2 (quadratic) are considered
Here we focus on n = 1, since only in this case are our limits of the order of the Planck scale
We try to constrain both possible signs of the offset;

• We try to constrain **both possible signs** of the effect:

◆ s_n = 1, v_{ph} < c: (sub-luminal) higher-E photons are slower
 ◆ s_n=-1, v_{ph} > c: (super-luminal) higher-E photons are faster
 Notice that here c = v_{ph}(E_{ph}→0) is the low energyllimit of v_{ph}

Probing Vacuum dispersion Using GRBs (first suggested by Amelino-Camelia et al. 1998)

Why GRBs? Very bright & short transient events, at cosmological distances, emit high-energy γ-rays (D. Pile, Nature Photonics, 2010)

vanninn

GRB Theor etical Framework:

Progenitors:

 Short: binary merger?
 Long: massive stars

 Jet Acceleration to

 Γ>100: P_{rad}/B-field?

γ-rays: dissipation: shocks/B? emission mechanism?
 The jet decelerates by sweeping-up external medium
 afterglow emission from the long lived shock going into the external medium: X-ray -> optical -> radio
 Allows measuring the source's cosmological redshift

Constraining LIV Using GRBs

A high-energy photon E_h would arrive after (in the sub-luminal case: v_{ph} < c, s_n = 1), or possibly before (in the super-luminal case, v_{ph} > c, s_n = -1) a low-energy photon E_l emitted together

The time delay in the arrival of the high-energy photon is:

$$\Delta t_{\text{LIV}} = S_n \frac{(1+n)}{2H_0} \frac{E_h^n - E_l^n}{E_{\text{QG,n}}^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} dz'$$
Jacob & Piran 2008)

The photons E_h & E_l do not have to be emitted at exactly the same time & place in the source, but we must be able to limit the difference in their effective emission times (i.e. arrival times for v_{ph} = c) using our knowledge about GRB emission

Method 1

■ Limits only $s_n = 1$ - the sub-luminal case: $v_{ph} < c$, & positive time delay, $\Delta t_{LIV} = t_h - t_{em} > 0$ (here t_h is the actual measured arrival time, while t_{em} would be the arrival time if $v_{ph} = c$)

• We consider a single high-energy photon of energy E_h and assume that it was emitted after the onset time (t_{start}) of the relevant low-energy (E_l) emission episode: $t_{em} > t_{start}$

$$\Rightarrow \Delta t_{\rm LIV} = t_{\rm h} - t_{\rm em} < t_{\rm h} - t_{\rm start}$$

A conservative assumption: t_{start} = the onset of any observed emission from the GRB

Fermi Gamma-ray **Space Telescope** (launched on June 11, 2008)

LAT

 10^{3}

 10^{4}

10⁵

Fermi GRB Monitor (GBM): 8 keV – 40 MeV $(12 \times \text{NaI 8} - 10^3 \text{ keV}, 2 \times \text{BGO 0.15} - 40 \text{ MeV})$, full sky Comparable sensitivity + larger energy range than its predecessor - BATSE ■ Large Area Telescope (LAT): 20 MeV – >300 GeV FoV ~ 2.4 sr; up to $40 \times EGRET$ sensitivity, \ll deadtime

GRB090510: L.I.V A short GRB (duration ~1 s) Redshift: $z = 0.903 \pm 0.001$ ■ A ~31 GeV photon arrived at $t_{\rm h} = 0.829$ s after the trigger We carefully verified it is a photon+from the GRB at $>5\sigma$ Intrinsic spectral lags known on timescale of individual pulses: weak effect expected

GRB090510: L.I.V

Method 1: different choices of t_{start} from the most conservative to the least conservative

 $t_{start} = -0.03 \text{ s precursor onset}$ → $\xi_1 = E_{OG,1}/E_{Planck} > 1.19$ $t_{start} = 0.53$ s onset of main emission episode $\rightarrow \xi_1 > 3.42$ For any reasonable emission spectrum a ~31 GeV photon is accompanied by many γ 's above[§] 0.1 or 1 GeV that "mark" its t_{em} $t_{start} = 0.63 \text{ s}, 0.73 \text{ s} \text{ onset of}$ emission above 0.1, 1 GeV $\rightarrow \xi_1 > 5.12, \xi_1 > 10.0$

GRB090510: L.I.V

Method 2: least conservative Associating a high energy photon with a sharp spike in the low energy lightcurve, which it falls on top of Limits both signs: $s_n = \pm 1$ Non-negligible chance probability (~5-10%), but still provides useful information For a 0.75 GeV photon during precursor: $|\Delta t| < 19 \text{ ms}, \xi_1 > 1.33$ ■ For the 31 GeV photon (*shaded* vertical region) $\rightarrow |\Delta t| < 10 \text{ ms}$ and $\xi_1 = E_{OG,1}/E_{Planck} > 102$

Method 3: DisCan (Scargle et al. 2008)

- Based on lack of smearing of the fine time structure (sharp narrow spikes in the lightcurve) due to energy dispersion
- Constrains both possible signs of the effect: $s_n = \pm 1$
- Uses all LAT photons during the brightest emission episode (obs. range 35 MeV – 31 GeV); no binning in time or energy
- Shifts the arrival time of photons according to a trail energy dispersion (linear in our case), finding the coefficient that maximizes a measure of the resulting lightcurve variability
- We found a symmetric upper limit on a linear dispersion: $|\Delta t/\Delta E| < 30 \text{ ms/GeV} (99\% \text{ CL}) \Rightarrow E_{QG,1} > 1.22 E_{Planck}$
- Remains unchanged when using only photons < 1 or 3 GeV (a very robust limit)

Newer Analysis of brightest LAT GRBs (Vasileiou, Jacholkowska, Piron, Bolmont, Couturier, Granot, Stecker, Cohen-Tanugi & Longo 2013, PRD, 87, 122001)

Use 3 different analysis methods: complimentary in sensitivity & improves reliability of results

 PairView (PV): distribution of spectral lags Δt/Δ(Eⁿ) for all photon pairs used to estimate τ_n; CI from simulations

$$\tau_n \equiv \frac{\Delta t}{(E_h^n - E_l^n)} \simeq s_{\pm} \frac{(1+n)}{2H_0} \frac{1}{E_{QG}^n} \times k_n \qquad k_n \equiv \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_\Lambda + \Omega_M (1+z')^3}} dz$$

Newer Analysis of brightest LAT GRBs (Vasileiou, Jacholkowska, Piron, Bolmont, Couturier, Granot, Stecker, Cohen-Tanugi & Longo 2013, PRD, 87, 122001)

Use 3 different analysis methods: complimentary in sensitivity & improves reliability of results

• **PairView (PV)**: distribution of spectral lags $\Delta t/\Delta(E^n)$ for all photon pairs used to estimate τ_n ; CI from simulations

Sharpness Maximization Method (SMM): improved DisCan

◆ Maximum Likelihood (ML): low-E data → lightcurve template for high-E data → maximize *L* for trial τ_n values

Use the 4 brightest Fermi/LAT GRBs with known redshifts

The new analysis methods improve the sensitivity/LIV limits

Conservatively account for Intrinsic Effects: $\tau_n = \tau_{GRB} + \tau_{LIV}$

All 3 Methods: Results (95% CL, n = 1)

Very New: Limits on Stochastic LIV (Vasileiou, Granot, Piran & Amelino-Camelia 2015; Nat. Phys. 11, 344)

- The concept of spacetime foam: suggests LIV may be stochastic
- Photons of same energy emitted together arrive at different times according to some PDF
- Differs from deterministic LIV where E_{ph} uniquely determines v_{ph} & v_{ph} c has the same sign:
 We considered a Gaussian PDF: v(E) = c + δv(E), δv = G(0, σ_v) σ_v(E) = (E/ξ_{s,ns}E_{planck})^{n_s}c

Data Analysis: Maximum Likelihood We generalized this existing method to stochastic LIV **E** < E_{th} used for emission template; **E** > E_{th} used for likelihood We chose $E_{th} = 300 \text{ MeV}$ (negligible LIV < E_{th} + enough γ 's > E_{th}) **Time interval: 0.7-1.0 s** (brightest, most variable, highest E_{ph} & relatively stable emission spectrum; 316 γ 's < E_{th} , 37 γ 's > E_{th}) Optimized lightcurve reconstruction method with simulations ♦ KDE with fixed 6 ms bandwidth \Rightarrow Reconstructed L.C. template: f(t)

Data Analysis: Maximum Likelihood $\sigma_T(E) = T_c \sigma_v(E)/c = wE, \quad w(z) = \sigma_T(E)/E = T_c/\xi_{s,1}E_{\text{Planck}}$ stochastic LIV parameter (measured in s/GeV): $w(z) = \frac{1}{\xi_{s,1}E_{\text{Pl}}H_0} \int_0^z \frac{(1+z')}{\sqrt{\Omega_\Lambda + \Omega_M(1+z')^3}} dz'$ Likelihood: product of probabilities for all high-energy photons $(E > E_{th})$: $\mathcal{L}(w) = \prod_{i=1}^{N} P(E_i, t_i | w, f)$ For each photon, a convolution is done to account for all possible emission times with the appropriate probability $P_{\text{LIV}}(\Delta t, E|w) = G(\Delta t|0, \sigma_{\text{LIV}} = wE_i) P(E_i, t_i|w, f) = \int G(t'_i - t_i|0, wE_i) f(t'_i)dt'_i$ Altogether: $\mathcal{L}(w) = \prod_{i=1}^{N} P_i(w) \propto \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}wE_i} \int_{-\infty}^{\infty} f(t_i - \tau) \exp\left[-\frac{1}{2}\left(\frac{\tau}{wE_i}\right)^2\right] d\tau$ Results & Confidence Intervals:

Our best estimate for w that maximizes L(w): w_{best}=0 s/GeV
 Confidence Interval: Feldman-Cousin method (computationally expensive, but provides proper coverage & is less sensitive to biases)
 Use artificial lightcurve close to detected one + inject a known w
 Many simulations (random realizations) for each trial value of w
 ML applied to each realization ⇒ w_{best}(w) ⇒ global confidence belt
 ⇒ derive Confidence Interval for w using w_{best} from the actual data

• CI on w \Rightarrow CI on $\xi_{s,1} = E_{QG,s,1}/E_{Planck}$ • We obtain a Planck-scale limit (the 1st for stochastic or fuzzy LIV): $\xi_{s,1} > 2.8$ at 95% confidence $\xi_{s,1} > 1.6$ at 99% confidence

Conclusions:

Astrophysical tests of QG can help – look for them **GRBs** are very useful for constraining LIV Bright short GRBs are more useful than long ones $E_{QG,1}/E_{Planck} \gtrsim a$ few even when conservatively accounting for possible intrinsic source effects New Planck scale limits on stochastic / fuzzy LIV Quantum-Gravity Models with linear (n = 1)photon energy dispersion are disfavored